首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a field study, potassium (K) applied as muriate of potash (MOP) significantly reduced methane (CH4) emission from a flooded alluvial soil planted to rice. Cumulative emission was highest in control plots (125.34 kg CH4 ha−1), while the lowest emission was recorded in field plots receiving 30 kg K ha−1 (63.81 kg CH4 ha−1), with a 49% reduction in CH4 emission. Potassium application prevented a drop in the redox potential and reduced the contents of active reducing substances and Fe2+ content in the rhizosphere soil. Potassium amendment also inhibited methanogenic bacteria and stimulated methanotrophic bacterial population. Results suggest that, apart form producing higher plant biomass (both above- and underground) and grain yield, K amendment can effectively reduce CH4 emission from flooded soil and could be developed into an effective mitigation option, especially in K-deficient soils.  相似文献   

2.
稻田温度与甲烷排放通量关系的研究   总被引:5,自引:0,他引:5  
稻田温度与CH4 排放通量有密切关系 ,通过灰关联分析发现稻田 5cm深处温度与CH4 排放通量关系最密切 ,水稻抽穗期CH4 排放通量达极大值 ,而完熟期CH4 排放通量达极小值。温度对CH4 排放通量的增效应明显 ,减效应较弱。稻田温度与CH4排放通量的关系呈S型曲线相关关系。  相似文献   

3.
Variations in CH4 emission from a Sumatra paddy field in which 8 popular modern varieties in Indonesia were grown were compared in the 1994/1995 rainy season. Total amounts of CH4 emitted during the period of rice growth were in the ranges of 32.6-41.7 and 51.3–64.6 g CH4 m-2 for the plots amended with chemical fertilizer only and those amended with both rice straw and chemical fertilizer, respectively. The mean CH4 emission rate was highest in the plot with the variety Bengawan solo and lowest in the plots with the varieties Atomita-4 and Way seputih among the plots which received chemical fertilizer, while highest in the plot with Way seputih and lowest in the plot with Bengawan solo among the plots amended with both rice straw and chemical fertilizer. The increase in the mean CH4 emission rates by rice straw application was higher for the plots planted with Way seputih (1.98 times) and Atomita-4 (1.77 times) than for the plots with Bengawan solo (1.23 times) and IR-64 (1.35 times). The plots with Walanai and Cisanggarung recorded intermediate mean emission rates and the increase in CH4 emission by rice straw application was also intermediate (1.57–1.64 times). It was noteworthy that Way seputih and Atomita-4 were derived from the variety Cisadane, Bengawan solo and IR-64 from the variety IR-54, and Walanai and Cisanggarung from the varieties IR-36 and Pelita 1-1, respectively.

The amounts of CH. emitted for 1 kg grain production ranged from 53 (Atomita-4) to 74 (Kapuas and Walanai) and from 89-93 (IR-64, Bengawan solo, and Atomita-4) to 121 (Kapuas) g CH4 kg-1 of grain for the plots amended with chemical fertilizer and those amended with rice straw and chemical fertilizer, respectively.  相似文献   

4.
Applications of a commercial formulation of carbofuran, a carbamate insecticide, at rates of 2kg and 12kg active ingredient ha–1 to flooded fields planted to rice led to significant inhibition of methane emission. Likewise, laboratory incubation studies showed that carbofuran applied at low rates (5 and 10μgg–1soil) inhibited the net methane production relative to that of the control, but stimulated it when applied at a rate of 100μgg–1soil. Interestingly, carbofuran increased the oxidation of methane when applied at low rates and inhibited it when applied at a rate of 100μgg–1soil. Received: 5 May 1997  相似文献   

5.
The role of rice plants in regulating mechanisms of methane missions   总被引:7,自引:0,他引:7  
 Rice plants play a pivotal role in different levels of the methane (CH4) budget of rice fields. CH4 production in rice fields largely depends on plant-borne material that can be either decaying tissue or root exudates. The quantity and quality of root exudates is affected by mechanical impedance, presence of toxic elements, nutrient deficiencies, water status of growing medium, and nitrogenase activity in the rhizosphere. CH4 oxidation in rice fields is localized in the rhizosphere where the concentration gradients of CH4 and oxygen overlap. CH4 oxidation capacity is a function of the downward transport of oxygen through the aerenchyma, which, in turn, also acts as a conduit for CH4 from the soil to the atmosphere. The decisive step in the passage of CH4 through rice plant is the transition from root to stem. However, rice plants show an enormous variety of morphological and physiological properties, including differences in root exudation and gas transfer capacity. Comparative studies on different cultivars are deemed crucial for accomplishing a better understanding of the mechanisms of CH4 consumption in the rhizosphere and CH4 transport through the rice plant as well as the interaction of these processes. The results of such studies are considered tools for devising mitigation options. Received: 7 April 1999  相似文献   

