首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strains of Erwinia amylovora, the bacterium causing the disease fire blight of rosaceous plants, are separated into two groups based on host range: Spiraeoideae and Rubus strains. Spiraeoideae strains have wide host ranges, infecting plants in many rosaceous genera, including apple and pear. In the field, Rubus strains infect the genus Rubus exclusively, which includes raspberry and blackberry. Based on comparisons of limited sequence data from a Rubus and a Spiraeoideae strain, the gene eop1 was identified as unusually divergent, and it was selected as a possible host specificity factor. To test this, eop1 genes from a Rubus strain and a Spiraeoideae strain were cloned and mutated. Expression of the Rubus-strain eop1 reduced the virulence of E. amylovora in immature pear fruit and in apple shoots. Sequencing the orfA-eop1 regions of several strains of E. amylovora confirmed that forms of eop1 are conserved among strains with similar host ranges. This work provides evidence that eop1 from a Rubus-specific strain can function as a determinant of host specificity in E. amylovora.  相似文献   

2.
Pusey PL  Curry EA 《Phytopathology》2004,94(8):901-911
ABSTRACT Fire blight of apple and pear is initiated by epiphytic populations of Erwinia amylovora on flower stigmas. Predicting this disease and managing it with microbial antagonists depends on an understanding of bacterial colonization on stigmas. Detached 'Manchurian' crab apple flowers were inoculated with E. amylovora and subjected to a range of constant temperatures or various fluctuating temperature regimes. Results may have application to disease risk assessment systems such as the Cougarblight model, which now are based on in vitro growth of the pathogen. In other experiments, detached crab apple flowers and attached 'Gala' apple flowers were maintained at different temperatures for various periods before inoculation with E. amylovora or antagonists (Pseudomonas fluorescens strain A506 and Pantoea agglomerans strains C9-1 and E325). Maximum stigma age supporting bacterial multiplication decreased as temperature increased, and was reduced by pollination. Stigmas were receptive to bacteria at ages older than previously reported, probably due to less interference from indigenous organisms. The study revealed antagonist limitations that possibly affect field performance (e.g., the inability of strain A506 to grow on relatively old stigmas conducive to the pathogen). Such deficiencies could be overcome by selecting other antagonists or using antagonist mixtures in the orchard.  相似文献   

3.
ABSTRACT An atypical strain of Erwinia amylovora was isolated near an outbreak of fire blight at a nursery in Spain in 1996. It was obtained from a Crataegus plant showing typical symptoms and was identified as E. amy-lovora by biochemical tests and enrichment-enzyme-linked immuno-sorbent assay, but not by polymerase chain reaction using primers based on the pEA29 sequence. Nevertheless, with primers from chromosomal regions, the isolate gave the expected amplification band. This strain carries one plasmid of approximately 70 kb, with no homology with the 29-kb plasmid common to all pathogenic strains, or with a large plasmid present in some E. amylovora strains. Growth of the strain in minimal medium without thiamine was slower compared with cultures in the same medium with thiamine, a characteristic typical of strains cured of the 29-kb plasmid. Nevertheless, aggressiveness assays on pear, apple, and Pyracantha plants and in immature pear fruit showed that this strain exhibited a virulence level similar to other strains containing pEA29. To the best of our knowledge, this is the first report of the isolation from naturally infected plant material of a pathogenic strain of E. amylovora without pEA29, but with a plasmid of approximately 70 kb not previously described.  相似文献   

