首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two depth profiles of the osmium concentration and the 187Os/186Os isotopic ratio in the Indian Ocean showed that the osmium concentration seems to be unaltered by chemical or biological processes occuring in seawater; accordingly, osmium is conservative. These data were obtained from an experimental method that eliminated the problems related to osmium preconcentration. This method led to a new evaluation of the concentration of osmium in seawater; the mean concentration of osmium and the 187Os/186Os ratio are equal to 10.86 +/- 0.07 picograms per kilogram and 8.80 +/- 0.07, respectively. The results suggest the existence of an organocomplex that dominates the speciation of osmium in seawater.  相似文献   

2.
Recycled subducted ocean crust has been traced by elevated 187Os/188Os in some studies and by high nickel and low manganese contents in others. Here, we show that these tracers are linked for Quaternary lavas of Iceland, strengthening the recycling model. An estimate of the osmium isotopic composition of both the recycled crust and the mantle peridotite implies that Icelandic Quaternary lavas are derived in part from an ancient crustal component with model ages between 1.1 _ 109 and 1.8 _ 109 years and from a peridotitic end-member close to present-day oceanic mantle.  相似文献   

3.
To explain the elevated osmium isotope (186Os-187Os) signatures in oceanic basalts, the possibility of material flux from the metallic core into the crust has been invoked. This hypothesis conflicts with theoretical constraints on Earth's thermal and dynamic history. To test the veracity and uniqueness of elevated 186Os-187Os in tracing core-mantle exchange, we present highly siderophile element analyses of pyroxenites, eclogites plus their sulfides, and new 186Os/188Os measurements on pyroxenites and platinum-rich alloys. Modeling shows that involvement in the mantle source of either bulk pyroxenite or, more likely, metasomatic sulfides derived from either pyroxenite or peridotite melts can explain the 186Os-187Os signatures of oceanic basalts. This removes the requirement for core-mantle exchange and provides an effective mechanism for generating Os isotope diversity in basalt source regions.  相似文献   

4.
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.  相似文献   

5.
Osmium isotopic analyses of picritic lavas from Hawaii show enrichments in the osmium-186/osmium-188 ratio (186Os/188Os) of 0. 008 to 0.018%, relative to a chondritic upper mantle, that are positively correlated with enrichments in 187Os/188Os of 5.4 to 9.0%. The most viable mechanism to produce these coupled 186Os and 187Os enrichments is by addition of 0.5 to 1 weight percent of outer core metal to a portion of the D" layer and subsequent upwelling of the mixture. These data suggest that some plumes originate at the core-mantle boundary and that Os isotopes may be used to distinguish plumes derived from shallow versus deep mantle sources.  相似文献   

6.
Compatibility of rhenium in garnet during mantle melting and magma genesis   总被引:2,自引:0,他引:2  
Measurements of the partitioning of rhenium (Re) between garnet and silicate liquid from 1.5 to 2.0 gigapascals and 1250 degrees to 1350 degreesC show that Re is compatible in garnet. Oceanic island basalts (OIBs) have lower Re contents than mid-ocean ridge basalt, because garnet-bearing residues of deeper OIB melting will retain Re. Deep-mantle garnetite or eclogite may harbor the missing Re identified in crust-mantle mass balance calculations. Oceanic crust recycled into the upper mantle at subduction zones will retain high Re/Os (osmium) ratios and become enriched in radiogenic 187Os. Recycled eclogite in a mantle source should be easily traced using Re abundances and Os isotopes.  相似文献   

7.
Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D" layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-l88 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.  相似文献   

8.
Isotopic data for the Stillwater Complex, Montana, which formed about 2700 Ma (million years ago), were obtained to evaluate the role of magma mixing in the formation of strategic platinum-group element (PGE) ore deposits. Neodymium and osmium isotopic data indicate that the intrusion formed from at least two geochemically distinct magmas. Ultramafic affinity (U-type) magmas had initial epsilon(Nd) of -0.8 to -3.2 and a chondritic initial (187)Os/(186)Os ratio of approximately 0.88, whereas anorthositic affinity (A-type) magmas had epsilon(Nd) of -0.7 to +1.7 and an initial (187)Os/(186)Os ratio of approximately -1.13. These data suggest that U-type magmas were derived from a lithospheric mantle source containing recycled crustal materials whereas A-type magmas originated either by crustal contamination of basaltic magmas or by partial melting of basalt in the lower crust. The Nd and Os isotopic data also suggest that Os, and probably the other PGEs in ore horizons such as the J-M Reef, was derived from A-type magmas. The Nd and Os isotopic heterogeneity observed in rocks below the J-M Reef also suggests that A-type magmas were injected into the Stillwater U-type magma chamber at several stages during the development of the Ultramafic series.  相似文献   