6.
张广斌  张晓艳  纪洋  马静  李小平  徐华  蔡祖聪 《土壤》2010,42(6):895-900
有机肥施用和土壤水分管理是影响稻田CH4排放最重要的2个因素。本文通过室内培养和田间试验研究了冬季秸秆还田对冬灌田水稻生长期CH4的产生、氧化和排放的影响。结果表明:淹水混施处理CH4产生潜力在水稻移栽后35和51天显著大于淹水不施肥处理(p0.05),其余时间则无显著差异(p0.05);冬季秸秆还田对CH4氧化潜力无显著影响(p0.05),水稻生长期土温和稻田施用氮肥可能是较其更重要的影响因素;淹水混施处理CH4平均排放通量(CH426.7mg/(m2·h))显著大于淹水不施处理(CH420.3mg/(m2·h))(p0.05)。  相似文献   

7.
The effect of fertilizers on methane emission rates was investigated using an automated closed chamber system in Chinese rice fields (Human Province). Each of three experiments compared two fields treated with a first uniform fertilizer dose and a second fertilizer dose which was different for each of the two fields. The uniform fertilizer doses for both fields in each experiment comprised mineral (experiment 1), organic (experiment 2) and combined mineral plus organic components (experiment 3). In all three experiments the second fertilizer dose comprised organic amendments for field 1 and no organic amendments for field 2. The rate of increase in methane emission with a given amount of organic manure was found to depend on the total amount of organic manure applied. A single dose of organic manure increased the emission rates by factors of 2.7 to 4.1 as compared to fields without organic manure (experiment 1). In rice fields that had already been treated with organic manure, the application of a second dose of organic manure only slightly enhanced the emission rates in experiment 2 by factors of 1.1 to 1.5 and showed no detectable increase in experiment 3. The net reduction achieved by separation of organic and mineral fertilizers was maximized by concentrating the organic amendments in the season with low emission rates, i.e. early rice, and using exclusively mineral fertilizers on late rice when emission rates were generally higher. This distribution pattern, which was not associated with significant yield losses, resulted in an annual methane emission corresponding to only 56% of the methane emitted from fields treated with blended fertilizers.  相似文献   

8.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

9.
In most temperate mono-rice cultivation systems like Korea, the local recommended transplanting date of rice (Oryza sativa L.) seedlings is proposed by the government agency considering climate, rice cultivar, rice productivity and quality, etc. Recently the transplanting of rice seedlings earlier than the recommended transplanting date (RTD) has been adopted by the local farmers to get high yield and to harvest earlier for higher market value. Earlier transplanting than RTD might influence methane (CH4) emission due to the prolonged cultivation period, but its effect was not evaluated well so far. In this study, the effects of seedling transplanting date on CH4 emission and rice productivity were investigated for two years in a general paddy soil. The 30-day old seedlings were transplanted on the local RTD (every June 15) as the control, and at 30 and 15 days before and 15 days after the RTD for comparison. There was no difference on CH4 flux pattern among the treatments, but the earlier transplanting before the RTD significantly (P ??0.05) increased total CH4 emissions during rice cultivation due to the extended soil flooding period and improved plant growth. Rice grain yield was increased by earlier transplanting, but the values were not significantly different from those of transplanting practices on RTD and 15 days before RTD. Therefore, among all the treatments, the lowest total CH4 emission per grain yield was observed in the RTD treatment. Conclusively, rice transplanting following the RTD, rather than early or late transplanting, could be more effective to minimize CH4 emission without significantly decreasing the rice productivity.  相似文献   

10.
 Rice paddies are an important human-made ecosystem for the global CH4 budget. CH4, which is produced in the predominantly anaerobic bulk soil layers, is oxidized significantly before it reaches the atmosphere. Roots of rice, in addition to supporting the consumption of CH4, contribute to the total CH4 production in the soil. The various controls of CH4 emission from this ecosystem depend on the structure of plant and microbial communities and their interactions. Availability of organic substrates, electron acceptors and other soil- and plant-related factors influence the activities of microbial communities. Agronomic practices including fertilization and application of pesticides have effects on CH4 emission. Recent studies using molecular retrieval approaches with small subunit rRNA-encoding gene (rDNA) sequences and functional genes, showed the richness of diversity of the microbial community in rice paddy soils, which includes members of the Archaea and methanotrophs. There is need for further research to know the consequences, at the ecosystem level, of changes in microbial diversity and microbial communities in paddy soils. This will aid in understanding the mechanisms involved in the mitigating effects of certain agricultural practices. Received: 13 July 1999  相似文献   

