首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
Six Rocky Mountain bighorn sheep were raised in captivity from birth (n = 5) or taken from the wild as a lamb (n = 1). After the bighorn sheep were in captivity for over a year, 6 clinically normal domestic sheep were placed on the 2 ha of pasture on which the bighorn sheep were kept. Nasal swab specimens were obtained from all sheep at the time the domestic sheep were introduced. Pasteurella haemolytica was isolated from swab specimens obtained from 4 of 6 domestic sheep, but not from specimens obtained from the bighorn sheep. All 6 bighorn sheep died of acute hemorrhagic pneumonia after exposure to domestic sheep. Death in the bighorn sheep occurred on days 4, 27, 27, 29, 36, or 71 after initial exposure to domestic sheep. Pasteurella haemolytica was isolated from respiratory tract tissue specimens of all bighorn sheep at the time of death. None of the domestic sheep were clinically ill during the study. At the end of the study, 3 of 6 domestic sheep were euthanatized, and at necropsy, P haemolytica was isolated from 2 of them. The most common serotypes in bighorn and domestic sheep were P haemolytica T-3 and A-2. Other serotypes isolated included P haemolytica A-1, A-9, and A-11 in bighorn sheep and A-1 in domestic sheep. On the basis of results of this study and of other reports, domestic sheep and bighorn sheep should not be managed in proximity to each other because of the potential fatal consequences in bighorn sheep.  相似文献   

2.
Bighorn sheep were inoculated intratracheally with suspensions of nonhemolytic Pasteurella haemolytica biotype T (10(12) organisms) unique to wild bighorns, with beta-hemolytic P. haemolytica biotype T (10(12) organisms) isolated from clinically normal domestic sheep or intradermally with half a dose of a cattle vaccine containing P. haemolytica biotype A (10(5) organisms). The bighorn strain caused lobar necrotizing bronchopneumonia whereas both domestic livestock strains precipitated fatal septicemia and fibrinous bronchopneumonia. The serotypes given were T3, T4, T15 and A1 and these were recovered from lung lesions and other organs. In three trials, domestic sheep were inoculated intratracheally with suspensions of bighorn sheep pneumonic lungs, and two concentrations of the P. haemolytica bighorn strain (10(4) and 10(12) organisms). One of these sheep was inoculated intrabronchially. The domestic sheep experienced a transient fever and elevated white blood cell counts. After six days, none of the sheep had lung lesions and inoculated organisms could not be recovered. It is suggested that bighorn sheep are very susceptible to P. haemolytica from domestic livestock and should not be allowed in contact with sheep or cattle.  相似文献   

3.
Mannheimia haemolytica causes pneumonia in both bighorn sheep (BHS, Ovis canadensis) and domestic sheep (DS, Ovis aries). Under experimental conditions, co-pasturing of BHS and DS results in fatal pneumonia in BHS. It is conceivable that certain serotypes of M. haemolytica carried by DS are non-pathogenic to them, but lethal for BHS. M. haemolytica serotypes A1 and A2 are carried by DS in the nasopharynx. However, it is the serotype A2 that predominantly causes pneumonia in DS. The objectives of this study were to determine whether serotype A1 exhibits differential pathogenicity to BHS and DS, and to determine whether leukotoxin (Lkt) secreted by this organism is its primary virulence factor. Three groups each of BHS and DS were intra-tracheally administered either 1 x 10(9)cfu of serotype A1 wild-type (lktA-Wt group), Lkt-deletion mutant of serotype A1-(lktA-Mt group), or saline (control group), respectively. In the lktA-Wt groups, all four BHS died within 48h while none of the DS died during the 2-week study period. In the lktA-Mt groups, none of the BHS or DS died. In the control groups, one DS died due to an unrelated cause. Necropsy and histopathological findings revealed that death of BHS in the lktA-Wt group was due to bilateral, fibrinohemorrhagic pneumonia. Although the A1-Mt-inoculated BHS were clinically normal, on necropsy, lungs of two BHS showed varying degrees of mild chronic pneumonia. These results indicate that M. haemolytica serotype A1 is non-pathogenic to DS, but highly lethal to BHS, and that Lkt is the primary virulence factor of M. haemolytica.  相似文献   

