首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To reveal the high-molecular-weight (1-1MW) glutenin subunit composition, the seed storage proteins of 40 Japanese wheat (Triticum aestivum) lines were fractionated by sodium dodecyl sulfate- polyacrylamide gel electrophoresis to determine their HMW glutenin subunit composition. These were identified by comparison of subunit mobility with that previously found in hexaploid wheat. Twelve different, major glutenin HMW subunits were identified. Each line contained three to five subunits, and 11 different glutenin subunit patterns were observed for 11 alleles in Japanese lines. The Glu-1 quality scores were not particularly high for most of the Japanese wheats in the southern part of Japan (Kyushu district). However, the Glu-1 quality scores of several wheat lines in the Hokkaido area (north Japan) were high. South Japanese wheat lines showed specialty allelic variation in the glutenin HMW 145 kfla subunit, different from those in non-Japanese hexaploid wheats.  相似文献   

3.
Summary Hexaploid wheat varieties are often differentiated by reciprocal translocations. The chromosomes involved are frequently identified after crossing and F1 analysis. The hybrids show in meiosis multivalent configurations of 14, 24, 34, 16, 18, 14+16, and 24+16 with different frequencies. For several studies the knowledge about interchanges is required. Therefore, a list was compiled summarizing available data from 270 wheat combinations on the presence and number of translocations, on configurations observed and on chromosomes involved.
Ein Kompendium reziproker Translokationen beim hexploiden Weizen
Zusammenfassung Sorten und Linien des hexaploiden Weizens unterscheiden sich sehr häufig durch die Präsenz reziproker chromosomaler Translokationen. Sie können in F1-Hybriden durch die Bildung von multivalenten Chromosomenkonfigurationen identifiziert werden. Unter etwa 270 analysierten Kombinationen wurden Assoziationen von 14, 24, 34, 16, 18, 14+16 und 24+16 mit unterschiedlichen Frequenzen beobachtet. Für verschiedenartige genetische und cytogenetische Experimente ist die Kenntnis über das Vorkommen derartiger Strukturaberrationen erforderlich. Es wurde daher eine Liste verfügbarer Literaturdaten zusammengestellt, die die karyologischen Befunde die Sortenangaben und deren Herkunft sowie die in die Translokation involvierten Chromosomen bzw. Chromosomenarme beinhaltet. Die Ergebnisse werden diskutiert.

. . 270 14, 24, 34, 16, 18, 16+14 24+16 . ¶rt; . , , , , . .
  相似文献   

4.
Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.  相似文献   

5.
High concentrations of manganese (Mn), iron (Fe), and aluminium (Al) induced in waterlogged acid soils are a potential constraint for growing sensitive wheat cultivars in waterlogged‐prone areas of Western Australian wheat‐belt. Tackling induced ion toxicities by a genetic approach requires a good understanding of the existing variability in ion toxicity tolerance of the current wheat germplasm. A bioassay for tolerance to high concentration of Mn in wheat was developed using Norquay (Mn‐tolerant), Columbus (Mn‐intolerant), and Cascades (moderately tolerant) as control genotypes and a range of MnCl2 concentrations (2, 250, 500, 750, 1000, 2000, and 3000 μM Mn) at pH 4.8 in a nutrient solution. Increasing solution Mn concentration decreased shoot and root dry weight and intensified the development of toxicity symptoms more in the Mn‐intolerant cv. Columbus than in Norquay and Cascades. The genotypic discrimination based on relative shoot (54% to 79%) and root dry weight (17% to 76%), the development of toxicity symptoms (scores 2 to 4) and the shoot Mn concentration (1428 to 2960 mg kg–1) was most pronounced at 750 μM Mn. Using this concentration to screen 60 Australian and 6 wheat genotypes from other sources, a wide variation in relative root dry weight (11% to 95%), relative shoot dry weight (31% to 91%), toxicity symptoms (1.5 to 4.5), and shoot Mn concentration (901 to 2695 mg kg–1) were observed. Evidence suggests that Mn tolerance has been introduced into Australian wheat through CIMMYT germplasm having “LERMO‐ROJO” within their parentage, preserved either through a co‐tolerance to Mn deficiency or a process of passive selection for Mn tolerance. Cultivars Westonia and Krichauff expressed a high level of tolerance to both Mn toxicity and deficiency, whereas Trident and Janz (reputed to be tolerant to Mn deficiency) were intolerant to Mn toxicity, suggesting that tolerance to excess and shortage of Mn are different, but not mutually exclusive traits. The co‐tolerance for Mn and Al in ET8 (an Al‐tolerant near‐isogenic line) and the absence of Mn tolerance in BH1146 (an Al‐tolerant genotype from Brazil) limits the effectiveness of these indicator genotypes to environments where only one constraint is induced. Wide variation of Mn tolerance in Australian wheat cultivars will enable breeding genotypes for the genetic solution to the Mn toxicity problem.  相似文献   