11.
Slag-type silicate fertilizer, which contains high amount of active iron oxide, a potential source of electron acceptor, was applied at the rate of 0, 2, 6, 10, and 20 Mg ha−1 to reduce methane (CH4) emission from rice planted in potted soils. Methane emission rates measured by closed chamber method decreased significantly with increasing levels of silicate fertilizer application during rice cultivation. Soil redox potential (Eh) decreased rapidly after flooding, but floodwater pH and soil pH increased significantly with increasing levels of silicate fertilizer application. Iron concentrations in potted soils and in percolated water significantly increased with the increasing levels of silicate fertilizer application, which acted as oxidizing agents and electron acceptors, and thereby suppressed CH4 emissions. Silicate fertilization significantly decreased CH4 production activity, while it increased carbon dioxide (CO2) production activity. Rice plant growth, yield parameters, and grain yield were positively influenced by silicate application levels. The maximum increase in grain yield (17% yield increase over the control) was found with 10 Mg ha−1 silicate application along with 28% reduction in total CH4 flux during rice cultivation. It is, therefore, concluded that slag-type silicate fertilizer could be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity and restoring the soil nutrient balance in rice paddy soil.  相似文献   

12.
Parthenium weed (Parthenium hysterophorus L.) is an emerging weed species in direct-seeded aerobic systems of rice production. This two-year field study was conducted to evaluate the effect of five different densities (0, 5, 10, 15 and 20 plants m?2) of parthenium weed on rice yield and yield-related attributes. Parthenium weed produced ca. 38 to 178% higher biomass at its densities of 10 to 20 plants m?2 as compared to the lowest density of 5 plants m?2. The paddy yield and yield-related attributes were negatively affected with an increase in the parthenium weed density. In both years, the highest reductions in number of rice panicles (14 to 17%), panicle length (10 to 11%), number of grains per panicle (11 to 18%), 1000-grain weight (8 to 21%) and paddy yield (30 to 35%) were recorded at the highest parthenium weed density (20 plants m?2) tested. However, the lower densities of 5 to 15 parthenium weed plants m?2 also caused 11 to 24% and 12 to 26% losses in paddy yield during the years 2016 and 2017, respectively. Therefore, this weed species should be controlled below the density of 5 plants m?2 to avoid the substantial yield losses (over 15%) in direct-seeded rice.  相似文献   

13.
 Wetland rice soils from Italy (Pavia) and the Philippines (Bugallon, Luisiana, Maligaya) were incubated under anoxic conditions at 31 different temperatures ranging from 4.7  °C to 49.5  °C. Production of CO2 was most intensive at the beginning of the incubation (0–4 days) and was predominantly coupled to the reduction of free Fe(III). The optimum temperature for these processes was between 32  °C and 41  °C. After 9–16 days, CO2 production rates had decreased and the available Fe(III) had been completely reduced at the optimum temperatures. However, Fe(III) was still available at temperatures below and above the optimum. Maximum CH4 production rates were observed after 4–16 days (except in soil from Maligaya) with temperature optima between 32  °C and 41  °C, similar to those for CO2 production and Fe reduction. Since ongoing Fe reduction is known to suppress CH4 production, the temperature range of optimum CH4 production was restricted to those temperatures at which Fe(III) had already been depleted. Nevertheless, the temperature characteristics of both CO2 and CH4 production often exhibited two temperature optima at some time during the incubation, suggesting a complex pattern of adaptation of the methanogenic microbial community to temperature. When available Fe(III) was completely depleted by anoxic pre-incubation at 30  °C, CH4 was produced at a constant rate (steady state conditions) which increased with increasing temperature. Steady state CH4 production reached a first maximum at about 40  °C, but increased further up to at least 50  °C, suggesting the presence of thermophilic microorganisms whose activity was apparently masked when Fe had not been completely reduced. The apparent activation energy of CH4 production at steady state ranged between 48 kJ mol–1 and 65 kJ mol–1. Received: 26 August 1999  相似文献   

