首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氮肥品种和用量对水稻产量和镉吸收的影响研究   总被引:6,自引:0,他引:6  
采用盆栽试验,研究了Cd污染土壤上,不同氮肥品种和用量对水稻产量和Cd吸收的影响。结果表明,与磷钾配施的4个氮肥处理中,施用尿素处理水稻产量最高,其次为施(NH4)2SO4和NH4Cl处理,施NH4NO3处理水稻产量最低。与施(NH4)2SO4、NH4NO3和尿素处理相比,施NH4Cl处理可显著增加水稻对Cd的吸收,并促进Cd由秸秆向籽粒的转移;而其他3种氮肥对水稻秸秆和籽粒中Cd含量的影响效应相当。适量尿素[0.2g(N)·kg-1]处理能显著降低水稻籽粒Cd含量,而不施尿素和高量尿素处理都显著提高了水稻籽粒中的Cd含量。研究表明,在Cd污染的水稻土上,采用抗Cd污染的水稻品种和优化肥、水管理措施,可使稻米中Cd含量低于国家无公害大米的限量指标。  相似文献   

2.
Nie  Xinxing  Zhang  Zhiyi  Xia  Xiange  Yang  Li  Fan  Xianpeng  Zheng  Manjie 《Journal of Soils and Sediments》2020,20(4):2043-2052
Purpose

Magnetic removal techniques using functionalized magnetic nanoparticles as adsorbents have been frequently tested for use in the removal of heavy metals in aqueous solution, but seldom in farmland soil. Here, a novel magnetic microparticle solid chelator (MSC) was employed as the adsorbent for magnetic removal and/or immobilization of Cd and Zn in a paddy soil (PS), an upland soil (US), and a paddy–upland rotation soil (RS) with different degrees of pollution.

Materials and methods

MSC was applied to 14 kg air-dried soil samples (PS, US, and RS) at the dosage of 1% (w/w), and then watered, and intermittently stirred. Finally, the MSC–metal complexes were retrieved using a magnetic device (MCR treatment) or not (MC treatment), and the removal efficiency of soil Cd and Zn in MCR treatment was evaluated. After magnetic separation of MSC–metal complexes, pot experiments were performed to investigate the impacts of the magnetic remediation process on rice growth, the phytoavailability of soil Cd and Zn, and the accumulation of Cd and Zn in rice plants.

Results and discussion

The MCR treatment exhibited recovery rates of 55.4%, 49.6%, and 19.0% for MSC–metal complexes in PS, US, and RS, respectively, which brought about removal efficiencies of 2.2–12.2% for Cd and 1.9–4.6% for Zn. The MC and MCR treatments substantially decreased the availability of soil Cd, but not soil Zn; this effect was more remarkable when using CaCl2 instead of DTPA as the extractant for determination of bioavailable metals. Furthermore, the CaCl2-extractable Cd and Zn had a more significant relationship with Cd and Zn concentrations in rice roots. The MC and MCR treatments led to dramatic reductions in rice grain Cd of 23.9–72.1% and 37.3–63.9%, respectively, in the three soils relative to the respective controls. The MC and MCR treatments also exhibited an inhibitory effects on rice grain Zn accumulation in US (10.6% and 4.3% decreases, respectively) and RS (9.3% and 19.5% decreases, respectively), but not in PS. Moreover, the grain yield was unaffected under the MCR treatment in the three soils, and significantly increased by 29.8% under the MC treatment in US.

Conclusions

Our study suggests that MSC-based magnetic remediation technique can effectively immobilize and/or remove Cd and Zn in farmland soils, decreasing their uptake by rice plants, with no adverse effects on grain yield.

  相似文献   

3.
Modern agricultural systems have to provide enough micronutrient output to meet all the nutritional needs of people. Accordingly, knowledge on micronutrient status in soil and crop edible tissues is necessary. This study was carried out to investigate zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu) concentration of calcareous paddy soil and the relative rice grain. Rice crops (straw, hull, and grain) and associated surface soils (0–25 cm) were collected from 136 fields and analyzed for total and diethylene triamine pentaacetic acid (DTPA) available Zn, Fe, Mn, and Cu. The DTPA-Zn concentration in more than 50% of paddy soils was less than its critical deficiency concentration (2 mg kg−1), while the concentrations of DTPA Fe, Mn, and Cu were sufficient. The grain Zn concentration of more than 54% of the rice samples was less than 20 mg kg−1. About 55% and 49% of the rice samples were deficient in Mn and Cu, respectively, while the Fe concentration in rice grains was sufficient. A significant negative correlation was found between the CaCO3 content and soil DTPA-extractable Zn, Fe, Mn, and Cu. There were significant relationships between the total soil phosphorus and DTPA-extractable micronutrient concentrations. By considering the average daily rice consumption of 110 g per capita, the Zn, Fe, Mn, and Cu intake from rice consumption was estimated to be 2.4, 7.7, 1.6, and 0.7 mg for adults, respectively.  相似文献   

4.