4.
Previously, we have shown that CD18, the beta-subunit of beta(2)-integrins, serves as a receptor for leukotoxin (Lkt) secreted by Mannheimia (Pasteurella) haemolytica on bovine leukocytes. Anti-CD18 monoclonal antibodies (mAbs) inhibit Lkt-induced cytolysis of bighorn sheep (Ovis canadensis) leukocytes suggesting that CD18 may serve as a receptor for Lkt on the leukocytes of this species as well. Confirmation of bighorn sheep CD18 as a receptor for Lkt, and elucidation of the enhanced Lkt-susceptibility of bighorn sheep polymorphonuclear leukocytes (PMNs), necessitates the cloning and sequencing of cDNA encoding bighorn sheep CD18. Hence, in this study we cloned and sequenced the cDNA encoding CD18 of bighorn sheep, and compared with that of other animal species. The cDNA of bighorn sheep CD18 has an open reading frame (ORF) of 2310bp. CD18 sequences obtained individually from peripheral blood mononuclear cells (PBMCs) and PMNs were identical to each other. Comparison of the deduced 770-amino acid sequence of CD18 of bighorn sheep with that of domestic sheep, goats, cattle, humans and mice revealed 99, 98, 95, 82 and 80% identity, respectively. Availability of cloned bighorn sheep CD18 cDNA should allow the molecular characterization of M. haemolytica Lkt-receptor interactions in bighorn sheep and other ruminants that are susceptible to this disease.  相似文献   

5.
Leukotoxin (Lkt) is the primary virulence factor secreted by Mannheimia haemolytica which causes pneumonia in ruminants. Previously, we have shown that CD18, the beta subunit of beta(2) integrins, mediates Lkt-induced cytolysis of ruminant leukocytes. CD18 associates with four distinct alpha subunits giving rise to four beta(2) integrins, CD11a/CD18 (LFA-1), CD11b/CD18 (Mac-1), CD11c/CD18 (CR4), and CD11d/CD18. It is not known whether all the beta(2) integrins serve as a receptor for Lkt. Since PMNs are the leukocyte subset that is most susceptible to Lkt, and Mac-1 expression on PMNs exceeds that of other beta(2) integrins, it is of interest to determine whether Mac-1 serves as a receptor for Lkt which necessitates the cloning of CD11b and CD18. In this study, we cloned and sequenced the cDNA encoding CD11b of Ovis canadensis (bighorn sheep) and Ovis aries (domestic sheep). CD11b cDNA is 3455 nucleotides long encoding a polypeptide of 1152 amino acids. CD11b polypeptides from these two species exhibit 99% identity with each other, and 92% with that of cattle, and 70-80% with that of the non-ruminants analyzed.  相似文献   

6.
OBJECTIVE: To evaluate 2 polymerase chain reaction (PCR)-based methods for differentiating cytotoxic and noncytotoxic Pasteurella trehalosi from Rocky Mountain bighorn sheep (Ovis canadensis canadensis). SAMPLE POPULATION: 23 isolates of P. trehalosi from bighorn sheep in Colorado, including 18 from free-ranging herds and 5 from a captive herd. PROCEDURE: Using a sequence of the leukotoxin gene region of P. haemolytica serotype 1, 7 PCR primers were designed. A PCR amplification was performed on a sample of bacterial cell suspensions from pure cultures of P. trehalosi with known in vitro cytotoxic effects. The 2 most promising primer pairs were used in a study of 23 P. trehalosi isolates. Results were analyzed for association with cytotoxicity and 3 distinct ribotypes (Eco, Aco, and Bco). RESULTS: Significant associations were observed between in vitro cytotoxicity and PCR results for coding region, between ribotype Eco classification and PCR results for coding region, and between ribotype Eco classification and PCR results for promoter region. There was a negative association between ribotype Aco classification and PCR results for coding and promoter regions. CONCLUSIONS AND CLINICAL RELEVANCE: The PCR for the leukotoxin A coding region may be useful in differentiating cytotoxic from noncytotoxic P. trehalosi isolates recovered from bighorn sheep. It may be useful for studying epidemiologic features of pasteurellosis in bighorn sheep and for designing vaccines to protect wild sheep against pneumonia caused by P. trehalosi and P. haemolytica.  相似文献   