6.
六倍体小黑麦萌发期抗旱性分析   总被引:8,自引:1,他引:8  
利用20%PEG-6000(-0.975 MPa)为渗透介质室内模拟干旱,分析六倍体小黑麦萌发期发芽率、发芽势、胚芽鞘长、根长、根数的变化,采用模糊隶属函数与抗旱系数相结合的方法对品种萌发期的抗旱性进行综合分析,并利用灰色关联分析法分析各个形态指标与抗旱性的关系,结果表明:干旱胁迫下,小黑麦各品种的发芽率、发芽势、胚芽鞘长、根长都比对照不同程度地降低或缩短,不同品种之间的差异达显著或极显著水平,但根数却增减不一,表明根数对水分胁迫的反应方向不一致;品种"Tornado"(S9)萌发期综合抗旱性强,为小麦抗旱育种提供了种质资源;发芽率与六倍体小黑麦萌发期抗旱性的关联度最大,可作为形态指标加以利用。  相似文献   

7.
Nonspecific lipid-transfer proteins (nsLTPs) have been recognized as allergens in several plant species among which are cereals important in human nutrition. In this report, we purified a 9600 +/- 1 Da protein from both soft wheat and farro bran. Mass spectrometric analyses revealed that these proteins are identical, belong to the nsLTP1 class, and have high sequence homology with nsLTP1 isolated from other cereal species. Their identification was further supported by the ability of the soft wheat nsLTP1 to transfer pyrene-labeled lipids between donor and acceptor membranes. The results are discussed in view of the increasing diffusion on the markets of bran-rich products.  相似文献   

8.
9.
Inheritance of disarticulation in progenies of hybrids among Tibetan weedrace (9053 and AS907 of Triticum aestivum var. tibetanum), Yunnan hulled wheat (AS338 of T. aestivum concv. yunnanense) and spelt wheat (AS326 of T. aestivum concv. spelta) was studied. Disarticulation type is governed by some disarticulation modifying genes. These modifying genes can be divided into two groups, that is, wedge modifying genes (Wm) and barrel modifying genes (Bm). The two kinds of genes are codominant. Wedge type disarticulation is governed by the complement of at least two dominant wedge modifying genes (Wm 1 and Wm 2, Wm 3 and Wm 4, or Wm 5 and Wm 6). Barrel type disarticulation is controlled by at least one dominant barrel modifying gene (Bm 1, Bm 2 or Bm 3) and its expression can be inhibited in certain genetic backgrounds. As to the background inhibition that dominant barrel modifying genes cannot express in some homozygous brittle rachis wheat, the hypothesis of epistasy of many homozygous alleles was suggested.  相似文献   

10.
Summary A collection of 400 Ae. tauschii (syn. Ae. squarrosa) Coss. accessions were screened for powdery mildew resistance based on the response patterns of 13 wheat cultivars/lines possessing major resistance genes to nine differential mildew isolates. 106 accessions showed complete resistance to all isolates, and 174 accessions revealed isolate-specific resistance, among which were 40 accessions exhibiting an identical response pattern as wheat cultivar Ulka/*8Cc which is known to possess resistance gene Pm2. Expression of both complete and isolate-specific resistance from Ae. tauschii was observed in some synthetic hexaploid wheats derived from four mildew susceptible T. durum Desf. parents, each crossed with five to 38 resistant diploid Ae. tauschii accessions. Synthetic amphiploids involving different combinations of T. durum and Ae. tauschii generally showed a decrease in resistance compared with that expressed by the Ae. tauschii parental lines.  相似文献   