Purpose

The area of cadmium (Cd)-contaminated soil in China is increasing due to the rapid development of the Chinese economy. To ensure that the rice produced in China meets current food safety and quality standards, the current soil quality standards for paddy soils urgently need to be updated.

Materials and methods

We conducted a pot experiment with 19 representative paddy soils from different parts of China to study the effects of soil properties on bioaccumulation of Cd in rice grains. The experiment included a control, a low treatment concentration (0.3 mg kg–1 for pH?<?6.5 and 0.6 mg kg–1 for pH?≥?6.5), and a high treatment concentration (0.6 mg kg–1 for pH?<?6.5 and 1.2 mg kg–1 for pH?≥?6.5) of Cd salt added to soils.

Results and discussion

The results showed that the Cd content in grains of the control and low and high Cd treatments ranged from 0.021 to 0.14, 0.07 to 0.27, and 0.12 to 0.33 mg kg–1, respectively. Stepwise multiple regression analysis indicated that soil pH and organic carbon (OC) content could explain over 60 % of the variance in the (log-transformed) bioaccumulation coefficient (BCF) of Cd in grains across soils. Aggregated boosted trees analysis showed that soil pH and OC were the main factors controlling Cd bioavailability in paddy soils. Validation of the models against data from recent literature indicated that they were able to accurately predict the BCF in paddy soils.

Conclusions

These quantitative relationships between the BCF of Cd in grains and soil properties are helpful for developing soil-specific guidance on Cd safety threshold value for paddy soils.  相似文献   

5.
Mixed metals in the cropped lands in central Taiwan contaminated about 230 ha. According to the Soil and Groundwater Protection Remediation Act (SGWR Act) of Taiwan, these lands were restored. However, some grains of paddy rice grown in these remediated soils still contained more than 0.5 mg Cd kg?1, which the Department of Health of Taiwan notified as the maximum allowable Cd content in rice. The suitability of planting edible crops in these soils is now in doubt. Brassica rapa is the crop most often sold in Taiwan's market and is planted in the interval between the first and second stages of planting of paddy rice, especially in central Taiwan where this experiment was conducted. A pot experiment was conducted using soils contaminated artificially with Cd or both Cd and Pb. The soil was then amended with 5% of biosolid and followed by planting of B. rapa. The objectives were to study the effect of biosolid amendment on the soil and the interaction between Cd and Pb on the growth of and Cd accumulation in B. rapa. Experimental result showed that the biomass and the accumulation of Cd by B. rapa were significantly increased in the biosolid-amended soils compared with the control. Lead has a synergistic effect on enhancing the accumulation of Cd by B. rapa grown in artificially Cd-contaminated soils.  相似文献   

6.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

7.
Heavy metal pollution of soils and sediments in Liaoning Province, Northeast China, was investigated. Fifty seven samples of agricultural soils and 8 samples of sediments were collected in 1996 from paddy or upland fields and irrigation channels, respectively, in Shenyang, Fushun, Liaoyang, Anshan, and Tieling regions, and concentrations of total and 0.1 mol L-1 HCI-extractable Cd, Cu, Pb, and Zn were analyzed using ICP spectrometry. Seventeen samples of unpolished rice were also collected from selected paddy fields and total concentrations of the four elements were determined.–

Both paddy and upland soils were polluted with Cd: average total concentration was 0.70, 0.57, and 0.53 mg kg-1 in the western and southern parts of Shenyang, and Anshan, respectively, and significantly higher than the background level of 0.32 mg kg-1. Cd concentrations of four samples exceeded even 1 mg kg-1, which corresponds to the critical level of Cd contamination in China. About 65% of the total Cd was extracted with 0.1 mol L-1 HCI, suggesting that Cd was relatively mobile compared with other metals. The level of Cd pollution was, however, lower than that previously reported and serious polIution was not observed for Cu, Pb, and Zn. Accordingly, Cd concentration in upland rice was within the range of the unpolluted level in this study. Nevertheless, Cd concentration in a sediment of irrigation channels in the western part of Shenyang exceeded 16 mg kg-1, indicating the possibility of further contamination of agricultural soils. In conclusion, soils and sediments were still polluted with Cd in the southern part of Shenyang, Anshan, and especially in the western part of Shenyang, and further countermeasures are urgently required to ensure safe food production in these regions.  相似文献   

