首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
不同地区凤眼莲的光合生态功能型及其生态因子分析   总被引:4,自引:0,他引:4  
以江苏省农业科学院太湖雪堰、南京和滇池白山湾的试验点内种养的凤眼莲为研究材料, 在相同种养时间内, 统一测定不同地区植株的株高和干重的变化及不同叶位光合参数和光合功能叶片的光合-光响应曲线等, 以期阐明不同生态区凤眼莲株型特征形成的生态生理机制, 并为不同地区人工放养凤眼莲的高产栽培提供理论参考和技术支持。结果表明: (1)不同地区种养的凤眼莲株型有较大差异, 滇池的为短地上部分和长根的株型, 其茎叶长/根长为0.4±0.1; 南京的为中等长度的地上部分和短根的株型, 其茎叶长/根长为7.1±0.3;太湖的为长地上部分和中等根长的株型, 其茎叶长/根长为2.0±0.2。(2)形态有差异的不同地区凤眼莲植株的光合表现存在差异, 与南京和滇池地区的相比, 太湖凤眼莲不同叶位的净光合速率(Pn) 最高(25.9~35.3μmol·m-2·s-1); 相关性分析表明, 南京凤眼莲的Pn 与其相对湿度呈极显著负相关(r=-0.831**, n=6), 滇池凤眼莲的Pn 与气孔导度呈显著正相关(r=0.769*, n=6), 太湖凤眼莲的相对湿度与叶片蒸腾速率呈显著负相关(r=-0.818*, n=6)。可见影响不同地区Pn 的外界因子有差异, 但除外界光强外, 相对湿度也是影响其Pn 高低的重要生态因子。(3)不同生态地区形态有差异的植株已形成了相应的光合潜力, 生长能力最强的太湖地区植株,光合能力也最强, Pmax 最大(36.29±1.21 μmol·m-2·s-1)且光饱和点最高(LSP, 2 350.0±69.0 μmol·m-2·s-1); 相关性分析进一步表明, 株高和光补偿点(LCP)以及茎叶长度与光饱和点均呈显著正相关, 相关系数分别为r=0.998*r=0.997*(n=10)。本研究可为不同地区利用凤眼莲净化富营养水域的高产栽培提供参考。  相似文献   

2.
桃光合性能杂种优势的秋季日变化特征   总被引:1,自引:0,他引:1  
以桃品种“吊枝白”和“霞晖5 号”及其杂交F1 代种苗为试验材料, 研究了桃在秋季的光合性能杂种优势日变化特征。结果表明: 净光合速率(Pn)午间表现正向杂种优势, 蒸腾速率(Tr)和气孔导度(Gs)全天基本表现负向杂种优势, 而水分利用效率(WUE)则全天基本表现正向杂种优势。相关性分析表明, 杂交F1 代种苗的PnTrPnGsTrGs 均呈正相关, 其中PnTr 之间相关性达显著水平(P<0.05); 亲本的Pn 与Tr之间呈显著正相关(P<0.05), GsPnWUE 之间呈显著正相关(P<0.05)。灰色关联度分析表明, 影响PnTrWUE 杂种优势率的主要因素均为大气CO2 浓度(Ca)。  相似文献   

3.
连作栽培对当归光合参数日变化的影响   总被引:1,自引:1,他引:0  
利用CI-310 便携式光合作用系统, 测定正茬(连作0 年)、迎茬(隔年连作)、重茬(连作2 年)3 种种植方式下当归叶片的光合参数, 研究其日变化特征。结果表明: 3 种种植方式下当归叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2 浓度(Ci)的日变化均呈“双峰”曲线, 12:00 时存在明显“午休”现象, 但不同茬口PnTrGsCi 高峰和低谷出现的时刻和值不同; 根据PnCiGs 的变化方向, 推测当归叶片的光合“午休”受气孔因素影响; 重茬和迎茬极显著(P<0.01)降低当归叶片叶绿素含量; 正茬种植方式下当归叶片PnGsCiTr 的日均值均极显著(P<0.01)和显著(P<0.05)高于重茬。由此得出, 连作栽培显著降低当归叶片的叶绿素含量、GsCiPnTr, 进而影响产量形成。  相似文献   

