首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过羧基化纳米纤维素晶须(NCW)与溴代烷反应得到烷基化纳米纤维素晶须(D-NCW),再使其与反应型弹性体酯化剂POE-MAH接枝反应得到表面POE接枝的纳米纤维素晶须(POE-NCW)分散液;然后采用溶液浇铸法制备POE-MAH/(D)POE-NCW作为加工母粒,最后与PP熔融共混得到三元纳米复合材料。为表征改性前后NCW的形貌与性质,作者测试了复合材料的微观结构、结晶性能、热稳定性和力学性能。结果表明:NCW表面极性和在非极性溶剂的分散性有明显改善;POE-NCW与弹性体形成包覆结构,而D-NCW与弹性体相互独立且存在团聚现象。与空白组PP/POE及只添加D-NCW相比,PP/POE-MAH/POE-NCW的结晶性能、动态机械性能均有明显提高,拉伸强度及耐热变形温度在POE-NCW质量分数为2%时达到最佳,分别相对提升了60%和13℃。  相似文献   

2.
采用液相混合法制备了纳米纤维增强苯乙烯-丁二烯-丙烯腈(ABS)复合材料,研究了纳米纤维素晶须(NCW)含量对复合材料性能影响。SEM测试表明,添加少量的NCW即会对复合材料的断裂面形态造成明显影响。热重分析发现,NCW的加入会降低复合材料的热稳定性。当NCW含量为10%时,复合材料热分解温度下降20%。红外光谱(FTIR)测试表明,在复合材料中纳米纤维素间的自由羟基和氢键数量明显下降。拉伸性能和动态机械性能测试表明,NCW含量为5%时复合材料的性能增加明显,拉伸强度上升11%,模量上升19%。研究结果表明,采用液相混合法制备纳米纤维素晶须/ABS复合材料时,丙酮溶液和ABS中存在的—CN对改善复合材料的界面相容性尤为关键。  相似文献   

3.
由于纳米纤维素晶须(CNW)表面含有丰富的羟基,亲水性强,制约了其在疏水性聚合物体系中的应用。本研究以硅烷偶联剂KH-550对纳米纤维素晶须进行改性,降低其表面的亲水性,再以改性后的纳米纤维素晶须(STCNW)为增强相、可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[P(3,4)HB]为基体,采用溶液浇铸法制备P(3,4)HB/STCNW纳米复合材料。通过傅里叶变换红外光谱、X-射线衍射仪、接触角测试、扫描电镜、偏光显微镜、拉伸测试和热重分析仪等对其微观结构、表面形貌、结晶行为、力学性能和热稳定性等进行表征与分析。结果表明:改性后的纳米纤维素晶须具有良好的疏水性,可均匀分散在P(3,4)HB基体中形成纳米复合结构,能促进P(3,4)HB结晶的形成,提高基体的拉伸强度和弹性模量等力学性能,但热稳定性稍差。  相似文献   

4.
以针叶木溶解浆纤维素作为原料,经HNO_3/H_3PO_4/NaNO_2氧化体系选择性氧化后,制备了氧化纤维素(OC)。考察时间、温度及NaNO_2用量对OC的得率及羧基含量的影响,利用傅里叶红外光谱(FT-IR)、X射线衍射仪(XRD)和热重分析仪(TGA)对OC结构和性能进行表征。采用超声波法得到OC水溶液纳米粒子,透射电子显微镜(TEM)和动态光散射(DLS)结果表明:OC在水溶液中可形成均一分散的球形粒子,粒径位于纳米尺寸范围内(30~80 nm)。OC的较优制备工艺条件为:温度为50℃,NaNO_2用量为1.4%,时间为12 h。FT-IR和XRD分析表明:OC分子链中成功引入了羧基官能团,氧化过程中纤维素结晶区和无定形区均受到破坏。相比水和纤维素而言,OC水溶液纳米粒子对碳纳米管(CNT)具有优异的分散效果,其剩余浊度为82.5 NTU,分散效果持续稳定30天以上。  相似文献   