8.
旱改水对水稻幼苗生长的影响及秸秆的改良作用   总被引:3,自引:0,他引:3  
本研究以江汉平原旱改水为研究背景,采用土壤盆栽试验和室内淹水培养相结合的方法,以多年水稻土为对照,研究了多年棉田土旱改水及添加秸秆(9 g·kg-1)对水稻幼苗生长和矿质元素吸收的影响以及土壤氧化还原电位和有效态铁、锰、铜、锌含量变化,为旱改水水稻的种植提供参考。结果表明,棉田土旱改水后,水稻幼苗生长缓慢并出现失绿黄化症状,其地上部干重和叶绿素含量仅分别约为水稻土处理的30%和20%。旱改水处理水稻植株Fe含量显著低于、而Cu和Zn含量则显著高于水稻土处理。棉田土旱改水土壤氧化还原电位(Eh)显著高于水稻土;淹水处理10 d,土壤DTPA-Fe含量仅为水稻土的7%左右,而DTPA-Cu和DTPA-Zn含量则分别是水稻土的1.4~2.5倍和1.6~1.8倍。随着淹水时间的延长,棉田土旱改水土壤有效态铁含量逐渐增加,有效态锰、铜和锌含量呈先升高后降低趋势;到淹水处理的第28 d,棉田土旱改水土壤有效态铁、锰、铜和锌含量与水稻土之间的差异逐渐缩小。Fe不足及Cu过量可能是导致旱改水水稻幼苗生长缓慢、失绿黄化的主要原因。旱改水条件下添加秸秆可以降低土壤的Eh值,提高土壤DTPA-Fe含量及降低土壤DTPA-Cu和DTPA-Zn含量,显著提高旱改水初期水稻幼苗叶绿素含量,但对水稻生物量无显著影响。添加秸秆并不能完全消除旱改水对水稻幼苗生长的抑制作用。  相似文献   

9.
Hydroponic and pot experiments were conducted to assess the uptake of heavy metals (Cd and Zn) by a common crop plant, African basil, Ocimum gratissimum. In addition, the effects of soil amendments, hydroxyapatite (HA) and cow manure on plant growth and metal accumulations were compared. In the hydroponic study, plants were exposed to various concentrations of Cd (2.5 and 5 mg L?1) and Zn (10 and 20 mg L?1) for 15 days. O. gratissimum was shown to be a Cd accumulator more than a Zn accumulator. Cadmium concentration in its shoots exceeded 100 mg kg?1. In the pot experiments, soils from a heavily Cd-contaminated site (Cd 67.9 mg kg?1 and Zn 2,886.8 mg kg?1) were treated with cow manure and HA at the rates of 10% and 20% (w/w), and 0.75 and 1.5% (w/w), respectively. Plants were grown in the greenhouse for 3 months. The addition of cow manure resulted in the highest biomass production and the lowest accumulations of Cd in plant parts, while HA was more efficient than cow manure in reducing Zn uptake. Leaves of African basil showed a decreased Cd concentration from 1.5 to 0.3 mg kg?1 (cow manure) and decreased Zn concentration from 69.3 to 34 mg kg?1 (HA). This clearly demonstrates the efficiency of HA and cow manure in reducing metal content in leaves of plants grown on high metal-contaminated soil to acceptable or close to acceptable values (0.2 mg kg?1 for Cd, 99.4 mg kg?1 for Zn).  相似文献   

10.
Cadmium (Cd) contamination in soils is a serious problem for crop production in the world. Zero-valent iron [Fe (0)] is a reactive material with reducing power capable of stabilizing toxic elements in a solution. In the present study, we examined the effect of zero-valent iron [Fe (0)] application on Cd accumulation in rice plants growing in Cd-contaminated paddy soils. The application of 1.0 and 0.5 mg Fe (0) per 100 g soils significantly reduced the Cd concentration in seeds and leaves by less than 10% and 20% of those without Fe (0) application, respectively. The form of Cd in soil was determined by sequential extraction. The Fe (0) application increased the free-oxides-occluded (less available) Cd content, and decreased the exchangeable and iron-manganese-oxides-bound (more available) Cd content, in Cd-contaminated soils. Thus, this study clearly showed that the application of Fe (0) is a promising approach for remediation of Cd-contaminated paddy soils.  相似文献   