4.
不同化感潜力水稻钾离子吸收动力学差异分析   总被引:1,自引:0,他引:1  
水培条件下, 采用离子耗竭法研究培养液中不同营养元素对化感水稻“PI312777”和非化感水稻“Lemont”钾离子吸收能力的影响, 并分析两水稻品种根部钾离子吸收相关基因的差异表达。结果表明, 不同处理下, 化感水稻“PI312777”相对于对照的△Km、-△Imax 和△Cmin 变化范围均较小, 与非化感水稻“Lemont”相比差异达显著水平。不同处理下, 两水稻品种的Km 值和Cmin 值的变化趋势为完全营养液培养未饥饿处理水稻(KControl)>完全营养液培养饥饿处理水稻(KAll)>只含N、P、K 的营养液培养饥饿处理水稻(KNPK)>只含N、K 的营养液培养饥饿处理水稻(KNK)>只含P、K 的营养液培养饥饿处理水稻(KPK)>无N、P、K 的完全营养液培养饥饿处理水稻(KOther)>只含K 的营养液培养饥饿处理水稻(KK), 最大吸收速率Imax 值则相反。可见, 不同营养元素对两水稻钾离子吸收存在显著影响, 其中N 素的影响高于P 素, P 素高于其他元素。水稻根部钾离子吸收相关基因的差异表达分析结果显示, 不同处理条件下两水稻品种钾离子吸收相关基因均上调表达, 但非化感水稻“Lemont”的表达强度高于化感水稻“PI312777”。可见, 非化感水稻“Lemont”响应环境因素变化的敏感度高于化感水稻“PI312777”。  相似文献   

5.
氟啶胺对土壤中蔗糖酶活性及呼吸作用的影响   总被引:5,自引:0,他引:5  
使用农药控制作物害虫和疾病可提高农业生产力, 然而农药的使用对土壤造成的污染已成为巨大且日益严重的问题。重复、广泛使用的农药进入土壤影响土壤生物、生物代谢及其生物活性, 已成为农业生态环境重要的研究内容。为了更好地了解氟啶胺对土壤微生物活性和土壤质量等潜在环境危险, 采用实验室模拟的方法研究了氟啶胺农药残留动态, 以及氟啶胺对土壤呼吸强度、蔗糖酶活性及其动力学和热力学特征参数的影响。结果表明: 高剂量(100 mg·kg-1)氟啶胺在土壤的降解速率常数最大, 氟啶胺在土壤中的半衰期范围为0.38~0.59 d。高剂量(50 mg·kg-1、100 mg·kg-1 和1 000 mg·kg-1)氟啶胺对土壤蔗糖酶表现出不同程度的抑制作用; 低剂量(1 mg·kg-1、5 mg·kg-1)处理表现为抑制-激活-抑制作用, 且波动范围较大; 10 mg·kg-1 氟啶胺对土壤蔗糖酶前期表现为抑制、后期表现为激活作用, 波动范围较大。不同浓度氟啶胺胁迫下蔗糖酶促反应的Michaelis 常数(Km)和最大反应速率(Vmax)发生改变, 但变化不大。土壤中氟啶胺浓度为1 mg·kg-1 时蔗糖酶所需的活化能(Ea)比CK 高, 其他浓度都低于CK; 5 mg·kg-1、10 mg·kg-1、50 mg·kg-1、100 mg·kg-1 和1 000 mg·kg-1 所需的活化焓变(ΔH)随氟啶胺的浓度降低而变小; 在相同温度下蔗糖酶的活化熵变(ΔS)表现为: 1 mg·kg-1G)变化差异较小; 320~330 K (开氏温度)时最大速度常数(Q10)最大, 而290~300 K 时Q10 较小。低剂量氟啶胺对土壤微生物呼吸作用的影响表现为随时间变化呈现抑制-激活趋势, 高低剂量表现为抑制作用。土壤微生物的呼吸活性因氟啶胺的加入而产生波动。本研究结果有助于进一步分析研究受农药污染土壤的质量和酶活之间的相关性。  相似文献   