9.
The 2.89- to 2.76-gigayear-old conglomerates of the Central Rand Group of South Africa host an immense concentration of gold. The gold and rounded pyrites from the conglomerates yield a rhenium-osmium isochron age of 3.03 +/- 0.02 gigayears and an initial 187Os/188Os ratio of 0.1079 +/- 0.0001. This age is older than that of the conglomerates. Thus, the gold is detrital and was not deposited by later hydrothermal fluids. This Middle Archean gold mineralization event corresponds to a period of rapid crustal growth in which much of the Kaapvaal craton was formed and is evidence for a significant noble metal flux from the mantle.  相似文献   

10.
Morgan JV 《Science (New York, N.Y.)》2008,321(5893):1158; author reply 1158
Paquay et al. (Reports, 11 April 2008, p. 214) reported that osmium isotope ratios in marine sediments can be used to determine the size of a chondritic impactor. Their assumptions on the fate of an impacting projectile may need to be reassessed, however, because only a small, unpredictable fraction of the impactor ends up dissolved in seawater.  相似文献   

11.
Rhenium and osmium concentrations and Os isotopic compositions of eight carbonaceous chondrites, one LL3 ordinary chondrite, and two iron meteorites were determined by resonance ionization mass spectrometry. Iron meteorite (187)Re/(186)Os and (l87)Os/(l86)Os ratios plot on the previously determined iron meteorite isochron, but most chondrite data plot 1 to 2 percent above this meteorite isochron. This suggests either that irons have significantly younger Re-Os closure ages than chondrites or that chondrites were formed from precursor materials with different chemical histories from the precursors of irons. Some samples of Semarkona (LL3) and Murray (C2M) meteorites plot 4 to 6 percent above the iron meteorite isochron, well above the field delineated by other chondrites. Murray may have lost Re by aqueous leaching during its preterrestrial history. Semarkona could have experienced a similar loss of Re, but only slight aqueous alteration is evident in the meteorite. Therefore, the isotopic composition of Semarkona could reflect assembly of isotopically heterogeneous components subsequent to 4.55 billion years ago or Os isotopic heterogeneities in the primordial solar nebula.  相似文献   

12.
Continental flood basalt (CFB) volcanism is hypothesized to have played a causative role in global climate change and mass extinctions. Uncertainties associated with radiometric dating preclude a clear chronological assessment of the environmental consequences of CFB volcanism. Our results document a 25% decline in the marine 187Os/188Os record that predates the Cretaceous-Tertiary boundary (KTB) and coincides with late Maastrichtian warming. We argue that this decline provides a chemostratigraphic marker of Deccan volcanism and thus constitutes compelling evidence that the main environmental consequence of Deccan volcanism was a transient global warming event of 3 degrees to 5 degrees C that is fully resolved from the KTB mass extinction.  相似文献   

13.
Radiogenic isotope variations in mid-ocean ridge basalts (MORB) are commonly attributed to compositional variations in Earth's upper mantle. For the rheniumosmium isotope system, constituent MORB phases are shown to possess exceptionally high Re/Os (parent/daughter) ratios, consequently radiogenic 187Os is produced from the decay of 187Re over short periods of time. Thus, in the absence of precise age constraints, Os isotope variations cannot be unambiguously attributed to their source, although Re-Os isotope data for constituent minerals can yield crystallization ages, details of equilibration, and initial Os isotope values that relate directly to the mantle source.  相似文献   

