首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Crop breeding research by international agricultural research centers usually serves public sector crop breeding, but does it still have a role when research and development have shifted to the private sector? This paper explores this question for vegetables in India using data from 27 private companies and 9 public organizations. We focus on tomato (Solanum lycopersicum L.) and chili pepper (Capsicum annuum L.)—two of India’s most important vegetables, and the role of international germplasm received from the World Vegetable Center. Results show that as the role of the private sector in vegetable breeding increased, and with it the share of hybrids in the market, the role of international agricultural research shifted from the provision of ready-made varieties to the provision of specific resistance traits. Still, international germplasm continued to be used in varietal development with 11.6 t (14 % of the total market) of hybrid tomato seed and 15.0 t (13 %) of hybrid chili pepper seed sold in 2014 containing international germplasm in its pedigree. We estimate that over half a million farmers use such seed. We conclude that for tomato and chili pepper, international breeding needs to focus on pre-breeding research, capacity strengthening of smaller seed companies, and the delivery of open-pollinated varieties for marginal environments.  相似文献   

2.
The genus Zanthoxylum, belonging to Rutaceae, has a long history of cultivation both for economic and chemical values in China. To effectively conserve and sustainably utilize this genus resource, a study on genetic diversity and relationships of Zanthoxylum germplasms was carried out by employing SRAP markers. We used 16 primer combinations to assess genetic variations and relationships among 175 accessions from eight cultivated provenances, including Shandong, Henan, Shanxi, Shaanxi, Gansu, Sichuan, Guizhou and Yunnan. A total of 145 clear repetitive and intense bands were yielded, and the percentage of polymorphic bands was 100 % for per primer combination, indicating a relatively high diversity among Zanthoxylum germplasms. From a geographic perspective, the highest genetic diversity level was observed within Guizhou provenance (N a  = 1.97, Ne = 1.52, H = 0.31, I = 0.46) while Henan provenance had the lowest genetic diversity (N a  = 1.68, Ne = 1.45, H = 0.25, I = 0.37). Based on AMOVA results, the abundant genetic variation was mainly caused by variation of intra-provenances (84.96 %), rather than among provenances (15.038 %). The results indicated low genetic differentiation (G st  = 0.133) and high gene flow (N m  = 3.2605) among provenances. The neighbor-joining tree revealed that the 175 accessions could be divided into four groups, and groupings indicated a divergence between the cultivated accessions of Zanthoxylum bungeanum Maxim. and Z. armatum DC. Moreover, three accessions of Z. piperitum DC. var. inerme without prickles introduced from Japan gathered one cluster. Cluster IV is composed of accessions of different geographical origin, including 11 wild species and 10 cultivated accessions of Z. bungeanum. The cluster analysis also reflected a relatively close relationship between the geographical origins and the classification of accessions in cluster I. Structure analysis indicated that collected Zanthoxylum accessions could be divided into two major groups. The information obtained from our research would benefit to make use of Zanthoxylum germplasms and assist the management of a Zanthoxylum germplasms collection.  相似文献   

3.
Genetic diversity and relationships within and among nine species of Coffea, one species of Psilanthus and the Piatã hybrid from the Coffee Germplasm Collection of Instituto Agronômico de Campinas (IAC), Brazil were assessed using RAPD markers. Genetic diversity and relationships were evaluated by proportion of polymorphic loci (P), Shannon’s genetic index (H′ and GST) and clustering analysis. The overall RAPD variation among all accessions was mostly partitioned between rather than within species. However, C. canephora and C. liberica showed a high genetic diversity within the species (\({\underline{\hbox{H}'}} \) sp = 0.414 and \({\underline{\hbox{H}'}} \) sp = 0.380, respectively) and this was highly structured (high \({\underline{\hbox{G}'}} \) ST). Genetic diversity from C. congensis and C. arabica was also structured, but with lower levels of genetic diversity (\({\underline{\hbox{H}'}} \) sp = 0.218 and \({\underline{\hbox{H}'}} \) sp = 0.126, respectively). The results were consistent with agronomic and molecular studies and demonstrated that the IAC Coffea Collection is representative of the phylogenetic structure observed in the genera. This study devises sampling strategies for coffee germplasm collections and provides genetic diversity parameters for future comparisons among them.  相似文献   