6.
水肥耦合对冬小麦籽粒蛋白质及氨基酸含量的影响   总被引:5,自引:0,他引:5  
为了解不同水、肥条件下小麦籽粒氨基酸及蛋白质含量的变化, 2009~2010 年度在河南省洛阳市农业科学院以“洛旱2 号”小麦为材料, 采用防雨棚池栽种植方式, 研究了不同灌水量、施氮和施磷量及其互作对小麦籽粒蛋白质及氨基酸含量的影响。结果表明: 不同灌水量和施氮量对小麦籽粒蛋白质和氨基酸均有极显著影响(P≤0.01), 且灌水×施氮互作效应显著(P≤0.05 或P≤0.01); 而施磷对其影响不显著。小麦籽粒蛋白质和氨基酸含量均随施氮量增加而增加, 随灌水量增加而降低, 但当灌水量超过282.0 mm、施氮量超过179.2 kg·hm-2 时, 各指标的变化不再明显,蛋白质含量在高施氮量下略有下降。而必需氨基酸占总氨基酸含量的比例呈随灌水量增加而增加,随施氮量增加而降低的趋势。从不同水肥处理组合看, 蛋白质和氨基酸含量以处理组合N105P42W127[施氮量105 kg(N)·hm-2、施磷量42 kg(P2O5)·hm-2 和全生育期灌水量127 mm, 下同]最高, 必需氨基酸/总氨基酸以处理组合N30.8P126W282 最高。籽粒产量随灌水量的增加而增加, 且产量高的处理其水分利用效率也较高。综合从蛋白质及氨基酸产量看, 以处理组合N179.2P126W282 表现最好, 即施氮量为179.2 kg·hm-2、施磷量为126 kg·hm-2、灌水量为282 mm。  相似文献   

7.
3 种挺水植物吸收水体NH4+、NO3-、H2PO4- 的动力学特征比较   总被引:2,自引:1,他引:2  
本文用动力学试验研究了具有景观价值的3 种挺水植物—— 水生美人蕉(Canna generalis)、细叶莎草(Cyperus papyrus)、紫芋(Colocasia tonoimo)对H2PO4-、NH4+、NO3- 的吸收特征及差异。试验结果表明: 3 种挺水植物吸收H2PO4- 时, 美人蕉的吸收速率最快, 且在较低离子浓度条件下也可以吸收该离子, 说明其具有嗜磷特性, 能够适应广范围浓度H2PO4- 环境; 吸收NO3- 时, 细叶莎草的速率最快, 但对低浓度NO3- 环境的适应能力较差, 美人蕉吸收NO3- 的特性与细叶莎草刚好相反; 吸收NH4+ 时, 细叶莎草的吸收速率最快, 且在低浓度NH4+ 环境下仍能吸收该离子, 而美人蕉的吸收速率最慢, 但能在低浓度NH4+ 环境下吸收该离子。说明不同植物对养分的吸收特性存在较大差异, 各自的污染水体修复适用范围也不同。美人蕉可用于各种浓度H2PO4- 污染的水体修复; 而NO3- 污染严重的水体最适宜用细叶莎草作先锋植物, 修复到一定程度后再种植美人蕉来维持水质; 细叶莎草在各种浓度NH4+ 污染的水体中均适用, NH4+ 污染较轻的水体也可用美人蕉修复。  相似文献   