14.
CH4 emission from irrigated rice field is one of the major sources in the global budget of atmoshperic CH4. Rates of CH4 emission depend on both CH4 production in anoxic parts of the soil and on CH4 oxidation at oxic-anoxic interfaces. In the present study we used planted and unplanted rice microcosms and characterized them by numbers of CH4-oxidizing bacteria (MOB), porewater CH4 and O2 concentrations and CH4 fluxes. Plant roots had a stimulating effect on both the number of total soil bacteria and CH4-oxidizing bacteria as determined by fluorescein isothiocyanate fluorescent staining and the most probable number technique, respectively. In the rhizosphere and on the root surface CH4-oxidizing bacteria were enriched during the growth period of tice, while their numbers remained constant in unplanted soils. In the presence of rice plants, the porewater CH4 concentration was significantly lower, with 0.1–0.4mM CH4, than in unplanted microcosms, with 0.5–0.7mM CH4. O2 was detected at depths of up to 16 mm in planted microcosms, whereas it had disappeared at a depth of 2 mm in the unplanted experiments. CH4 oxidation was determined as the difference between the CH4 emission rates under oxic (air) and anoxic (N2) headspace, and by inhibition experiments with C2H2. Flux measurements showed varying oxic emission rates of between 2.5 and 29.0 mmol CH4m-2 day-1. An average of 34% of the anoxically emitted CH4 was oxidized in the planted microcosms, which was surprisingly constant. The rice rhizosphere appeared to be an important oxic-anoxic interface, significantly reducing CH4 emission.  相似文献   

15.
Methane-oxidizing bacteria (MOB, methanotrophs) limit the flux of methane to the atmosphere from sediments and soils, and consume atmospheric methane (King 1992; Oremland and Culbertson 1992). IPCC (1995) reported that an aerobic soil is equivalent to a sink of 10–20% of methane emissions. Hence MOB play an important role in regulating the atmospheric methane content (Mancinelli 1995). Over the last 20y, although a large amount of information has been supplied on the biochemistry of MOB, few ecological investigations have been devoted to them so far (Holzapfel-Pschorn et al. 1985; Oremland and Culbertson 1992).  相似文献   

16.
17.
Summary The CH4 flux from intact soil cores of a flooded rice field in Italy was measured under aerobic and anaerobic incubation conditions. The difference between the anaerobic and aerobic CH4 fluxes was apparently due to CH4 oxidation in the oxic soil surface layer. This conclusion was supported by measurements of the vertical CH4 profile in the upper 2-cm layer, and of the V max of CH4 oxidation in slurried samples of the soil surface layer. About 80% of the CH4 was oxidized during its passage through the soil surface layer. CH4 oxidation was apparently limited by the concentration of CH4 and/or O2 in the active surface layer. The addition of ammonium to the water layer on top of the soil core reversibly increased the aerobic CH4 fluxes due to inhibition of CH4 oxidation in the soil surface layer.  相似文献   

18.
 N2O emission from a wetland rice soil as affected by the application of three controlled-availability fertilizers (CAFs) and urea was investigated through a pot experiment. N2O fluxes from the N fertilized paddy soil averaged 44.8–69.3 μg N m–2 h–1 during the rice growing season, accounting for 0.28–0.51% of the applied N. The emission primarily occurred during the mid-season aeration (MSA) and the subsequent re-flooding period. Fluxes were highly correlated with the NO3 and N2O concentrations in the soil water. As there were relatively large amounts of NH4 +-N present in the soil of the CAF treatments at the beginning of MSA, leading to large amounts of NO3 -N during the MSA and the subsequent re-flooding period, the tested CAFs were not effective in reducing N2O emission from this paddy soil. The potential of applied CAFs to reduce N2O emissions from paddy soil is discussed. Received: 25 May 1999  相似文献   

19.
20.
Methane production in three types of rice paddy soil was investigated under greenhouse conditions. The amount of methane produced during the first crop season (March to July) was 2–6 times higher than that in the second crop season (August to December). Application of organic fertilizer hastened the drop in redox potential and increased methane production and emission. Methane production also increased with the depth of soil with high values in soil samples from 18 to 30cm depth. Methane production in the first crop season was 18.0, 54.3 and 49.4mgcm–3 for 6tha–1 straw application for Linkou, Tzawchyau and Jiaushi soils, respectively. The value was 33.4mgcm–3 for the second crop season in Jiaushi soil. Methane emission was high during the flowering and maturity stages in the first crop season and the values were high during the tillering and flowering stages in the second crop season. Methane emission was high in Tzawchyau and Jiaushi soils in the first crop season. Methane emission rate reached a maximum from 12 noon to 3p.m. due to high temperature and a minimum at 3 to 6a.m. in both planted and unplanted soils. Received: 17 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号