4.
Lima bean (Phaseolus lunatus L.) is an important food source in Brazil, especially in the northeast region, where its production and consumption are high. The goals of the present study were to estimate natural outcrossing rates and genetic diversity levels of Lima bean from Brazil, using ten microsatellite loci to obtain information for their conservation and breeding. Fourteen accessions were selected from an experiment in field with open-pollinated and with the presence of pollinating insects. Twelve seeds of each of the 14 selected accessions were grown in screenhouse for tissue harvest and DNA extraction. The multilocus model was used to determine the reproductive system. The outcrossing rate was 38.1 % (tm = 0.381; ts = 0.078), and the results indicated a mixed mating system with a predominance of selfing (1 ? tm = 61.9 %). The biparental inbreeding rate was high (t m  ? t s  = 0.303) and the multilocus correlated paternity was quite high (r p(m) = 0.889), indicating that the progeny was mostly composed of full sibs. The average effective number of pollen donors per maternal plant (N ep ) was low (1.12), and the fixation index for maternal genotypes (F m ) was 0.945, indicating that most genitors resulted from inbreeding. The studied families presented considerable genetic variability: A = 6.10;  %P = 30; H e  = 0.60 and H o  = 0.077. Total diversity was high (H T = 0.596), and a portion was distributed within families (H S = 0.058). In addition, diversity was higher between families (D ST = 0.538), and genetic differentiation was high (G ST = 0.902). The results presented here can be used in the implementation of Lima bean conservation and breeding programs in Brazil.  相似文献   

5.
Significant genetic diversity was observed in 218 out of a total of 1309 accessions of amaranth (Amaranthus hypochondriacus L.) and its seven wild relatives, A. spinosus L., A. dubius Mart. ex Thell., A. hybridus L., A. tricolor L., A. cruentus L., A. caudatus L., A. retroflexus L. for 24 nutritional parameters including total oil content, fatty acid profile, total protein content and amino acid profile. Diversity for total oil content (6.42–12.53%), linoleic acid (25.68–54.34%), oleic acid (21.97–42.01%) of the total fatty acids, total protein content (7.84–18.01%), among important essential amino acids; lysine content (0.66–11.12 g/16 g N), methionine (0.35–4.80 g/16 g N) and half cystine and (0.12–8.32 g/16 g N) was reported. The un-weighted pair-group method using arithmetic average cluster analysis based on pair wise Euclidean genetic distance grouped the accessions into seven major clusters. Histidine, half cystine, tyrosine, essential amino acids, total oil content, linoleic acid and oleic acid content were the major parameters contributing significantly to genetic diversity. Present findings indicate that significant diversity exists for nutritional parameters in amaranth germplasm. The promising accessions with higher multiple nutritive traits; protein content (>16%), oil content (>11%), lysine content (>7.5 g/16 g N) and EAA higher than the FAO reported values, were identified. This is the first report on detailed nutritional analysis of diversity collected worldwide. These could be used as potential breeding material for nutritional enhancement through genetic improvement. This will help in overcoming the “triple burden” of malnourishment, hidden hunger, and obesity.  相似文献   