8.
为了研究紫茎泽兰(Ageratina adenophora)入侵对土壤菌根真菌(mycorrhizal fungi, MF)群落的影响,采用嵌套PCR 技术分析了外来植物紫茎泽兰入侵生境内土著植物群落、土著植物与紫茎泽兰混生群落、紫茎泽兰单优群落中, 侵染紫茎泽兰及土著植物的MF 群落结构, 及紫茎泽兰与土著植物根围土壤中MF 群落结构。结果表明, 紫茎泽兰不同入侵进程MF 群落结构存在差异, 其中, 从土著植物群落的植物根内检测到内养球囊霉(Glomus intraradices)型克隆; 从土著植物与紫茎泽兰混生群落的紫茎泽兰根内也检测到内养球囊霉型克隆, 而在土著植物根内检测到1 个球囊霉属(Glomus sp 2)型克隆; 从紫茎泽兰单优群落的紫茎泽兰根内未检测到MF, 但从其根围土壤中检测到2 个球囊霉属(Glomus sp 1 和Glomus sp 2)型克隆。在土著植物与紫茎泽兰混生群落中, 从紫茎泽兰根围土壤中检测到4 个克隆型, 分别为毛舌菌阔孢(Trichoglossum hirsutum)、皂味口磨(Tricholoma saponaceum)、亚盖趋本菌(Xylobolus subpileatus)和翘鳞肉齿菌(Sarcodon imbricatus), 从土著植物根围土壤中也检测到4 个克隆型, 分别为小皮伞(Camarophyllopsis hymenocephala)、肉色香蘑(Lepista irina)、皂味口磨及亚侧耳(Panellus serotinus)型克隆; 在土著植物群落中, 从根围土壤只检测到皂味口磨型克隆。紫茎泽兰入侵改变了土著MF 群落结构, 其中在土著植物占据的土壤中以外生菌根真菌为主, 而外来植物紫茎泽兰则更多地积累了丛枝菌根真菌。文中讨论了紫茎泽兰改变入侵地土壤菌根菌群落及其可能对紫茎泽兰入侵的反馈。  相似文献   

9.
利用3 种栽种植物的美人蕉(Canna indica Linn)湿地(M)、狼尾草[Pennisetum alopecuroides (Linn.) Spreng]湿地(L)、苏丹草[Sorghum sudanense (Piper) Stapf]湿地(S)和未栽种植物的对照湿地(CK), 研究高、中、低出水口及不同植物对垂直流人工湿地污水净化效果的影响。垂直流人工湿地进水来自常熟农业生态试验站生活污水厌氧池, 以间歇式进水方式运行, 进水水力负荷为0.15 m3·m-2·d-1。结果表明: 不同出水口位置对NH4+-N(铵态氮)、NO3--N(硝态氮)、COD(化学需氧量)的去除率存在显著性差异。随着出水口位置的降低NH4+-N 的去除率显著增加, 最大去除率达到98.3%。出水口位置升高NO3--N 与COD 的去除率则显著增加, 高出水口的去除率分别达到-47.4%和64.5%。与中、低出水口处理相比, 高出水口的TN(总氮)去除率提高22.5%~27.6%。而对TP(总磷)的去除率恰恰相反, 高出水口处理TP 去除率比中、低出水口低20.6%~28.9%。3 种有植物湿地—美人蕉湿地、狼尾草湿地、苏丹草湿地对NO3--N、TN、TP、COD去除率显著高于未栽种植物的对照湿地, 分别提高74.4%~98.6%、11.3%~17.8%、8.60%~16.3%与14.1%~19.0%。3 种植物湿地之间对NO3--N、TN、TP、COD 去除效果没有显著差异。对NH4+-N 的去除效果, 美人蕉湿地显著低于其他3 种湿地。以上结果表明, 通过对垂直流人工湿地的出水口位置控制和栽种湿地植物,可以有效地改变污染物的去除效果。  相似文献   