11.
A pot experiment, in which composted pig manure was applied to soils at rates of 0%, 0.5%, 1.5%, 3.0%, and 5.0% (W/W) to simulate additions of different amounts of cadmium (Cd), copper (Cu), and zinc (Zn) to soil, was conducted to assess accumulation of metals by rice (Oryza sativa L.) plants from soils treated with manure. Results indicated that Cd concentrations in rice grains were more than the limit of 0.2 mg kg?1 when 0.14 mg kg?1 or more Cd was loaded to Ferralsols by manure application, but it was not more than the limit in Calcaric Cambisols. Zinc contents in polished rice grains did not exceed the permissible limit of 50 mg kg?1 in two soils. Copper concentrations in rice grain were slightly more than the limit of 10 mg kg?1 in Ferralsols but not in Calcaric Cambisols. Results suggested greater risk of heavy‐metal contamination from manure to paddy rice in Ferralsols than in Calcaric Cambisols.  相似文献   

12.
Hu  Zhaoyang  Wang  Yufeng  Fang  Zhigang  Shi  Gaoling  Lou  Laiqing  Ren  Kaidi  Cai  Qingsheng 《Journal of Soils and Sediments》2020,20(2):874-882
Purpose

Growing energy plants in Cd-contaminated soil to produce bioenergy feedstock and remove excess Cd in the soil is a promising approach to the production of sustainable bioenergy feedstock and safe food. Rice, an important staple food for human beings, is a major source of Cd intake in human beings. Italian ryegrass (Lolium multiflorum Lam) is a potential bioenergy plant with high biomass productivity and high biofuel conversion efficiency.

Materials and methods

An Italian ryegrass and rice crop rotation system would be beneficial for the harvest of bioenergy and phytoremediation. An Italian ryegrass–rice rotation system was established in a moderately Cd-contaminated paddy field. The yield of biomass, amount of Cd removal, and transfer factors for three cropping systems (winter fallow, non-cutting, and cutting) were evaluated over 3 consecutive years of field experiments.

Results and discussion

The total biomass production of the Italian ryegrass–rice rotation system was significantly higher than that of the traditional cropping system. Biomass growth was further promoted by cutting during March. No significant differences were found in yield or Cd concentration of brown rice among the different cropping systems. Total Cd accumulation in rice and Italian ryegrass straw in the rotation cropping system was significantly higher than that in the winter fallow cropping system. Cd was mainly accumulated in the roots, and the ability of Italian ryegrass to transport Cd to the leaves was higher than that of rice.

Conclusions

The Italian ryegrass–rice rotation system is a potential cropping system for Cd-contaminated paddy fields. The average annual yield of biomass was 1656.6 kg km?2, and the average annual amount of Cd removal was more than 9.8 g Cd km?2.

  相似文献   

13.
Li  Honghong  Yu  Yong  Chen  Yanhui  Li  Yunyun  Wang  Mingkuang  Wang  Guo 《Journal of Soils and Sediments》2019,19(2):862-871
Purpose

This study focused on the effects and mechanisms of biochar amendment to Cd-contaminated soil on the uptake and translocation of Cd by rice under flooding conditions.

Materials and methods

Pot and batch experiments were conducted using Cd-contaminated soil collected from a field near an ore mining area and a cultivar of Oryza sativa ssp. indica. Biochar derived from rice straw under anaerobic conditions at 500 °C for 2 h was mixed with the soil at the rate of 0, 2.5, and 5%.

Results and discussion

The application of 5% biochar reduced CaCl2-extractable soil Cd by 34% but increased Cd concentration in brown rice by 451%. Biochar amendment decreased water-soluble Fe2+ in soils and formation of Fe plaques on roots and weakened the Fe2+-Cd2+ competition at adsorption sites on the root surface. Biochar increased water-soluble Cd in the soil and consequently Cd uptake by rice roots by releasing water-soluble Cl?. Biochar application also reduced the proportion of cell wall-bound Cd in the root, which caused easier Cd translocation from the cortex to the stele in the root and up to the shoot.

Conclusions

Rice straw biochar (with high concentration of water-soluble Cl?) reduced CaCl2-extractable soil Cd but increased Cd concentration in rice under flooding condition.