5.
纳米纤维素晶须的制备及应用的研究进展   总被引:14,自引:3,他引:11  
综述了以天然纤维素为原料制备纳米纤维素晶须,及对其进行表面改性的方法和纳米纤维素晶须应用于精细化工等领域中的研究现状和发展概况。主要介绍了纤维素水解工艺的研究、纳米纤维素晶须的制备方法及工艺、产品结构及性质的表征、纳米纤维素晶须的改性方法及其在精细化工产品、材料学等领域的应用现状。  相似文献   

6.
以微晶纤维素为原料,采用硫酸水解法制备了纤维素纳米晶体悬浮液,再通过室温下自然干燥的方法制备了纤维素纳米晶体薄膜。通过扫描电子显微镜、紫外可见分光光度计和偏光显微镜,分别研究了纤维素纳米晶体薄膜的光学性能、内部微观结构以及纤维素纳米晶体悬浮液的光学织构变化。研究结果表明,在质量分数64%硫酸、45℃条件下,水解微晶纤维素2 h后可制得稳定的纤维素纳米晶体悬浮液;超声处理后的悬浮液可形成胆甾型液晶相,随着悬浮液浓度的变化,通过偏光显微镜可以观察到胆甾型液晶的圆盘织构、条纹织构以及特征指纹织构;超声处理后悬浮液制备的纤维素纳米晶体彩色薄膜具有胆甾型液晶结构;利用偏光显微镜观察到的胆甾型液晶纹理和色彩图案具有防伪性能,可将它们制成具有唯一性的防伪标签。  相似文献   

7.
以明胶、阿拉伯胶和麦芽糊精复配作为壁材,蔗糖酯和聚氧乙烯脱水山梨醇单油酸酯(吐温-80)为乳化剂,采用超声波乳化-均质-喷雾干燥工艺制备角鲨烯微胶囊产品。对超声波乳化工艺、壁材配比、乳化剂添加量以及喷雾干燥等参数进行了研究,并将优化工艺所制备的产品与冷冻干燥法制备微胶囊进行比较。结果表明,产品的最佳工艺为:角鲨烯3.0 g,吐温-80为0.6 g,经超声波乳化后(功率240 W,时间4 min)与明胶2.0 g,阿拉伯胶2.0 g,麦芽糊精10.0 g,蔗糖酯0.5 g,按料液固体质量分数为3.88%的比例与水混合,在进风温度180℃,出风温度105℃,喷雾空气流速为1.5 m3/h,进料速率为6 m L/min的条件下进行喷雾干燥。此条件下,角鲨烯微胶囊包埋率92.3%,颗粒呈球形,粒径在12.0μm左右。喷雾干燥相较于冷冻干燥,所得微胶囊包埋率更高,产品颗粒呈球形,粒径更小,热性能也更加稳定。  相似文献   

8.
芦苇浆纳米纤维素的制备工艺条件优化及形貌分析   总被引:3,自引:1,他引:2  
采用硫酸水解芦苇浆制备纳米纤维素,并用正交试验优化了工艺参数,分析了硫酸质量分数、反应温度和水解时间对芦苇浆制备纳米纤维素得率的影响.用透射电镜表征了芦苇浆制备的纳米纤维素的形貌.结果表明硫酸水解芦苇浆制备纳米纤维素的3个工艺参数对其得率的影响为硫酸质量分数的影响最大,反应温度的影响次之,而水解时间的影响较小;硫酸水解芦苇浆制备纳米纤维素的优化工艺条件为硫酸质量分数52%,反应温度47℃,水解时间4h,此条件下纳米纤维素得率最高(82.81%).芦苇浆制备的纳米纤维素经透射电镜观察呈棒状,纤维素长度达到纳米级.  相似文献   