11.
Drought stress limits crop production in the world. Therefore, employing high-yielding cultivars tolerant to drought is an effective approach to reduce its detrimental effects. To identify drought-tolerant genotypes, 36 wheat genotypes were evaluated during the 2010–2011 and 2011–2012 growth seasons. A field experiment was conducted in a split-plot design with two irrigation treatments (100% field capacity (FC) until harvest and no irrigation after anthesis) as main plots in three replications and genotypes as subplots. Grain yield, its components and drought tolerance indices were measured. Results showed a significant reduction in yield and its components under drought conditions. Grain yield had significant positive correlations with stress tolerance index (STI), mean productivity (MP) index and geometric mean productivity (GMP), while it was negatively correlated with stress susceptibility index (SSI) and tolerance index (TOL) under stress condition. These results indicated that superior genotypes could be selected based on high values of STI, MP and GMP and low value of SSI. The results were validated by principal component analysis (PCA) as it showed genotypes with high PC1 and low PC2 were more desirable. Based on the results, genotypes number 8, 11, 17, 30, 34 and 35 were recognized as suitable for both conditions.  相似文献   

12.
六倍体小黑麦品种资源Glu-1位点的多态性   总被引:1,自引:0,他引:1  
利用SDS-PAGE技术分析了我国新疆101份和波兰11份六倍体小黑麦品种资源高分子量谷蛋白亚基(HMW-GS)组成,共检测到17种高分子量谷蛋白亚基,其中Glu-A1位点编码的HMW-GS有3种变异类型,即1(a)、2*(b)和Null(c),Glu-B1位点编码的HMW-GS有8种变异类型,即7(a)、7+8(b)、7+9(c)、6+8(d)、20(e)、13+19(g)、7+18(r)和6.8+20y(s),Glu-R1位点编码的HMW-GS有6种变异类型,即1r+4r(a)、2r+6.5r(b)、6r+13r(c)、2r+9r(d)、6.5r(e)和0.8r+6r(f)。这些小黑麦品种的HMW-GS组成以Null(c)、7+18(r)和6r+13r(c)为主,分别占58.93%、67.90%和58.00%。在112份供试材料中共检测到30种HMW-GS组合变异类型,其中[Null,7+18,6r+13r(c,r,c)]和[2*,7+18,6r+13r(b,r,c)]出现频率较高,分别为16.91%和16.02%,其他类型组合出现频率较低,个别材料具有少见的特殊亚基组合,如[2*,7+18,2r+9r(b,r,d)]、[2*,6.8+20y,2r+6.5r(b,s,b)]等类型。分析2个地域品种的遗传多样性,发现新疆品种的遗传变异范围小于波兰品种,波兰品种在Glu-1位点上的遗传变异更丰富。结果还显示,在六倍体小黑麦的人工进化过程中Glu-B1位点发生了很大变异,产生了小黑麦特有的7+18(r)和6.8+20y(s)亚基,而且频率很高,为小麦品质改良提供了丰富的基因资源。  相似文献   

13.
The genetic diversity of a subset of the Ethiopian genebank collection maintained at the IPK Gatersleben was investigated applying 22 wheat microsatellites (WMS). The material consisted of 135 accessions belonging to the species T. aestivum L. (69 accessions), T. aethiopicum Jacubz. (54 accessions) and T. durum Desf. (12 accessions), obtained from different collection missions. In total 286 alleles were detected, ranging from 4 to 26 per WMS. For the three species T. aestivum, T. aethiopicum and T. durum on average 9.9, 7.9 and 7.9 alleles per locus, respectively, were observed. The average PIC values per locus were highly comparable for the three species analysed. Considering the genomes it was shown that the largest numbers of alleles per locus occurred in the B genome (18.4 alleles per locus) compared to A (10.1 alleles per locus) and D (8.2 alleles per locus) genomes. Genetic dissimilarity values between accessions were used to produce a dendrogram. All accessions could be distinguished, clustering in two large groups. Whereas T. aestivum formed a separate cluster, no clear discrimination between the two tetraploid species T. durum and T. aethiopicum was observed.  相似文献   