7.
The molecular and cellular basis for the enhanced lung pathology and mortality caused by Mannheimia haemolytica in bighorn sheep (BHS, Ovis canadenesis), in comparison to domestic sheep (DS, Ovis aries), is not clear. Polymorphonuclear leukocytes (PMNs) of BHS are four- to eight-fold more susceptible to M. haemolytica leukotoxin-induced cytolysis, which is likely to reduce the number of functional phagocytes in the lung. We hypothesized that enhanced lung pathology is due to defective clearance of M. haemolytica from the lungs of BHS. To test this hypothesis, M. haemolytica (1 × 10(7) colony forming units [cfu]) were inoculated intra-tracheally into three groups each of BHS and DS, which were euthanized and necropsied at 4, 12, and 18 h post-inoculation (hpi). Bacterial and leukocyte counts were performed on broncho-alveolar lavage fluid (BALF) collected at necropsy. BALF from BHS euthanized at 4 and 12 hpi contained a significantly higher number of M. haemolytica than that from DS. More importantly, DS did not have any bacteria in BALF at 18 hpi, while the BHS still had significant numbers. As expected, the BHS did exhibit more extensive lung lesions at 12 and 18 hpi when compared to DS. At 18 hpi, necrotic PMNs were observed in the lesional lung tissues of BHS, but not DS. Furthermore, BALF from BHS had significantly lower titers of antibodies to Lkt and surface antigens of M. haemolytica, than that of DS. These findings suggest that the enhanced pathology in BHS lungs is due to defective clearance of M. haemolytica from the lungs.  相似文献   

8.
A strain of Pasteurella trehalosi serotype 10, E(CO)-100, isolated from a bighorn sheep that had succumbed to pneumonic pasteurellosis during an epizootic, was compared to well-characterized strains of P. trehalosi serotype 10 and Mannheimia haemolytica serotype 1. The gene for leukotoxin A (lktA) from E(CO)-100 was sequenced and found to be identical on an amino acid basis to a published sequence for lktA from P. trehalosi serotype 10. However, the toxic activity in culture supernatant measured over time for E(CO)-100 was quite different from reference strains. Typically, the ability of the supernatant to lyse target cells increases over time corresponding to the logarithmic growth of the organism, peaks at mid to late phase, then declines gradually. Supernatant from E(CO)-100 exhibited a sharp decline in toxicity after mid-logarithmic growth to undetectable levels. Investigation of this anomaly using a commercial kit with a porcine gelatin/bovine albumin substrate matrix revealed high protease activity in the supernatant of this strain compared to another P. trehalosi serotype 10 and to a M. haemolytica serotype 1. Protease activity was also visualized using gelatin based zymogram gels. This protease was not substrate specific as it was shown to degrade leukotoxin. Activity was neutralized by bighorn sera in a titratable manner. There was an association between the ability to neutralize protease and low pneumonic lung scores in bighorn sheep experimentally challenged with E(CO)-100 (r=0.5, P=0.1). This previously unidentified protease may be an important protective antigen in vaccines designed to prevent pneumonic pasteurellosis resulting from P. trehalosi in bighorn sheep.  相似文献   

9.
Macrophages are fundamental cells of the innate immune system, which, through phagocytosis and nitric oxide production, eliminate pathogens. The aim of the present study was to determine if macrophages from chicken families divergently selected to high and low antibodies response differ in nitric oxide production and phagocytic capacity. Blood monocytes derived macrophages were activated with lipopolysaccharide and supernatant from chicken spleen lymphocytes cultured with Concanavalin A (containing chicken interferon). Nitric oxide production was evaluated in culture supernatants. Phagocytic capacity of activated and non-activated macrophages was assayed using yeasts and IgY opsonized sheep red blood cells. Activated and non-activated macrophages from the high antibodies response family produced higher nitric oxide levels, internalized more yeast and significantly more opsonized sheep red blood cells than macrophages from the low antibodies response family. Moreover, activated macrophages became more elongated and widely spread. These findings indicate that macrophages from the high antibodies response family were more active suggesting that the differences in antibody response also depend on macrophage function.  相似文献   