14.
As a result of the radioactive decay of rhenium-187 (4.6 x 10(10) years) the osmium-187/osmium-186 ratio changes in planetary systems as a function of time and the rhenium-187/osmium-186 ratio. For a value of the rhenium-187/osmium-186 ratio of about 3.2, typical of meteorites and the earth's mantle, the present-day osmium-187/osmium-186 ratio is about 1. The earth's continental crust has an estimated rhenium-187/osmium-186 ratio of about 400, so that for a mean age of the continent of 2 x 10(9) years, a present-day osmium-187/osmium-186 ratio of about 10 is expected. Marine manganese nodules show values (6 to 8.4) compatible with this expectation if allowance for a 25 percent mantle osmium supply to the oceans is allowed. The Cretaceous-Tertiary boundary iridium-rich layer in the marine section at Stevns Klint, Denmark, yields an osmium-187/osmium-186 ratio of 1.65, and the one in a continental section in the Raton Basin, Colorado, is 1.29. The simplest explanation is that these represent osmium imprints of predominantly meteoritic origin.  相似文献   

15.
Measurement of rhenium (Re) and osmium (Os) concentrations and Os isotopic compositions in Ivory Coast tektites (natural glasses with upper crustal compositions that are ejected great distances during meteorite impact) and rocks from the inferred source crater, Lake Bosumtwi, Ghana, show that these tektites incorporate about 0.6 percent of a meteoritic component. Analysis of elemental abundances of noble metals alone gives equivocal results in the detection of meteoritic components because the target rocks already have relatively large amounts of noble metals. The Re-Os system is ideally suited for the study of meteorite impacts on old continental crust for three reasons. (i) The isotopic compositions of the target rocks and the meteoritic impactor are significantly different. (ii) Closed-system mixing of target rocks and meteorites is linear on Re-Os isochron diagrams, which thus permits identification of the loss of Re or Os. (iii) Osmium isotopic compositions are not likely to be altered during meteorite impact even if Re and Os are lost.  相似文献   

16.
Iridosmine grains from placer deposits associated with peridotite-bearing ophiolites in the Klamath mountains have extremely radiogenic 186Os/188Os ratios and old Re-Os minimum ages, from 256 to 2644 million years. This indicates the existence of an ancient platinum group element reservoir with a supra-chondritic Pt/Os ratio. Such a ratio may be produced in the outer core as a result of inner core crystallization that fractionates Os from Pt. However, if the iridosmine Os isotopic compositions are a signature of the outer core, then the inner core must have formed very early, within several hundred million years after the accretion of Earth.  相似文献   

17.
Age estimates for the opening of Drake Passage range from 49 to 17 million years ago (Ma), complicating interpretations of the relationship between ocean circulation and global cooling. Secular variations of neodymium isotope ratios at Agulhas Ridge (Southern Ocean, Atlantic sector) suggest an influx of shallow Pacific seawater approximately 41 Ma. The timing of this connection and the subsequent deepening of the passage coincide with increased biological productivity and abrupt climate reversals. Circulation/productivity linkages are proposed as a mechanism for declining atmospheric carbon dioxide. These results also indicate that Drake Passage opened before the Tasmanian Gateway, implying the late Eocene establishment of a complete circum-Antarctic pathway.  相似文献   

18.
We present a large-scale molecular phylogeny of the ants (Hymenoptera: Formicidae), based on 4.5 kilobases of sequence data from six gene regions extracted from 139 of the 288 described extant genera, representing 19 of the 20 subfamilies. All but two subfamilies are recovered as monophyletic. Divergence time estimates calibrated by minimum age constraints from 43 fossils indicate that most of the subfamilies representing extant ants arose much earlier than previously proposed but only began to diversify during the Late Cretaceous to Early Eocene. This period also witnessed the rise of angiosperms and most herbivorous insects.  相似文献   

19.
The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.  相似文献   

20.
The Ordovician Period, long considered a supergreenhouse state, saw one of the greatest radiations of life in Earth's history. Previous temperature estimates of up to approximately 70 degrees C have spawned controversial speculation that the oxygen isotopic composition of seawater must have evolved over geological time. We present a very different global climate record determined by ion microprobe oxygen isotope analyses of Early Ordovician-Silurian conodonts. This record shows a steady cooling trend through the Early Ordovician reaching modern equatorial temperatures that were sustained throughout the Middle and Late Ordovician. This favorable climate regime implies not only that the oxygen isotopic composition of Ordovician seawater was similar to that of today, but also that climate played an overarching role in promoting the unprecedented increases in biodiversity that characterized this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号