14.
Time-dependent changes in the color of noodle sheets (using 2% NaCl or 1% alkaline salts in the formulation) made from 43 Iranian hexaploid wheat landrace accessions were measured. Pekar slick tests in water and in alkaline conditions were also carried out. A wide variation in color characteristics of the landraces was found, with L values of salted noodle sheets at 2 h ranging from 80.9 to 89.2 and b values of alkaline noodle sheets at 2 h ranging from 19.1 to 27.4, showing potential application in noodle wheat improvement programs. For initial rapid screening of samples it was observed that a single reading of the dough sheet after 2 h was adequate. The dough sheets should be kept at 5 degrees C during storage, to prevent microbiological activity in the dough, which would give erroneous results. The Pekar slick test results were not highly correlated to color measurements on the dough, so this test is not recommended for screening for noodle color potential in landraces.  相似文献   

15.
Wheat (Triticum aestivum L.) breeding programs are currently developing varieties that are free of amylose (waxy wheat), as well as genetically intermediate (partial waxy) types. Successful introduction of waxy wheat varieties into commerce is predicated on a rapid methodology at the commodity point of sale that can test for the waxy condition. Near-infrared (NIR) reflectance spectroscopy, one such technology, was applied to a diverse set of hard winter (hexaploid) wheat breeders' lines representing all eight genotypic combinations of alleles at the wx-A1, wx-B1, and wx-D1 loci. These loci encode granule-bound starch synthase, the enzyme responsible for amylose synthesis. Linear discriminant analysis of principal components scores 1-4 was successful in identifying the fully waxy samples at typically greater than 90% accuracy; however, accuracy was reduced for partial and wild-type genotypes. It is suggested that the spectral sensitivity to waxiness is due to (1) the lipid-amylose complex which diminishes with waxiness, (2) physical differences in endosperm that affect light scatter, or (3) changes in starch crystallinity.  相似文献   

16.
细菌基因组岛是细菌基因组上的特定区域,和水平基因转移相关,具有一定的结构特点,常携带致病、耐药及与适应性等功能相关的基因。通过基因组岛在细菌间的移动,可以造成相关基因在细菌间的传播,在细菌生存和致病等过程中具有重要作用。目前已经可通过生物信息和分子生物学实验等方法对基因组岛进行预测和验证。通过对致病菌基因组岛的研究,可以阐释细菌致病性和耐药等重要功能的获得,对疾病进行溯源,在传染病预防控制中具有重要意义。  相似文献   

17.
A collection of 164 Aegilops tauschii accessions, obtained from Gatersleben, Germany, was screened for reaction to leaf rust under controlled greenhouse conditions. We have also evaluated a selection of synthetic hexaploid wheats, produced by hybridizing Ae. tauschii with tetraploid durum wheats, as well as the first and second generation of hybrids between some of these resistant synthetic hexaploid wheats and susceptible Triticum aestivum cultivars. Eighteen (11%) accessions of Ae. tauschii were resistant to leaf rust among which 1 was immune, 13 were highly resistant and 4 were moderately resistant. Six of the synthetic hexaploid wheats expressed a high level of leaf rust resistance while four exhibited either a reduced or complete susceptibility compared to their corresponding diploid parent. This suppression of resistance at the hexaploid level suggests the presence of suppressor genes in the A and/or B genomes of the T. turgidum parent. Inheritance of leaf rust resistance from the intercrosses with susceptible bread wheats revealed that resistance was dominant over susceptibility. Leaf rust resistance from the three synthetics (syn 101, syn 701 and syn 901) was effectively transmitted as a single dominant gene and one synthetic (syn 301) possessed two different dominant genes for resistance.  相似文献   