9.
以商品南方松溶解浆、漂白桉木浆为原料,采用硫酸水解法、纤维素酶预处理法、2,2,6,6-四甲基哌啶氧自由基(TEMPO)氧化法以及机械法分别制备了纳米纤维素,利用透射电镜(TEM)、原子力显微镜(AFM)详细表征了不同方法制备的纳米微晶纤维素(CNC)和纳米纤丝纤维素(CNF)。采用了多种商品粒度仪快速定性表征了纳米纤维素的大小,CNC为棒状纳米晶须结构,直径约为20 nm,长度为10~200 nm;CNF一般为网状结构,尺寸较大且分布较宽,单根CNF直径从几纳米到几百纳米不等。依据离心分离以及布朗运动制备的2种仪器非常适合半定量快速表征非网状结构的纳米微晶纤维素,实验重复性也很好。  相似文献   

10.
以羧甲基纤维素钠(CMC-Na)为原料,以氯化血红素(Hemin)为催化剂,利用仿生体系聚合苯胺,制备得到纤维素基聚苯胺(CMC@PANI)复合材料。考察了不同制备条件对CMC@PANI产品得率及甲基橙(MO)吸附去除率的影响,表征了吸附材料形貌等结构特征,并分析了复合材料对水中染料的吸附性能。结果表明:CMC@PANI的优化制备条件为25℃时,在200 m L pH值为4的柠檬酸-柠檬酸钠缓冲溶液中,CMC-Na质量浓度2.5 g/L,苯胺与CMC-Na质量比值为1.8,Hemin用量为0.10 g/L,H_2O_2用量0.072 mol/L,HCl用量0.9 mol/L。此条件下,每克苯胺原料可得到约0.7 g CMC@PANI复合材料。扫描电镜、比表面积、红外光谱分析结果表明,该制备方法实现了CMC-Na和PANI的相互负载,产品粒径为0.5~10μm,表面粗糙,BET比表面积为19.96 m~2/g。最优工艺条件下制备的CMC@PANI对20 mg/L的阴离子染料MO在30 min时达到吸附平衡,去除率可达98%以上,最大吸附容量达到294.12 mg/g;对20 mg/L的阳离子染料罗丹明(Rh B)在180 min时去除率可达89.8%,明显优于PANI的吸附效果(68.0%)。可见,采用Hemin催化的绿色仿生工艺制备的CMC@PANI复合材料是一种比较理想的新型吸附材料。  相似文献   

11.
通过聚合反应制得一种端氨基超支化聚合物(HBP-NH_2),并以桉木浆为原料,经超声波辅助-TEMPO氧化制得羧基化纳米纤维素(CNC)、再经高碘酸钠氧化制得双醛基纳米纤维素(DNC),最后利用HBP-NH_2对DNC进行氨基化改性,得到端氨基超支化聚合物接枝双醛基纳米纤维素(HBPN-DNC),并对反应条件进行优化,当10%的HBP-NH_2溶液加入量为10 mL,反应温度为70℃,反应时间为4 h时N元素质量分数最高,达到6.0%。采用多种方法对纳米纤维素的结构和性能进行了表征,结果表明:氨基成功地接枝到了纳米纤维素链上,使得分子链变长,HBPN-DNC的热稳定性提高。HBPN-DNC对Ni(II)的吸附性能研究表明:室温条件下,当HBPN-DNC吸附剂用量为0.1 g,溶液初始质量浓度为500 mg/L且pH值为5.0的条件下吸附3 h,吸附量为150.21 mg/g。吸附过程符合准二级动力学吸附模型和Langmuir等温吸附模型,说明其吸附过程主要为单分子层的化学吸附。  相似文献   