4.
McGhee GC  Sundin GW 《Phytopathology》2011,101(2):192-204
The emergence and spread of streptomycin-resistant strains of Erwinia amylovora in Michigan has necessitated the evaluation of new compounds effective for fire blight control. The aminoglycoside antibiotic kasugamycin (Ks) targets the bacterial ribosome and is particularly active against E. amylovora. The efficacy of Ks formulated as Kasumin 2L for control of fire blight was evaluated in six experiments conducted over four field seasons in our experimental orchards in East Lansing, MI. Blossom blight control was statistically equivalent to the industry standard streptomycin in all experiments. E. amylovora populations remained constant on apple flower stigmas pretreated with Kasumin and were ≈100-fold lower than on stigmas treated with water. Kasumin applied to apple trees in the field also resulted in a 100-fold reduced total culturable bacterial population compared with trees treated with water. We performed a prospective analysis of the potential for kasugamycin resistance (Ks(R)) development in E. amylovora which focused on spontaneous resistance development and acquisition of a transferrable Ks(R) gene. In replicated lab experiments, the development of spontaneous resistance in E. amylovora to Ks at 250 or 500 ppm was not observed when cells were directly plated on medium containing high concentrations of the antibiotic. However, exposure to increasing concentrations of Ks in media (initial concentration 25 μg ml(-1)) resulted in the selection of Ks resistance (at 150 μg ml(-1)) in the E. amylovora strains Ea110, Ea273, and Ea1189. Analysis of mutants indicated that they harbored mutations in the kasugamycin target ksgA gene and that all mutants were impacted in relative fitness observable through a reduced growth rate in vitro and decreased virulence in immature pear fruit. The possible occurrence of a reservoir of Ks(R) genes in orchard environments was also examined. Culturable gram-negative bacteria were surveyed from six experimental apple orchards that had received at least one Kasumin application. In total, 401 Ks(R) isolates (42 different species) were recovered from apple flowers and leaves and orchard soil samples. Although we have not established the presence of a transferrable Ks(R) gene in orchard bacteria, the frequency, number of species, and presence of Ks(R) enterobacterial species in orchard samples suggests the possible role of nontarget bacteria in the future transfer of a Ks(R) gene to E. amylovora. Our data confirm the importance of kasugamycin as an alternate antibiotic for fire blight management and lay the groundwork for the development and incorporation of resistance management strategies.  相似文献   

5.
ABSTRACT Phytosanitary concerns about fire blight prohibit export of U.S.-grown pears to some countries without this disease. To examine these concerns, we evaluated the potential for co-occurrence of Erwinia amylovora with mature, symptomless winter pear fruit by inoculation experiments and by survey of commercial orchards. Immature pear and apple fruit were inoculated in orchards with E. amylovora strain 153N as resuspended lyophilized cells or as ooze from diseased tissues. Regardless of inoculum source, population size of Ea153N on fruit declined by an order of magnitude every 3 to 4 days during the first 2 weeks after inoculation; at 56 days after inoculation, Ea153N was not detected, except on 1 of 450 fruit with 4 colony forming units (CFU). After inoculation of flowers, calyx-end survival of Ea153N on pear and apple fruit declined from high populations at petal fall to a few cells at harvest, with no detection of the pathogen after a 7-week cold storage. Migration of Ea153N into symptomless pear fruit from diseased branches was evaluated by enrichment assay and nested polymerase chain reaction of internal fruit core tissues; these assays failed to detect the pathogen in healthy fruit from diseased trees. At harvest, E. amylovora could not be detected on 5,599 of 5,600 fruit of d'Anjou pear sampled from commercial orchards in major production areas of the Pacific Northwest; one fruit yielded 32 CFU of the pathogen. Postharvest, mature pear fruit contaminated with Ea153N and subsequently wounded required a dose of >10,000 cells at the wound site to allow for persistence of the pathogen through a 7-week-cold storage. We conclude that epiphytic E. amylovora shows similar survival characteristics on both pear and apple fruit, this pathogen is not an endophyte within mature symptomless pear fruit, its presence is exceptionally rare on commercially produced fruit, and that epiphytic survival of E. amylovora through a postharvest chilling period is unlikely given the unrealistically high population size required for persistence.  相似文献   

6.
Rhim  Völksch  Gardan  Paulin  Langlotz  Kim  & Geider 《Plant pathology》1999,48(4):514-520
Bacteria from necrotic branches of Asian pear trees ( Pyrus pyrifolia ) in Korea were consistently isolated as white colonies on nutrient agar and formed mucoid, slightly yellow colonies on a minimal medium with copper sulphate. Isolates with this colony morphology were studied in a series of microbiological, molecular and pathological tests. Most isolates allowed the verification of Koch's postulate on P. pyrifolia seedlings and on slices from immature pear ( Pyrus communis ) fruits and were also positive in hypersensitivity tests on tobacco leaves. They showed characteristics common to species in the genus Erwinia , but were different from Erwinia amylovora , the agent of fire blight. A relationship between the novel pathogen and E. amylovora was found in microbiological and serological tests. Both organisms had similar but not identical protein patterns in 2-D gel electrophoresis, and in growth morphology the new pathogen produced colonies on MM2 Cu medium that were mucoid and slightly yellow, compared with the clearly yellow colonies of E. amylovora . No similarity was found in the plasmid profiles, and consequently no PCR signal was obtained with primers from the E. amylovora plasmid pEA29. REP-PCR also produced bands differing for the two organisms.  相似文献   