10.
张晓茹  刘志强  焦钒栩  李光录 《土壤》2024,56(3):601-609
为探究雨滴击溅下土壤结构与入渗能力的变化规律,为雨滴击溅下土壤侵蚀状况预测提供参考,以黄土高原褐土为对象,基于雨滴击溅试验、土壤渗透试验和同步辐射CT扫描方法,对降雨条件下表土孔隙结构与土壤渗透能力的关系进行了分析。结果表明:①雨滴击溅导致土壤总孔隙度和渗透系数显著降低(P<0.05)。2.67、3.39和4.05 mm直径雨滴击溅后土壤的总孔隙度分别降低了20.64%、36.05% 和44.88%,土壤渗透系数分别降低了15.69%、40.42% 和71.77%。雨滴击溅后土壤孔隙的碎片化程度加剧,导致孔隙形状更不规则,连通性降低。②土壤孔隙大小、形状和连通性对土壤渗透能力有显著影响(P<0.01):孔隙越大,形状越规则,对土壤渗透能力的影响越大。从孔隙连通性角度看,土壤连通孔隙的孔喉半径和孔隙率对入渗能力的影响程度最大。基于以上分析,建立了土壤渗透系数(K)与总孔隙度(PT)、大孔隙率(Plp)、规则孔隙率(Prp)、连通孔隙率(Pcp)和孔喉半径(Rth)的预测模型:K=0.402PT+0.104Plp+0.1401Prp+0.350Pcp+0.003Rth–0.415,R2=0.93,P<0.05。综上可见,雨滴击溅通过改变土壤孔隙的大小、形状和连通状况,导致土壤孔隙结构破坏,从而降低了土壤入渗能力。  相似文献   

11.
12.
Methane (CH4) and nitrous oxide (N2O) emissions from a paddy nursery at the rice seedling stage were measured on a daily basis by using the conventional rice cultivar Nangeng 56 under both conventional (NG-C) and reduced (NG-R) sowing density, and the hybrid rice Changyou 3 under both conventional (CY-C) and reduced (CY-R) sowing density. High N2O and CH4 emissions were observed during the first and last 2?weeks, respectively. Cumulative CH4 emissions were significantly (P?<?0.001) affected by sowing density rather than by the rice cultivar. Cumulative CH4 emissions reached 68.2?kg?C?ha?1 in the CY-C treatment and 121.6?kg?C?ha?1 in the NG-C treatment, which were significantly (P?<?0.001) higher than the emissions at reduced sowing densities (15.9?kg?C?ha?1 in the CY-R treatment and 20.9?kg?C?ha?1 in the NG-R treatment). Under the conventional sowing density, cumulative CH4 emissions during the seedling stage were comparable to data of rice-growing season. Both the rice cultivar and the sowing density significantly (P?<?0.05–0.01) affected cumulative N2O emissions. Relative to the CY cultivar, the NG cultivar increased global warming potential (GWP) over a 100-year horizon by 62.1% and 70.7% under the reduced and conventional sowing densities, respectively. The GWP of N2O and CH4 during the seedling stage was equivalent to the GWP of the entire rice-growing season in this region, indicating that the seedling stage is an important greenhouse gas emission source of rice agriculture.  相似文献   

13.
Measurements were made in 1980 over a fully-developed soybean (Glycine max (L.) Merrill) canopy at Mead, Nebraska to determine how crop water status influences photosynthesis, evapotranspiration and water use efficiency. Water use efficiency was calculated in terms of the CO2—water flux ratio (CWFR). Micrometeorological techniques were used to measure the exchange rates of CO2 and water vapor above the crop canopy. Crop water status was evaluated by reference to volumetric soil moisture (θv), stomatal resistance (rs), and leaf water potential (ψ) measurements.Stomatal resistance (rs) was independent of ψ when the latter was greater than ?1.1 MPa. rs increased sharply as ψ dropped below this threshold. Canopy CO2 exchange (Fc) decreased logarithmically with increasing rs under strong irradiance. Although Fc was found to be strongly correlated with rs, the influence of low values of ψ and of high air temperature cannot be discounted since these factors affect the enzymatic reactions associated with photosynthesis. Stomatal closure also reduced evapotranspiration and influenced the partitioning of net radiation.Under strong irradiance the CO2 water flux ratio (CWFR) decreased with increasing stomatal resistance. This observation is at variance with predictions of certain early ‘resistance’ models, but substantiates predictions of some recent models in which leaf energy balance considerations are incorporated.  相似文献   