12.
通过硫酸水解微晶纤维素制备纳米纤维素,分析硫酸浓度、反应温度和水解时间对纳米纤维素得率的影响,采用正交实验优化了实验参数。用场发射环境扫描电镜(ESEM-FEG)和透射电镜(HR-TEM)表征了微晶纤维素与纳米纤维素的形貌,并对其尺寸分布进行了分析。结果表明,当硫酸浓度为56%,反应温度40℃,水解时间90min时,纳米纤维素得率最高,达55.40%;电镜观察纳米纤维素呈棒状,其尺寸较微晶纤维素明显减小,直径2-24nm,长度为50-450nm。  相似文献   

13.
应用超声波技术对光触媒纳米TiO2溶液的分散性进行研究,分析超声波功率、溶液温度、超声分散时间与溶液放置时间等工艺因素对TiO2分散效果的影响。试验结果表明超声波功率300W、超声分散时间10min、溶液温度20℃、放置时间40min之内,TiO2溶液的分散性良好,为纳米TiO2改性薄竹的应用提供了理论基础。  相似文献   

14.
通过超声波分散改性技术对硅烷偶联剂KH570改性的纳米碳酸钙进行表面改性制备了改性纳米碳酸钙,采用熔融共混法制备了木纤维(WF)/聚丙烯(PP)/纳米碳酸钙三元复合材料。使用ARES旋转流变仪系统研究了复合材料的动态流变性能。结果表明:扫描频率、温度及纳米Ca CO3含量均会对体系的流变性能产生影响。随着扫描频率的增大,体系的储能模量G′与损耗模量G″越大,而复数粘度η*则减小,温度升高时复数粘度和松弛时间降低。当纳米Ca CO3加入量≤15%(质量分数)时,随着纳米Ca CO3含量的增加,WF/PP/纳米Ca CO3复合材料的储能模量、损耗模量和复数黏度逐渐增加且均高于WF/PP,当纳米Ca CO3加入量15%(质量分数)时,反而呈下降趋势。  相似文献   

15.
为制备力学性能优良、透光性能好以及阻隔性能较佳的可再生生物质基膜材料,以漂白硫酸盐竹浆纤维(BP)为原料,先制备竹纳米纤维素(B-CNF),再通过高碘酸钠氧化改性的方法对竹纤维中纤维素的分子结构进行调控,制备了以竹材为基质的竹纳米纤维素膜材料。当NaIO4氧化处理0.5、 1.5、 3 h时,所得氧化竹纳米纤维素分别标记为OB-CNF-0.5、OB-CNF-1.5和OB-CNF-3,对应制备的膜材料分别标记为OBF-0.5、OBF-1.5和OBF-3,B-CNF制备的膜材料为BF。采用傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、原子力显微镜(AFM)等方法对膜材料进行了表征,并测试了其力学性能、透光性能、水蒸气和氧气阻隔性能。结果表明:高碘酸盐氧化可成功地在竹纤维的纤维素分子长链中引入醛基,随着NaIO4氧化时间延长至3.0 h,竹纳米纤维素中含醛基量增加至1.23 mmol/g;与BF相比,随着氧化时间的延长,竹纳米纤维素基膜材料会逐渐出现分层结构,在波长为600 nm处的透光率从82.24%增加至97.49%,水蒸气透过量(W...  相似文献   

16.
利用对甲苯磺酸催化水解硫酸盐竹浆,制备了一种新型高效、绿色环保的纳米纤维素晶体(NCC),分析了反应时间、反应温度和超声波的作用对NCC得率及性能的影响,并采用傅里叶变换红外光谱(FT-IR),X-射线衍射(XRD),透射电镜(TEM)以及热重分析(TGA)对NCC谱学性能、晶体结构、形貌特征以及热稳定性进行了表征。研究结果表明:在反应时间45 min、反应温度80℃,超声波作用时间2 h的条件下,NCC得率(51.66%)最高;TEM显示NCC直径为10~40 nm,长度为400~700 nm;XRD分析得知NCC结晶度为72.50%,较原料(硫酸盐竹浆)有所提升,二者均为纤维素Ι型;TGA表明NCC热学性能较原料稳定。  相似文献   