7.
Real-time PCR was used for quantitative detection of Erwinia amylovora , the causative agent of fireblight. Specific primers were created from a DNA fragment of the common plasmid pEA29, successfully used for standard PCR identification of the pathogen. The primers amplified DNA from various E. amylovora strains, but not from other plant-associated bacteria. DNA of E. amylovora was also amplified from field samples and from inoculated apple leaves or flowers. Neither the presence of other bacteria nor low amounts of tissue extracts from bark or leaves changed the signal threshold. Assays with SYBR Green I instead of the Taqman probe showed a similar sensitivity, detecting 50 cells per assay. Real-time PCR could be especially useful for mass screening of commercial products and for resistance studies of transgenic host plants, in breeding experiments and after treatments to control fireblight.  相似文献   

8.
Growth-regulating acylcyclohexanediones such as prohexadione-calcium and trinexapac-ethyl have been shown to be effective in controlling fire blight infections on shoots. Since blossoms represent the primary site of infection for the fire blight pathogen, Erwinia amylovora , trinexapac-ethyl and prohexadione-calcium were evaluated for their ability to reduce fire blight infection on apple and pear flowers. Field experiments and experiments under controlled conditions were conducted on apple flowers for 4 years. A reduction of up to 50% of blossom blight was observed in treated plants. In addition, treatment with trinexapac-ethyl reduced up to the 77% the percentage of fireblight-affected flowers from which disease progressed into shoots. On pear, numbers of flower infections were reduced by a quarter and flower infections leading to diseased shoots was reduced by up to 50%. Mechanisms underlying diseased reduction following treatment with the two acylcyclohexanediones was studied using a confocal laser scanning microscope combined with a gpf -labelled strain of E. amylovora . These non-invasive techniques demonstrated bacterial migration was reduced by up to 60 and 66% in apple and pear xylem, respectively.  相似文献   

9.
Pantoea agglomerans E325, the active ingredient in a commercial product for fire blight control, was previously shown in vitro to produce a unique alkaline- and phosphate-sensitive antibiotic specific to Erwinia amylovora. Antibiosis was evaluated as a mode of antagonism on flower stigmas using two antibiosis-deficient mutants. On King's medium B, mutants E325ad1 and E325ad2 have stable smooth-butyrous or hypermucoid colony morphologies, respectively, and the parental strain E325 exhibits phenotypic plasticity with predominantly hypermucoid colonies accompanied by slower-growing, smooth-butyrous colonies. Mutants were tested against E. amylovora on stigmas of detached flowers of crab apple (Malus mandshurica) in growth chambers and apple (Malus domestica) in the orchard. Epiphytic fitness of the antibiosis-negative mutants was similar or greater than the parental strain as determined by relative area under the population curve (RAUPC). In laboratory and orchard trials, both mutants had significantly lower inhibitory activity against the pathogen (i.e., less reduction of E. amylovora RAUPC) compared with the parental strain. E325 and the mutants caused similar decreases in pH in a broth medium, indicating that acidification, which was previously reported as a possible mechanism of pathogen inhibition on stigmas, is not directly related to antibiosis. In this study we provide the first evidence for E325 antibiosis involved in E. amylovora growth suppression on apple flower stigmas.  相似文献   

10.
Wang D  Korban SS  Pusey PL  Zhao Y 《Phytopathology》2011,101(6):710-717
RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain, and a receiver domain. We have previously demonstrated that, although the Erwinia amylovora rcsC mutant produces more amylovoran than the wild-type (WT) strain in vitro, the mutant remains nonpathogenic on both immature pear fruit and apple plants. In this study, we have comparatively characterized the Erwinia RcsC and its homologs from various enterobacteria. Results demonstrate that expression of the Erwinia rcsC gene suppresses amylovoran production in various amylovoran overproducing WT and mutant strains, thus suggesting the presence of a net phosphatase activity of Erwinia RcsC. Findings have also demonstrated that rcsC homologs from other enterobacteria could not rescue amylovoran production of the Erwinia rcsC mutant in vitro. However, virulence of the Erwinia rcsC mutant is partially restored by rcsC homologs from Pantoea stewartii, Yersinia pestis, and Salmonella enterica but not from Escherichia coli on apple shoots. Domain-swapping experiments have indicated that replacement of the E. coli RcsC sensor domain by those of Erwinia and Yersinia spp. partially restores virulence of the Erwinia rcsC mutant, whereas chimeric constructs containing the sensor domain of E. coli RcsC could not rescue virulence of the Erwinia rcsC mutant on apple. Interestingly, only chimeric constructs containing the histidine kinase and receiver domains of Erwinia RcsC are fully capable of rescuing amylovoran production. These results suggest that the sensor domain of RcsC may be important in regulating bacterial virulence, whereas the activity of the histidine kinase and receiver domains of Erwinia RcsC may be essential for amylovoran production in vitro.  相似文献   