14.
Partial defoliation has been shown to affect the water relations and transpiration (gas exchange) of plants. Over one growing season, the water relations in response to partial (∼45%) defoliation were examined in four-year-old Eucalyptus globulus trees in southern Australia. Daily maximum transpiration rates (Emax), maximum canopy conductance (GCmax), and diurnal patterns of tree water-use were measured over a period of 215 days using the heat-pulse technique in adjacent control (non-defoliated) and defoliated trees. Sap-flux measurements were used to estimate canopy conductance and soil-to-leaf hydraulic conductance (KP); leaf water potential (Ψ) and climate data were also collected. Following the removal of the upper canopy layer, defoliated trees exhibited compensatory responses in transpiration rate and canopy conductance of the remaining foliage. Defoliated E. globulus had similar predawn but higher midday Ψl, transpiration rates (E), canopy conductance (GC) and KP compared to the non-defoliated controls, possibly in response to increased water supply per unit leaf area demonstrated by higher midday Ψl. Higher E in defoliated E. globulus trees was the result of higher GC in the morning and early afternoon. This paper also incorporates the cumulative effect of defoliation, in a phenomenological model of maximum canopy conductance of E. globulus. These results contribute to a mechanistic understanding of plant responses to defoliation, in particular the often observed up-regulation of photosynthesis that also occurs in response to defoliation.  相似文献   

15.
Water-use and solar-energy-conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars. ‘Centurk’ and ‘Newton’) planted at three densities, were examined during a growing season.The water-use efficiencies of both cultivars varied from vegetative growth to booting stage and decreased thereafter for the rest of the season. When the two cultivars were compared, ‘Centurk’ was more water-use efficient based on total dry weight as well as grain yield production.Water use was the lowest under the light, and the highest under the heavy, planting densities of both cultivars. Water-use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars.The canopy radiation extinction coefficients (K), of both cultivars increased with increases in planting density. Fractional absorption of photosynthetically active radiation, ?a, by both cultivars increased from the time of jointing until anthesis, and then varied during senescence. The seasonal changes of K and ?a were associated with the changes in the green-leaf area index. The efficiency of the conversion of absorbed radiation to dry matter (biochemical efficiency) decreased throughout the growing season in both cultivars. The light absorption, biochemical and photosynthetic efficiencies were improved as planting density increased.  相似文献   

16.
Glycine max cv. Malayan is a promiscuously nodulating cultivar which formed nodules with 6 out of 9 strains of Rhizobium spp of diverse origin and all strains of R. japonicum tested. No generalizations can be made as to the probability of strains isolated from a particular host being infective on Malayan as only some isolated from Centrosema pubescens, and Cajanus cajan were able to form nodules. In competition with R. japonicum at 30°C all 20 strains of Rhizobium spp isolated from Malayan grown in Nigeria formed fewer than 50% of the nodules and 14 strains fewer than 25%. Competition was influenced by root temperature. Three strains of Rhizobium spp were poor competitors with R. japonicum between 24° and 33°C but at 36°C they formed more nodules (74–88%) than R. japonicum. Another strain of Rhizobium spp formed the majority of the nodules between 27° and 36°C whereas R. japonicum formed the most at 24°C.  相似文献   

17.
In acid soil, low pH, reduced availability of nutrients, and toxicity of Al and Mn limit plant growth and the survival and effectiveness of rhizobia. The symbiosis between legumes and rhizobia is particularly sensitive to acid soil stress. A pot experiment evaluated whether Bradyrhizobium japonicum strain growth on acidic agar media would predict ability to colonize the rhizosphere and form effective nodules in acidic soils. Three Indonesian strains of B. japonicum with similar effectiveness at neutral pH in sand culture but with different tolerance of acid soil stress factors in agar media, and an acid-tolerant commercial strain (CB1809) of comparable effectiveness, were tested in three acid soils using the Al tolerant soybean (Glycine max cv PI 416937). At 7 days after inoculation all strains had achieved large rhizosphere populations, but by day 14 the rhizosphere population of the acid-sensitive strain had decreased, while the more acid-tolerant strains increased. The acid-tolerant strains had significantly greater nodulation and symbiotic effectiveness than plants inoculated with the acid-sensitive strain. Laboratory prescreening of B. japonicum for acid, Al and Mn tolerance in acid media successfully identified strains which were symbiotically competent in low pH soils.  相似文献   