  相似文献   

14.
The elevated solubility of zinc(Zn) in acid sulfate paddy soils can limit rice production and pose a risk of environmental pollution.However, little attention has been paid to the ligand-controlled release of Zn in these soils. Here we quantified the rate of ligandcontrolled Zn release in Thai acid sulfate paddy soils, using ethylenediaminetetraacetic acid as the extractant. Sequential extractions were performed to obtain quantitative information on Zn fractions contributing to the ligand-controlled mechanisms. The amount of Zn released within 192 h varied significantly(8–43 mg kg~(-1)), which corresponded to 12%–40% of the total soil Zn, indicating that Zn solubility in most soils was relatively low and that Zn mainly occurred as residual phases. The kinetics of Zn release was well described by the power function model(r = 0.65–0.99, median = 0.87). The magnitude of initial Zn release(coefficient a) was significantly(P 0.05) related to the aqua regia-soluble Zn. Easily mobile Zn, organically bound Zn, and Zn associated with Fe and Mn oxides also contributed to the ligand-controlled release mechanisms to various degrees. Our results provide a systematic understanding of Zn fractions and release from acid sulfate paddy soils, the dynamics of which have a significant influence on the availability, phytoextraction, and mobility of Zn in terrestrial and engineered environments.  相似文献   

15.
Abstract

Experiments were conducted to seek a better basis for soil testing of rice paddy soils. Soils were incubated under variable conditions of simulated flooding, and then extracted with DTPA5 . The amounts of Cu, Zn, Mn and Fe extracted were sensitive to the imposed soil conditions. Good correlations between Zn extracted from simulated flooded soils and Zn uptakes by rice from flooded soils in pots, suggest that this approach to soil testing may be more useful for paddy soils than existing tests on air dried soils.  相似文献   

16.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

17.
Purpose

Natural organic acids, such as humic acid (HA), play crucial roles in biogeochemistry of anions and cations in soil due to their numerous functional groups on their surfaces. Selenium (Se) and cadmium (Cd) could bind strongly to HA; nevertheless, it is still unclear as to the effects of HA on Se and Cd uptake in rice which will be focused on in this paper.

Materials and methods

Pot experiments were carried out at Huazhong Agricultural University, Wuhan City, Hubei Province, China. Agricultural soils were treated with different concentrations of HA (0, 4, and 8 g kg?1 soil) and Se (SeIV or SeVI) (0 and 2 mg kg?1 soil) as well as with base fertilizer 3 days prior to planting. For Cd treatment, experimental soils were treated with Cd (0 and 2 mg kg?1 soil) 1 month before sowing. For element determination, root (after DCB extraction) and shoot samples were digested with a mixed solution of HNO3-HClO4, and the Se and Cd in digest solution were measured by HG-AFS and ICP-MS, respectively. Fe, Se, and Cd in iron plaque were extracted by DCB extraction and measured by AAS, HG-AFS, and ICP-MS, respectively.

Results and discussion

HA reduced Se (or Cd)-induced growth stimulation and Se and Cd uptake in rice seedlings, whereas iron plaque formation varied little with different treatments. HA inhibited SeIV (or SeVI) uptake in rice seedlings by reducing Se translocations from soil to iron plaque (or by increasing Se adsorption capacity of iron plaque and decreasing Se transport from iron plaque to root). HA reduced Cd uptake in rice seedlings by reducing Cd transport from soil to iron plaque and from iron plaque to root. Compared with single addition of SeIV or SeVI or HA, adding HA combined with SeIV or SeVI could further reduce Cd uptake in rice seedlings, whereas Se contents of aerial tissues did not change obviously.

Conclusions

HA inhibited the accumulation of Se (SeIV or SeVI) and Cd in rice seedlings; nevertheless, the mechanism was different. Compared with adding Se (or HA) alone, application of Se mixed with HA might be a more effective way to produce Se-enriched and Cd-deficient crop in Cd-contaminated soil.