11.
Erwinia amylovora and E. pyrifoliae are the causative agents of fire blight and Asian pear blight, respectively. The pathogens are closely related, with overlapping host ranges. Data are unavailable on the current distribution of E. pyrifoliae and on the interaction between the two species when they are present together on the same host. In this study, a duplex real-time polymerase chain reaction (PCR) protocol was developed to monitor the population dynamics of E. amylovora and E. pyrifoliae on the surface of Bartlett pear blossoms. Bacterial cells washed from blossoms were used directly as the PCR template without DNA extraction. Primers and a probe based on the E. amylovora levansucrase gene detected all E. amylovora strains. All E. pyrifoliae strains, including the Japanese Erwinia strains previously described as E. amylovora, were detected with a primer and probe combination based on the E. pyrifoliae hrpW gene. Disease development and severity were not significantly different in blossoms inoculated with individual Erwinia species or with a mixture of the two species. However, E. amylovora grew to greater population sizes than did E. pyrifoliae in both single species inoculations and in mixtures, suggesting that E. amylovora has a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.  相似文献   

12.
Pusey PL 《Phytopathology》1997,87(11):1096-1102
ABSTRACT Nonseasonal availability of pomaceous flowers could improve laboratory detection and prefield testing of biocontrol agents for fire blight of pear and apple. Crab apple was selected as a model because of its high flower productivity on 1-year-old wood, high susceptibility to fire blight, and availability from nurseries. Cultivars Manchurian and Snowdrift were manipulated to bloom once by transferring dormant nursery trees from a cold room to a greenhouse and a second time by defoliating trees and applying 1% cytokinin and 0.1% gibberellins to the buds with a brush. Different sets of trees were induced at different times to bloom, so that flowers were produced 12 months in the year. When known bacterial antagonists (Erwinia herbicola strain C9-1 and Pseudomonas fluorescens strain A506) were applied alone or in combination to the stigmas of detached crab apple blossoms prior to inoculation with the pathogen (E. amylovora strain Ea153), population interactions over time were comparable to those reported in previous studies involving pear or apple. In a subsequent series of experiments, the relative effects of 12 bacterial strains on stigmatic populations of strain Ea153 were similar for detached blossoms of crab apple in the laboratory, blossoms of intact crab apple trees in the greenhouse, and blossoms of pear and apple in the field. Additionally, when stigmas of detached crab apple blossoms were inoculated with antagonists (strains C9-1 and A506) and the pathogen, and later subjected to a 24-h wetting period, bacterial populations in the flower hypanthium increased and disease was suppressed. These studies indicate that crab apple blossoms can serve as a suitable model for year-round evaluation and study of biocontrol agents for fire blight.  相似文献   

13.
为系统研究梨园气溶胶中梨火疫病菌的含量, 本研究于2019年-2021年在新疆库尔勒市人和农场梨园, 利用病原菌孢子捕捉器在每年春季(4月下旬)、夏季(6月中旬)、秋季(9月中旬)收集梨园气溶胶, 检测梨火疫病菌。结果显示, 健康梨园气溶胶中未检测到梨火疫病菌, 不同发病程度的梨园气溶胶中均能检测到梨火疫病菌, 携菌量均值在102 cfu/(24cm2·h)以上, 其中, 气溶胶中梨火疫病菌含量最高值为2.81×104 cfu/(24cm2·h), 最低值为8.50×102 cfu/(24cm2·h); 重度、中度、轻度发病果园收集的气溶胶中含梨火疫病菌总菌落数均值分别为8.74×103、4.55×103、2.36×103 cfu/(24cm2·h)。此外, 在同一高度收集的气溶胶中, 梨火疫病菌菌落数随收集时间的延长而增加。不同季节气溶胶携菌量检测结果表明, 秋季发病梨园中气溶胶携菌量明显高于夏季和春季, 与梨园梨火疫病发病规律相符。致病性测定结果表明, 气溶胶中分离的梨火疫病菌具有致病性。  相似文献   