18.
On the Tibetan Plateau, the unique alpine climate factors of low air pressure, low CO2 partial pressure and low air temperature have significant but non-explicit influences on the photosynthetic capacity of plants. To evaluate these influences, we measured the net photosynthetic rates for spring hulless barley leaves at two altitudes of 3688 m (the low altitude) and 4333 m (the high altitude), respectively. Two photosynthetic parameters—Vcmax, the maximum rate of Rubisco carboxylase activity, and Jmax, the maximum rate of photosynthetic electron transport—were determined. The net photosynthetic rate and the photosynthetic parameters Vcmax and Jmax were higher for leaves from plants grown at the high altitude than for those at the low altitude. Vcmax and Jmax were approximately 24% and 22% greater, respectively, for leaves from plants grown at the high altitude. The CO2 and air temperature at the high altitude were lower than those at the low altitude. As a consequence, plants exposed to lower CO2 partial pressure and lower air temperature have a higher photosynthetic capacity on the Tibetan Plateau. The optimal temperatures for Vcmax and Jmax were approximately 6.5% and 3.5% higher, respectively, in leaves from plants grown at the high altitude than those grown at the low altitude, and the ratio of Jmax to Vcmax was 12.7% lower at the low altitude. Simulation analyses revealed that the photosynthetic capacities of plants decreased after long-term increases in CO2 partial pressure and temperature associated with global climate change on the Tibetan Plateau.  相似文献   

19.
The land use change from natural to managed ecosystems causes serious soil degradation. The main objective of this research was to assess deforestation effects on soil physical quality attributes and soil water retention curve (SWRC) parameters in the Fandoghlou region of Ardabil province, Iran. Totally 36 surface and subsurface soil samples were taken and soil water contents measured at 13 suctions. Alfa (α) and n parameters in van Genuchten (1980) model were estimated by fitting SWRC data by using RETC software. The slope of SWRC at inflection point (SP) was calculated by Dexter (2004) equation. The results indicated that with changing land use from forest (F) to range land (R) and cultivated land (C), and also with increasing soil depth from 0–25 to 75–100 cm in each land use, organic carbon, micropores, saturated and available water contents decreased and macropores and bulk density increased significantly (P < 0.05). The position of SWRC shape in F was higher than R and C lands at all soil depths. Changing F to R and C lands and also increasing soil depth in each land use significantly (P < 0.05) increased α and decreased n and SP. The average values of SP were obtained 0.093, 0.051 and 0.031 for F, R and C, respectively. As a result, deforestation reduced soil physical quality by affecting SWRC parameters.  相似文献   

20.
The sustainable remediation of arsenic (As) contaminated sites requires an understanding of how As alters the biogeochemical processes in soil. Leguminous species are often used in the remediation of contaminated sites because of their capacity to fix nitrogen and enhance site fertility. While excess As is known to reduce the formation of root nodules in legumes, currently, little is known about how the legume-rhizobium symbiosis is affected by high As concentrations. Soybean (Glycine max) cv. Curringa and its rhizobial symbiont, Bradyrhizobium japonicum strain CB1809, were studied in dilute solution culture at As concentrations of 0, 1, 5 and 10 μM. As the As concentration of the nutrient solution increased, greater time was required for inoculated plants to produce root nodules (P=0.001) and the number of root nodules per plant at harvest decreased (P=0.007). Inspection of the soybean roots showed the number of root hairs decreased as the As concentration in the solution increased. The dry weight of soybean roots and shoots decreased significantly as the As concentration of the nutrient solution increased (P<0.05). Inoculated plants had significantly larger dry weights than noninoculated plants (P<0.05) including a 38% greater biomass for inoculated vs. noninoculated plants in the 10 μM As treatment. The increased biomass in inoculated plants could not be explained by improved N nutrition nor decreased As absorption and it is hypothesised that B. japonicum stimulated the growth of soybean via the production of growth-promoting hormones. This is the first reported evidence of rhizobial bacteria promoting the growth of plants at elevated concentrations of a heavy metal via a mechanism other than improved nitrogen nutrition. The potential use of rhizobia as growth-promoting bacteria for the remediation of heavy metal contaminated sites is an exciting new area of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号