10.
Bighorn sheep currently occupy just 30% of their historic distribution, and persist in populations less than 5% as abundant overall as their early 19th century counterparts. Present-day recovery of bighorn sheep populations is in large part limited by periodic outbreaks of respiratory disease, which can be transmitted to bighorn sheep via contact with domestic sheep grazing in their vicinity. In order to assess the viability of bighorn sheep populations on the Payette National Forest (PNF) under several alternative proposals for domestic sheep grazing, we developed a series of interlinked models. Using telemetry and habitat data, we characterized herd home ranges and foray movements of bighorn sheep from their home ranges. Combining foray model movement estimates with known domestic sheep grazing areas (allotments), a Risk of Contact Model estimated bighorn sheep contact rates with domestic sheep allotments. Finally, we used demographic and epidemiologic data to construct population and disease transmission models (Disease Model), which we used to estimate bighorn sheep persistence under each alternative grazing scenario. Depending on the probability of disease transmission following interspecies contact, extirpation probabilities for the seven bighorn sheep herds examined here ranged from 20% to 100%. The Disease Model allowed us to assess the probabilities that varied domestic sheep management scenarios would support persistent populations of free-ranging bighorn sheep.  相似文献   

11.
Lipopolysaccharide (LPS) is a Gram-negative bacteria cell wall component that activates monocytes and macrophages to produce nitric oxide (NO) from inducible nitric oxide synthase. Nitric oxide production in the plasma of chickens peaks 5–6-h post-i.v. LPS injection reflecting iNOS activation. To determine monocyte responsiveness after an i.v. LPS injection, a time course study was conducted examining the concentrations among peripheral blood leukocytes post-i.v. LPS injection in male and female chickens, the proportions among peripheral mononuclear leukocyte (PBMC; containing lymphocytes, thrombocytes, and monocytes) populations isolated from the blood samples collected at various times post-i.v. LPS treatment, and the ability of monocytes to produce NO with and without further LPS stimulation in vitro using the PBMC NO production assay. Additionally, monocyte extravasation activity was determined by analyzing macrophage proportions after the i.v. LPS injection in spleen, lung, and liver tissues. Blood was collected from male and female chickens at 0 h (pre-LPS injection control) and at 1, 3, 6, 24, and 48 h post-LPS injection, and additionally, at 72 h from female chickens. Tissues were collected 0, 1, 6, and 48 h post-i.v. LPS injection from male chickens. Monocyte concentrations dropped substantially by 1 h in both males and females. In males, monocyte concentrations returned to control concentrations by 6 h and increased at 24- and 48-h post-LPS injection, whereas in females, monocyte concentrations recovered more slowly, returning to near control concentrations by 24–48-h and increasing above control levels by 72 h. Lipopolysaccharide stimulated NO production by PBMC cultures established from blood samples obtained at various times post-LPS injection in vivo followed the same pattern as monocyte concentrations in the blood. Hence, NO concentrations within PBMC cultures were dependent upon the number of monocytes that were in the PBMC cultures isolated at different times post-i.v. LPS injection. Furthermore, macrophage proportions in spleen tissues responded similarly to monocyte concentrations in the blood, decreased in lung tissue, and varied widely in liver tissue throughout 48 h after an LPS injection. Monocytes and other leukocytes may attach to the endothelium post-i.v. LPS injection preventing the monocytes from entering the needle during blood collection resulting in what seems to be leukopenia in blood and in PBMC cultures attenuating NO production in PBMC cultures. Furthermore, monocyte differentiation and recruitment from the bone marrow is a likely contributor to the reconstitution and rise of monocyte concentrations in blood samples post-i.v. LPS injection.  相似文献   