14.
梨火疫病的进境风险分析   总被引:4,自引:1,他引:4  
讨论了梨火疫病的世界分布、国内苹果和梨的生产状况及经济重要性、梨火疫病在国内的适用性及国内外检测技术现状;澄清了以前我国有梨火疫病分布的错误报道。梨火疫病对我国梨和苹果生产具有极大的潜在风险,同时对我国的环境美化和生物多样性亦具潜在威胁。我国大部分地区为梨火疫病的适生区,国内广布梨火疫病的寄主。针对进口苗木的风险最大及果实亦可传病,提出了相应的风险管理措施。  相似文献   

15.
ABSTRACT Four Erwinia strains, originally isolated in Japan from pear trees with bacterial shoot blight symptoms, were analyzed to determine their genetic relationship with Erwinia amylovora and E. pyrifoliae. When genomes were characterized with amplified fragment length polymorphism markers and by comparative groEL sequence analysis, the Japanese Erwinia sp. and South Korean E. pyrifoliae strains were placed in the same group, which was phylogenetically distinct from a group of 15 strains of E. amylovora. Sequencing of the 29,593-bp plasmid pEJ30 from Erwinia strain Ejp556 revealed that this plasmid was nearly identical to plasmid pEP36 from E. pyrifoliae and was closely related to the nontransferable ubiquitous plasmid pEA29 from E. amylovora. Twenty-one presumptive genes and their order in pEP36 were highly conserved in pEJ30; however, transposon Tn5394, which was present in pEP36, was not found in pEJ30. Short-sequence DNA repeats were conserved between pEJ30 and pEP36, and were different from short-sequence repeats in pEA29. Despite base-pair mismatches, primer pairs used in pEA29 polymerase chain reaction assays for E. amylovora amplified plasmid DNA from the Japanese Erwinia Ejp556 and Ejp562. Like E. pyrifoliae and a few strains of E. amylovora, Japanese Erwinia Ejp617 contained plasmids related to E. pyrifoliae ColE1-related plasmid pEP2.6. Based on these genetic analyses, we conclude that the Erwinia pathogen of pear in Japan is closely related to E. pyrifoliae and that both of these pathogens are demonstrably distinct from E. amylovora.  相似文献   

16.
Salm H  Geider K 《Phytopathology》2004,94(12):1315-1322
ABSTRACT The lysozyme from Erwinia amylovora phage PhiEa1h was investigated for its ability to inhibit growth of bacteria and compared with the lysozyme from Escherichia coli phage T4. The assays to measure lysozyme activity included cell lysis and growth inhibition of bacteria. Bacterial strains with kanamycin resistance were not affected by lysates containing the PhiEa1h-enzyme. The titer of Micrococcus luteus but not of Erwinia amylovora was diminished by cell extracts containing T4 lysozyme. In contrast, PhiEa1h lysozyme preferentially inhibited E. amylovora, exceeding the T4 lysozyme activity at least one million-fold. Spherical cells were formed after application to E. amylovora similar to lyz-gene expression in Escherichia coli. Heating of cell extracts destroyed the murami-dase activity, but retained an antibacterial activity. Other plant-associated bacteria related to Erwinia amylovora also were inhibited for growth when cell extracts with PhiEa1h lysozyme were applied to soak pear slices and potato slices. Ooze formation and soft rot caused by E. amylovora or E. carotovora subsp. atroseptica, respectively, were strongly reduced and the PhiEa1h lysozyme was more efficient compared with extracts containing T4 lysozyme.  相似文献   