6.
Morphological traits and two kinds of molecular markers were employed to study the genetic relationships among improved rice (Oryza sativa ) varieties of Indonesia since 1943. Dendrograms based on morphological traits and both molecular markers (simple sequence repeats, SSR and single nucleotide polymorphism, SNP) agreed in separating the varieties into two primary groups. Based on the morphological traits, a larger group (>60 %) contains varieties with smaller sizes compared with those in the smaller group (<40 %). SSR and SNP markers revealed that most of the varieties belonged to indica (88; 89 %) and japonica (9; 8 %) subspecies, and 3 % of varieties were not involved in two subspecies. The molecular markers revealed that the genetic diversity (H) stagnated between stage II (1967–1985) and stage III (1986–2003). However, during stage I (1943–1966), H was higher than in the other stages as revealed by SNP markers, while H in stage I was lower than in the other stages as revealed by SSR markers. In this study, the two molecular data sets were positively correlated and positive correlations between the phenotypic and molecular data depended on the kind of molecular marker: SNP had higher Mantel r values than SSRs. Besides, SSR markers seem to be appropriate for pedigree studies, while SNP markers could be used to reveal genomic relationships. These findings were attributable to the different properties of these two different markers. These results suggested that the diversity and differentiation of both the phenotypic and molecular marker variations were probably resulted from the crossing and selection in rice breeding in Indonesia. We suggest that Indonesia needs another strategy to improve new varieties to avoid a reduction in genetic diversity and similarity.  相似文献   

7.
Little is known regarding the effect of fragmentation and human agricultural management on the genetic variation and gene flow of Cucurbita pepo L., 1753 in moderate fragmented areas in central Guatemala. We hypothesize that the genetic variation of C. pepo is affected by forest fragmentation and by traditional agricultural management. Therefore, we aim to determine: (1) the genetic diversity and genetic structure of C. pepo in the Cloud Forest Corridor (CFC) (2) the extent of genetic admixture between commercial variety (CV) and traditional landraces (TL) of C. pepo, (3) the effect of habitat fragmentation in the population genetics of C. pepo with a landscape approach, and (4) the potential relationship between traditional management practices and genetic diversity of C. pepo in the CFC. We detected the existence of high level of genetic diversity (AR = 3.43; He = 0.50), inbreeding (Fis = 0.25) and moderate population structure of C. pepo in the CFC (Fst = 0.16). No correlation between landscape and genetics was found. Also, we found high genetic admixture between CV and TL. It seems that human practices, mainly related with seed exchange patterns, could affect genetic diversity of C. pepo in the CFC. C. pepo populations in the CFC are structured, with inbreeding, and show admixture with the CV, an aspect that could affect its genetic diversity. The agricultural management influenced the population genetics of C. pepo in the CFC, but the landscape did not. We suggest that special efforts should be made to preserve the diversity of this important indigenous food source for Guatemalan people as well as their management practices.  相似文献   

8.
Vitellaria paradoxa C. F. Gaertn., commonly known as shea tree or Vitellaria, is ranked the most important tree species of the savannah regions in the most African countries due to its ecological and economic importance for livelihoods and national economies. However, the savannah regions are the most vulnerable areas to the global climate change. Moreover, the Vitellaria populations on farmlands are threatened by the dominance of old trees with low or lack of regeneration. In this study both morphological and genetic diversity were assessed using several phenotypic traits and 10 microsatellite markers, respectively, to assess the impact of land use and agro-ecozone types on Vitellaria in Ghana. The land use types were forests and farmlands, and the agro-ecozone types included the Transitional, Guinea, and Sudan savannah zones. The mean values of morphological traits, such as diameter at breast height (DBH) and canopy diameter (CD), were statistically different between forest (DBH = 22.20, CD = 5.37) and farmland (DBH = 39.85 CD = 7.49) populations (P < 0.00001). The Sudan savannah zone with mean petiole length of 4.96 cm showed significant difference from the other zones, likely as a result of adaptation to drier climate conditions. Genetic data analysis was based on 10 microsatellite markers and revealed high genetic diversity of Vitellaria in Ghana: mean expected heterozygosity, H e was 0.667, and allelic richness, measured as number of effective alleles A e , was 4.066. Both farmlands and forests were very diverse indicating lack of negative influence of farmer’s selection on genetic diversity. Fixation index was positive for all populations (mean F IS = 0.136) with farmlands recording relatively higher values than forests in all ecological zone types studied, probably indicating less gene flow in the farmlands. Moderate differentiation (F′ ST = 0.113) was comparable to other similar tree species. Both land use and ecological zone types influenced genetic differentiation of Vitellaria at varying levels. The species was spatially structured across three ecozones and following climatic gradient. The forest reserves are used in situ conservation for Vitellaria in Ghana. High diversity observed in the most arid zones provides opportunity to find and use appropriate plant materials for breeding climate change resilient trees.  相似文献   