12.
Respiratory disease and poor lamb recruitment have been identified as limiting factors for bighorn-sheep populations. Haemophilus somnus (recently reclassified as Histophilus somni) is associated with respiratory disease in American bison, domestic sheep, and cattle. It is also harbored in their reproductive tracts and has been associated with reproductive failure in domestic sheep and cattle. Therefore, reproductive tract and lung samples from bighorn sheep were evaluated for the presence of this organism. Organisms identified as H. somnus were isolated from 6 of 62 vaginal but none of 12 preputial swab samples. Antigen specific to H. somnus was detected by immunohistochemical study in 4 of 12 formalin-fixed lung tissue samples of bighorn sheep that died with evidence of pneumonia. Notably, H. somnus was found in alveolar debris in areas of inflammation. The 6 vaginal isolates and 2 H. somnus isolates previously cultured from pneumonic lungs of bighorn sheep were compared with 3 representative isolates from domestic sheep and 2 from cattle. The profiles of major outer membrane proteins and antigens for all of the isolates were predominantly similar, although differences that may be associated with the host-parasite relationship and virulence were detected. The DNA restriction fragment length profiles of the bighorn-sheep isolates had similarities not shared with the other isolates, suggesting distinct phylogenetic lines. All of the isolates had similar antimicrobial profiles, but the isolates from the bighorn sheep produced less pigment than those from the domestic livestock, and growth of the former was not enhanced by CO2. Wildlife biologists and diagnosticians should be aware of the potential of these organisms to cause disease in bighorn sheep and of growth characteristics that may hinder laboratory detection.  相似文献   

13.
Mycoplasma ovipneumoniae is a respiratory pathogen that impacts domestic sheep (Ovis aries; DS) and bighorn sheep (Ovis canadensis; BHS). BHS are reported to be more susceptible than DS to developing polymicrobial pneumonia associated with M. ovipneumoniae infection. Using formalin-fixed paraffin-embedded tissues, we performed a retrospective study investigating the pulmonary immune response of DS and BHS to M. ovipneumoniae infection. M. ovipneumoniae infected DS exhibited a more robust and well-organized BALT formation as compared to BHS. Digital analysis of immunohistochemical chromogen deposition in lung tissue was used to quantitate T cell marker CD3, B cell markers CD20 and CD79a, macrophage markers CD163 and Iba1, and cytokine IL-17. A significant interaction of species and infection status was identified for CD3, CD163, and IL-17. BHS had a greater increase in bronchiolar CD3 and bronchiolar and alveolar CD163 with infection, as compared to DS. BHS had an increase in bronchiolar associated lymph tissue (BALT) and alveolar IL-17 with infection, while these remained similar in DS regardless of infection status. IL-17 in respiratory epithelium of bronchi and bronchioles comparatively decreased in DS and increased in BHS with infection. These data begin to define the interspecies differential immune response to pulmonary M. ovipneumoniae infection in DS and BHS and provide the first investigations of respiratory epithelium-associated IL-17 in ovine.  相似文献   

14.
15.
Mannheimia (M.) haemolytica (formerly Pasteurella [P.] haemolytica) is the primary aetiological agent of pneumonic pasteurellosis--one of the most important respiratory diseases in cattle and sheep. While bovine pneumonic pasteurellosis is regarded to be mainly caused by M. haemolytica serotype A1, and in Germany during the last years also by serotype A6, sheep can be infected by all serotypes although there is an increased prevalence of serotypes A2 and A5-7. The obligate pathogenicity of M. haemolytica is proven by isolation of pure cultures from pneumonic lungs as well as by infection studies. Knowledge about the virulence mechanisms of M. haemolytica and their molecular basis are fragmentary, most probably due to the complex gene regulation of virulence associated factors in lung tissues. This review summarizes the current literature covering virulence factors to substantiate a model of pathogenesis. After serotype A1 strains have colonized the bovine upper respiratory tract they replace other serotypes by mechanisms unknown to date. After fulminant proliferation in the upper respiratory tract the microorganisms colonize the lower respiratory tract, finally entering alveolar spaces. An inflammatory cascade is initiated by M. haemolytica LPS and Leukotoxin, causing activation of the complement system and release of cytokines. Pathognomonic for bovine pneumonic pasteurellosis is the strong influx of neutrophiles accompanied by accumulation of fibrin, finally causing necrosis of alveolar spaces. Depending on lesion size this fibronecrotizing pneumonia can result in death of the animals. In addition, possible protective antigens are discussed. There is still a great effort in the development of efficacious vaccines against pneumonic pasteurellosis in cattle and sheep caused by various M. haemolytica serotypes worldwide. The scarce knowledge concerning presence and distribution of virulence associated factors in M. haemolytica strains and their role in pathogenesis made it difficult to determine a suitable vaccine candidate in the past. In addition, there is lack of knowledge concerning the variability of virulence factors in individual isolates. Genome sequence analysis of M. haemolytica, enabling proteomics and transciptomics, hopefully will give new insight into the pathogenesis of pneumonic pasteurellosis.  相似文献   