  相似文献   

18.
Abstract

A hydroponic experiment was conducted to observe the effect of arsenic (As) on a number of physiological and mineralogical properties of rice (Oryza sativa L. cv. Akihikari) seedlings. Seedlings were treated with 0, 6.7, 13.4 and 26.8 µmol L?1 As (0, 0.5, 1.0 and 2.0 mg As L?1) for 14 days in a greenhouse. Shoot dry matter yield decreased by 23, 56 and 64%; however, the values for roots were 15, 35 and 42% for the 6.7, 13.4 and 26.8 µmol L?1 As treatments, respectively. Shoot height decreased by 11, 35 and 43%, while that of the roots decreased by 6, 11 and 33%, respectively. These results indicated that the shoot was more sensitive to As than the root in rice. Leaf number and width of leaf blade also decreased with As toxicity. Arsenic toxicity induced chlorosis symptoms in the youngest leaves of rice seedlings by decreasing chlorophyll content. Concentrations and accumulations of K, Mg, Fe, Mn, Zn and Cu decreased significantly in shoots in the 26.8 µmol L?1 As treatment. However, the concentration of P increased in shoots at 6.7 and 13.4 µmol L?1 As levels, indicating a cooperative rather than antagonistic relationship. Arsenic and Fe concentration increased in roots at higher As treatments. Arsenic translocation (%) decreased in the 13.4 and 26.8 µmol L?1 As treatments compared with the 6.7 µmol L?1 As treatment. Arsenic and Fe were mostly concentrated in the roots of rice seedlings, assuming co-existence of these two elements. Roots contained an almost 8–16-fold higher As concentration than shoots in plants in the As treatments. Considering the concentration of Mn, Zn and Cu, it was suggested that chlorosis resulted from Fe deficiency induced by As and not heavy-metal-induced Fe deficiency.  相似文献   

19.
Sulfur (S) and zinc (Zn) deficiencies are frequently reported in Bangladesh rice paddy. However, its effects on rice productivity and soil fertility need to be reevaluated as sulfur oxides (SOx) and heavy metals are increasingly emitted to the environment in the recent years. To examine the long-term effects of S and Zn fertilization on rice yield and nutrient efficiency, the standard fertilization plot of nitrogen, phosphorus, potassium, sulphur, and zinc (NPKSZn) was installed in a typical double rice cropping paddy at the Bangladesh Rice Research Institute (BRRI) farm in 1985. The recommended treatment (NPKSZn) and the comparison treatments (NPKZn and NPKS) were selected for calculating S and Zn efficiencies. The same levels of chemical fertilizers in NPKSZn treatment were applied with the rates of N-P-K-S-Zn as 80–25–35–20–5 kg ha?1 and 120–25–35–20–5 kg ha?1 in the wet and dry seasons, respectively. The changes in rice productivity, as well as S and Zn fertilization efficiencies, were monitored for 23 years. Sulfur fertilization significantly increased the mean grain and straw yields by around 13% in the wet season and only 4–5% in the dry season. The mean S fertilization efficiencies were 9.3% and 5.3% in the wet and dry seasons, respectively. Sulfur fertilization efficiency was relatively high until 1997 (the 13th year after the installation). Thereafter, however, S fertilization did not increase rice productivity or efficiency, regardless of the season. Also, Zn fertilization did not result in a significant increase in rice productivity, and its fertilization efficiency was similar level with a mean of 1.2%, irrespective of the season. This study revealed that S and Zn fertilization may no longer be required to increase rice productivity in Bangladesh paddy soil due to fast industrialization and urbanization.  相似文献   

20.
Woody plant species that produce high biomass have been proposed for use in phytoremediation technology. We investigated the accumulation of cadmium (Cd) and zinc (Zn) in Salix babylonica, S. caprea, S. dasyclados, S. matsudana × alba, S. purpurea, S. smithiana, Populus tremula, and P. nigra clones grown in a pot experiment on a Calcaric and a Eutric Cambisol (pH 7.2 and 6.4) of different levels of contamination (total metal concentrations in mg kg–1 in soil A: 32.7 Cd, 1760 Zn; soil B: 4.34 Cd, 220 Zn). Generally, the tested clones tolerated large metal concentrations in soils and had larger Cd and Zn concentrations in leaves compared to the roots. The largest Cd concentrations in leaves were found in two clones of S. smithiana (440 mg kg–1 on soil A; 70 mg kg–1 on soil B). One of the S. smithiana clones had also the largest Zn concentrations (870 mg kg–1) on soil B but accumulated slightly less Zn than a S. matsudana × alba clone (2430 mg kg–1) on soil A. The Cd concentrations in leaves of both S. smithiana clones on soil A are the largest ever reported for soil‐grown willows. The bioconcentration factors of the best performing clone reached 15.9 for Cd and 3.93 for Zn on the less contaminated soil B. Also based on the metal contents in leaves, this clone was identified as the most promising for phytoextraction. The metal concentrations in leaves observed in the pot experiment do not reflect those found in a previous hydroponic study and the leaf‐to‐root ratios are clearly underestimated in hydroponic conditions. This demonstrates the need for testing candidates for phytoextraction crops on soils rather than in hydroponics. Our data also show that the phytoextraction potential should be tested on different soils to avoid misleading conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号