17.
ABSTRACT The addition of 0.1 mM FeCl(3) to a defined culture medium induces the bacterial epiphyte Pseudomonas fluorescens strain A506 (A506) to produce an antibiotic toxic to the fire blight pathogen, Erwinia amylovora. Consequently, because A506 is registered and applied as a commercial product to suppress E. amylovora before floral infection of pear and apple, the relative availability of iron to A506 on surfaces of pear and apple flowers is of potential significance. An 'iron biosensor' construct of A506 was developed by transformation with an iron-regulated promoter (pvd) fused to a promoterless ice nucleation reporter gene (inaZ). This construct, A506 (pvd-inaZ), established high populations on pear and apple flowers, ranging from 10(4) to 10(6) CFU/flower. In seven trials on pear and apple trees, A506 (pvd-inaZ) expressed high ice nucleation activity (INA) on flowers, indicating limited iron bioavailability or a low-iron environment unlikely to induce antibiotic production by A506. A506 (pvd-inaZ) also colonized flowers when mixed with chemicals containing iron: FeSO(4) or the iron chelates ferric ethylenediaminedi-(o-hydroxyphenyl-acetic) acid (FeEDDHA) and ferric diethylenetriamine pentaacetate (FeDTPA). These compounds represent an array of commercial iron formulations applied to foliage to avert iron chlorosis. Treatment of flowers with a mixture of A506 (pvd-inaZ) and 3 mM FeEDDHA or FeDTPA significantly decreased INA compared with flowers treated with A506 (pvd-inaZ) in water. Lower concentrations (0.3 mM) of FeEDDHA, however, did not consistently suppress INA. These results indicate that apple and pear flowers represent an iron-limited environment to A506 and that treatment with 3 mM FeEDDHA is needed to increase significantly the level of iron available to this bacterium.  相似文献   

18.
The pathogenicity and virulence of ten GreekPseudomonas syringae pv.syringae strains from different hosts (citrus, pear, apple, peach and cherry) were evaluated using three different laboratory methods, which produced results in good agreement. All ten strains were virulent on apple, pear, cherry and peach trees. The extent of tissue colonized varied considerably among strains and cultivars. On excised shoots and twigs of apple and pear, strains BPI 176, BPI 203, PI 2 and PI 14 were the most virulent and strains BPI 689, BPI 992, BPI 4, BPI 20, PI 18 and PI 19 were the least virulent. On excised shoots and twigs of peach and cherry, strains BPI 176, BPI 203, PI 2, PI 14, PI 18 and PI 19 were the most virulent and strains BPI 4 and BPI 20 were the least virulent. Moderate virulence was evinced by strains BPI 689 and BPI 992. These pathogenicity assays are proposed as rapid and reproducible screening systems to evaluate the susceptibility of apple, pear, cherry and peach cultivars to this bacterial pathogen.  相似文献   

19.
Pantoea agglomerans strain E325, a commercially available antagonist for fire blight of apple and pear, was originally selected through screening based on suppression of Erwinia amylovora on flower stigmas, but specific mechanisms of antagonism were unknown. Bacterial modification of pH was evaluated as a possible mechanism by analyzing stigma exudates extracted from 'Gala' apple stigmas. The pH values for field samples were only slightly lower than controls, but indicated a range (pH 5 to 6) conducive for antibiotic activity according to subsequent assays. Under low-phosphate and low-pH conditions, an antibacterial product of E325 with high specificity to E. amylovora was effective at low concentrations. A minimum of 20 to 40 ng of a ninhydrin-reactive compound purified using RP-HPLC caused visible inhibition in assays. Activity was heat stable and unaffected by amino acids, iron, or enzymes known to affect antibiotics of P. agglomerans. Antibiosis was diminished, however, under basic conditions, and with increasing phosphate concentrations at pH 6 and 7. Inhibition was not observed in media containing phosphate concentrations commonly used in antibiosis assays. We propose that E325 suppresses the fire blight pathogen not only by competing for nutrients on the stigma, but by producing an antibiotic specific to E. amylovora. Further work is necessary to substantiate that the compound is produced and active on flower stigmas.  相似文献   

20.
The thermal sensitivity of Erwinia amylovora was determined at 45° C and 50°C. In vitro assays with eight differetit strains showed that thermal death times did not exceed 70min at 45° C and 50min at 50° C (95% confidence interval). Heat treatments of naturally infected apple and pear shoots were performed using a moist and a dry heat procedure. When shoots were wrapped in wet cotton cloths (wet heat) and maintained in an incubator, no bacterial growth could be detected after an incubation of 5 h at 45° C. When shoots were sealed in polyethylene bags and immersed in water (dry heat), no Erwinia amytovora could be isolated after an immersion of 3 h at 45° C. Incubation at 50°C for 1 –2h in either condition did not eradicate the pathogen entirely. The failure rate of grafts using budwoods treated at the effective time-temperature combinations did not exceed 25%.
The present investigations showed that the use of thermotherapy techniques for controlling Erwinia amylovora in propagation material of apple and pear might be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号