16.
Pneumonia caused by Mannheimia haemolytica is an important disease of cattle (BO), domestic sheep (DS, Ovis aries) and bighorn sheep (BHS, Ovis canadensis). Leukotoxin (Lkt) produced by M. haemolytica is cytolytic to all leukocyte subsets of these three species. Although it is certain that CD18, the beta subunit of beta(2) integrins, mediates Lkt-induced cytolysis of leukocytes, whether CD18 of all three beta(2) integrins, LFA-1 (CD11a/CD18), Mac-1 (CD11b/CD18) and CR4 (CD11c/CD18), mediates Lkt-induced cytolysis of BO, DS and BHS leukocytes remains a controversy. Based on antibody inhibition experiments, earlier studies suggested that LFA-1, but not Mac-1 and CR-4, serves as a receptor for M. haemolytica Lkt. PMNs express all three beta(2) integrins, and they are the leukocyte subset that is most susceptible to Lkt. Therefore we hypothesized that all three beta(2) integrins serve as the receptor for Lkt. The objective of this study was to determine whether Mac-1 of BO, DS and BHS serves as a receptor for Lkt. cDNAs for CD11b of BO, DS and BHS were transfected into a Lkt-non-susceptible cell line along with cDNAs for CD18 of BO, DS and BHS, respectively. Transfectants stably expressing BO, DS or BHS Mac-1 specifically bound Lkt. These transfectants were lysed by Lkt in a concentration-dependent manner. Increase in intracellular [Ca(2+)](i) was observed in transfectants following exposure to low concentrations of Lkt indicating signal transduction through secondary messengers. Collectively, these results indicate that Mac-1 from these three species serves as a receptor for M. haemolytica Lkt.  相似文献   

17.
The efficacy of the lymphocyte blastogenesis and complement-fixation tests and fecal culture for detection of Mycobacterium paratuberculosis infection was assessed in bighorn sheep (Ovis canadensis), elk (Cervus elaphus nelsoni), mule deer (Odocoileus hemionus), white-tailed deer (O virginianus), bighorn X mouflon (O musimon) hybrid sheep, and domestic sheep. Spontaneously infected bighorns were tested at the time of capture; experimentally infected animals were tested monthly for 12 months or periodically for 36 months. Lymphocyte blastogenesis tests were conducted with peripheral blood mononuclear cells and protein antigens of M avium, M bovis, and M paratuberculosis. Best diagnostic results were obtained when M avium purified-protein derivative was used as antigen and 20% bovine fetal serum was incorporated in the culture medium; a positive test was defined as a stimulation index greater than or equal to 3.5. Test sensitivity and specificity, respectively, were 82% and 94% in hybrid sheep and were 72% and 100% in domestic sheep. Sensitivity and specificity, respectively, were 39% and 94% in elk and 53% and 92% in deer. When infection was determined in spontaneously infected bighorns by culture of M paratuberculosis and/or the presence of acid-fast bacilli in characteristic microscopic lesions, sensitivity was 75% and specificity was 87%. Fecal cultures and the complement-fixation tests seldom correctly identified infected animals.  相似文献   