17.
以慈竹为原料,先经过抽提处理除去抽提物,再经次氯酸钠和氢氧化钠溶液处理,除去其中的木质素与半纤维素而得到α-纤维素,将得到的α-纤维素通过33%(wt.)硫酸溶液与超声波处理相结合的方式分离出慈竹纳米纤维素。通过扫描电镜(SEM)与透射扫描电镜(TEM)对纳米纤维素的形态特征进行了分析,结果表明纳米纤维素径级范围约10~25 nm。傅里叶红外光谱(FTIR)分析显示慈竹中木质素以及半纤维素已被完全分离,α-纤维素与纳米纤维素化学成分基本一致;热重分析(TGA)显示分离出慈竹纤维中的半纤维素与木质素后,α-纤维素与纳米纤维素热稳定性明显提高,但纳米纤维素的热解温度略低于α-纤维素;X射线衍射(XRD)分析表明在各个分离阶段所得产物中,α-纤维素以及纳米纤维素晶体的结晶度得到较大提高,且均呈现出典型的纤维素Ⅰ结构。  相似文献   

18.
以慈竹为原料,先经过抽提处理除去抽提物,再经次氯酸钠和氢氧化钠溶液处理,除去其中的木质素与半纤维素而得到α-纤维素,将得到的α-纤维素通过33%(wt.)硫酸溶液与超声波处理相结合的方式分离出慈竹纳米纤维素.通过扫描电镜(SEM)与透射扫描电镜(TEM)对纳米纤维素的形态特征进行了分析,结果表明纳米纤维素径级范围约10 ~ 25 nm.傅里叶红外光谱(FTIR)分析显示慈竹中木质素以及半纤维素已被完全分离,α-纤维素与纳米纤维素化学成分基本一致;热重分析(TGA)显示分离出慈竹纤维中的半纤维素与木质素后,α-纤维素与纳米纤维素热稳定性明显提高,但纳米纤维素的热解温度略低于α-纤维素;X射线衍射(XRD)分析表明在各个分离阶段所得产物中,α-纤维素以及纳米纤维素晶体的结晶度得到较大提高,且均呈现出典型的纤维素Ⅰ结构.  相似文献   

19.
采用质量分数55%硫酸水解碱处理芦苇浆制备纳米纤维素,研究反应时间、反应温度和碱处理时间对纳米纤维素得率及其平均粒径变化的影响。单因素试验最优制备条件为碱处理时间1.0 h,反应温度60℃,反应时间2.0 h,纳米纤维素得率为54.50%,平均粒径为156.9 nm;通过傅里叶红外和X射线衍射分析,结果表明碱处理芦苇浆制备纳米纤维素为纤维素Ⅱ型。在单因素试验基础上进行正交优化试验,对纳米纤维素得率而言,正交优化最佳工艺条件为碱处理时间1.0 h,反应温度60℃,反应时间3.0 h,此条件下纳米纤维素得率最高,为55.64%,平均粒径为166.3 nm。  相似文献   

20.
纳米纤维素晶体的制备及表征   总被引:2,自引:0,他引:2  
采用超声波辅助硫酸水解、高速离心取其上清层水溶胶的方法由微晶纤维素(MCC)制备纳米纤维素晶体(NCC),并采用场发射透射电子显微镜(FETEM)、场发射环境扫描电子显微镜(FEGE-SEM)、X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)对所制备NCC的尺寸与形态、结构、组成和光谱性质进行分析。结果表明:FETEM和FEGE-SEM观察所制备纳米纤维素晶体形态相同,呈棒状,直径和长度主要分布在2~24nm和50~450nm;XRD图谱表明NCC仍属于纤维素Ⅰ型,结晶度为77.29%,晶粒尺寸为3~6nm;FTIR分析表明所制备的纳米纤维素晶体仍然具有纤维素的基本化学结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号