18.
Salinity limits crop production in large areas of the world. The application of in vitro Photosystem II (PS‐II) activity measurements to screen hexaploid wheat (Triticum aestivum, L.) genotypes for NaCl tolerance has been investigated by comparing their responses under stress and control (no added NaCl) conditions. One of the four cultivars used in the study was ‘Kharchia’ known for its high salt tolerance. Wheat seedlings were grown hydroponically in environmental chambers and treated with a range of NaCl concentrations (0.034 M, 0.17 M, 0.68 M, or 3.42 M) over a 1, 3, and 5‐day period. The salt treatments were started in the appropriate time so that they were all ten‐day‐old during harvest. Cellular membrane stability (CMS) as measured by a conductivity method and PS‐II activity values were affected adversely by NaCl concentration and duration of treatment. Both methods clearly distinguish between salt‐sensitive and salt‐tolerant genotypes. Statistical analysis showed that PS‐II activity and CMS measurements are well correlated (r=0.7589) suggesting that PS‐II activity would be used as an additional screening method besides CMS to evaluate salt tolerance of wheat.  相似文献   

19.
Summary Sixty hexaploid wheat landraces collected from five regions of Pakistan were assessed for genetic variability in terms of high molecular weight (HMW) glutenin subunits as revealed by SDS-PAGE. The germplasm appeared to be diverse and unique on the basis of HMW glutenin subunit compositions. Out of 24 alleles detected at all the Glu-1 loci, four belonged to Glu-A1, 12 to Glu-B1 and eight to Glu-D1 locus. The number of novel HMW glutenin subunits detected were 1, 4 and 6 at the three loci (Glu-A1, Glu-B1, Glu-D1), respectively. The frequency distribution patterns of 24 allelic variants detected at the three Glu-1 loci in 1080 samples analysed for 60 accessions were determined both on the basis of individual accessions and on the basis of regions (accessions pooled across the regions). One allele (null) at the Glu-A1 locus, three alleles (17+18, 7+8, 14) at the Glu-B1 locus and, two alleles (2+12 and 2**+12) at the Glu-D1 locus were found most frequently distributed in the 60 populations. Maximum variation was observed in the Baluchistan and Gilgit regions of Pakistan in terms of distribution of novel Glu-1 alleles. A higher gene diversity was observed between the populations as compared to the gene diversity within the populations while, a reverse pattern of gene diversity was observed when populations were pooled across the regions (higher within the regions than between the regions). A data base has been generated in this study which could be expanded and usefully exploited for cultivar development or management of gene bank accessions.  相似文献   

20.
Using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), the different alleles encoded at the 6 glutenin loci and 3 ω-gliadin loci were identified from a set of 134 hexaploid and 128 tetraploid wheat accessions mainly grown in Portugal. In the hexaploid wheats (T. aestivum L.), a total of 56, 42 and 36 patterns were observed for high molecular weight-glutenin subunits (HMW-GS), low molecular weight-glutenin subunits (LMW-GS) and ω-gliadins respectively. For HMW-GS encoded at Glu-A1, Glu-B1 and Glu-D1 loci, 4, 10 and 6 alleles were observed, respectively. LMW-GS displayed similar polymorphism, as Glu-A3, Glu-B3 and Glu-D3 loci, which comprises 5, 9 and 3 alleles. Twenty-four alleles were observed for ω-gliadins found at Gli-A1, Gli-B1 and Gli-D1 loci with, 5, 16 and 3 alleles respectively. For tetraploid collection fifty different alleles were identified for the seven loci studied Glu-A1 (3), Glu-B1 (13), Glu-A3 (6), Glu-B3 (7), Glu-B2 (2), Gli-A1 (5) and Gli-B1 (14). The genetic distances within hexaploid and tetraploid wheats were presented using cluster representation. The mean value of genetic variation indices (H) for wheat storage protein loci was slightly lower in current commercially available varieties (0.592) and highest for old varieties (0.574).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号