18.
OBJECTIVE: To determine the amount of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) activity in alveolar macrophages in response to Actinobacillus pleuropneumoniae (APP) by determining nitric oxide (NO) and prostaglandin E2 (PGE2) concentrations. SAMPLE POPULATION: Freshly isolated porcine alveolar macrophages. PROCEDURE: Alveolar macrophages were incubated for 48 hours with APP (1 X 10(4) colony-forming units/mL), interleukin-1beta, (IL-1beta; 5 U/mL), tumor necrosis factor-alpha (TNFalpha; 500 U/mL), interferon-gamma (IFN-gamma, 100 U/mL), or lipopolysaccharide (LPS; 10 microg/mL). In a second experiment, alveolar macrophages were incubated with fresh medium (negative control), APP alone, or APP with 1 of the following: IL-1beta, TNF-alpha, or IFN-gamma. In a third experiment, alveolar macrophages were incubated with fresh medium (negative control), LPS (positive control), APP alone, or APP with 1 of the following: an iNOS inhibitor (3.3 microM), a COX-2 inhibitor (10 microM); or both the iNOS and COX-2 inhibitors. Supernatant was obtained at 0, 3, 6, 9, 12, 24, and 48 hours after treatment for determination of NO and PGE2 production. RESULTS: The addition of APP to alveolar macrophages resulted in significant increases in NO and PGE2 production. The addition of APP and IFN-gamma synergistically induced NO production. Inhibition of iNOS and COX-2 decreased NO and PGE2 production, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: In vitro activation of alveolar macrophages by APP results in increased production of NO and PGE2. Nitric oxide and PGE2 production appears to be largely dependent on iNOS and COX-2 activity. Pharmacologic modulation of iNOS and COX-2 activity may represent a therapeutic target for pigs with pleuropneumonia.  相似文献   

19.
A retrospective study of Pasteurellaceae isolated from domestic sheep (Ovis aries) was conducted. The aim was to identify Pasteurellaceae present in animals that were clinically healthy and others with evidence of respiratory disease. The bacteria had been isolated from samples submitted to the University of Idaho Caine Veterinary Teaching Center as part of disease diagnostic testing. The 844 isolates identified mainly three species of Pasteurellaceae: Mannheimia haemolytica, Pasteurella multocida, and Pasteurella (Bibersteinia) trehalosi. A total of 114 biovariants were identified among these three species. Individual biovariants were identified 1-180 times. Two of those (M. haemolytica 1 and P. (B.) trehalosi 2) constituted 36% of the isolates, and were the only biovariants sufficiently numerous to account for >7% of the total isolates. Samples were primarily submitted from sheep with signs of respiratory disease. Eighty percent of biovariants were identified most often in animals with signs of respiratory disease, but 26% of biovariants were isolated from both sheep with respiratory disease and apparently healthy sheep. P. multocida constituted 4.7% of isolates, and were exclusively associated with animals with respiratory disease. The ability of isolates to produce beta-hemolysis on culture media was not associated with animals with respiratory disease (odds ratio 0.77, 95% CI 0.50-1.19). The inference of this study is limited due to the retrospective study design. However, it is the first study that provides an extensive baseline list of biovariants associated with respiratory disease in domestic sheep.  相似文献   

20.
A comprehensive study of a pneumonic epizootic was initiated when the first signs of disease were noted in a metapopulation of bighorn sheep inhabiting Hells Canyon, bordering Idaho, Oregon, and Washington. A total of 92 bighorn sheep were tested for etiologic agents during the following 6-mo study period. The study population included bighorn sheep believed to be the subpopulation in which disease was first noted, and these sheep were translocated to a holding facility in an effort to contain the disease (group A1, n = 72); bighorn sheep in other subpopulations (group A2) with evidence of clinical disease were captured, sampled, given antibiotics, and released (n = 8) and those that were found dead were necropsied (n = 12). Samples, including oropharyngeal and nasal swabs, and lung and liver tissue were collected from the bighorn sheep identified above. Tissue was collected at necropsy from 60 group A1 bighorn sheep that died following translocation, and samples were cultured for bacteria and viruses. Blood samples were tested for antibodies against known respiratory viruses, and histopathology was conducted on tissue samples. The major cause of death in both group A1 and group A2 bighorn sheep was a rapidly developing fibrinous bronchopneumonia. Multiple biovariants of Pasteurella were isolated from oropharyngeal and nasal samples from both groups, and Mycoplasma ovipneumonia was isolated from five group A1 oropharyngeal samples. Organisms isolated from lung tissue included Pasteurella multocida multocida a and Pasteurella trehalosi, both of which differentiated into multiple strains by restriction enzyme analysis, and parainfluenza-3 virus (PI-3). Paired serum samples revealed > fourfold increases in titers against PI-3 and bovine respiratory syncytial viruses. It was concluded that this epizootic resulted from a complex of factors including multiple potential respiratory pathogens, none of which were identified as a primary pathogen, and possible stress factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号