9.
A hybrid between Erianthus arundinaceus (Retz.) Jeswiet and Saccharum spontaneum L. which are wild related species of sugarcane (Saccharum L., Family Poaceae), was repeatedly crossed as female parent with sugarcane commercial varieties to develop near commercial sugarcane clones. The cytoplasm type of the hybrid derivatives were confirmed to be of E. arundinaceus through the mitochondrial and chloroplast DNA polymorphism of nad 4/3-4 intron segment and psbC–trnS segment, respectively. The E. arundinaceus × S. spontaneum hybrid with somatic chromosome number 2n = 62 was confirmed to have 30 chromosomes from E. arundinaceus through genomic in situ hybridization (GISH). The (E. arundinaceus × S. spontaneum) × sugarcane hybrid (2n = 118) had 24 chromosomes from E. arundinaceus whereas its next generation hybrid with sugarcane (2n = 108) had only 12 Erianthus chromosomes. The commercial sugarcane hybrid Co 15015, which is the third generation hybrid with 2n = 106 was confirmed to have two E. arundinaceus chromosomes through GISH. It is the first report of sugarcane with both alien cytoplasm and chromosome contributions from E. arundinaceus.  相似文献   

10.
The modern plant breeding is generally considered to be a practice that leads to a narrowing in genetic diversity of crops. The objective of the present study was to assess whether this practice has led to the reduction of genetic diversity in modern Chinese wheat cultivars. A set of 80 dominant Chinese wheat cultivars released from 1942 to 2011 was used to describe the genetic diversity based on 137 simple sequence repeat (SSR) and 52 functional markers. Several important properties about the genetic diversity were revealed. First, relative low genetic diversity level was detected on a genome-wide scale. A total of 752 alleles were detected with a range from 1 to 15, and the mean polymorphic information content value was 0.53 with a range from 0.00 to 0.87. Second, the genetic diversity significantly decreased from 2001 to 2011 at the genome-wide level. More importantly, significant differences of genetic diversity among the three different genomes were observed by the analysis of variance (ANOVA). The three genomes had clearly different changing trends over time: the A genome displayed a decreasing trend (regression coefficient (b) = ?0.01); in contrast, the other two genomes, B and D, showed the increasing trends (b = 0.01 for the B genome, P = 0.05; b = 0.01 for the D genome, P = 0.05). Third, the analysis of qualitative variations in allelic composition over time indicated that, the more recent the cultivars were, the more similar they were to each other. Finally, the frequencies of favorable alleles related to important agronomic traits had been increasing over time or maintained high frequencies in all seven temporal groups. These findings indicate that modern wheat breeding results in not only a qualitative, but also a quantitative change in genetic diversity in the dominant Chinese wheat cultivars. A special attention should be paid to broaden the genetic base in the A genome.  相似文献   

11.
Variability study of agro-morphological characteristics is important for varietal improvement and plant breeding program. For this, 148 chili pepper landraces (Capsicum annuum L.) collected from Northern Benin were characterized using 39 (21 qualitative and 18 quantitative) morphological characters. The trial was conducted in a Fisher block design with 3 replicates at the experimental station of the Faculty of Science and Technology (FAST) of Dassa based in Central Benin. The results revealed considerable morphological variability between landraces. Twenty nine (16 quantitative and 13 qualitative) variables among the 39 examined were discriminatory and group the landraces into 4 classes when considering the qualitative variables. With quantitative variables, 9 groups were obtained. The correlations between the studied quantitative variables show that the yield parameters are correlated with the variables related to the vegetative part of the plant. This study will help breeders to better select their parents for crossing in order to produce desirable and high yielding varieties.  相似文献   

12.
Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at Osmanthus fragrans with little work to develop markers for other species and cultivars. The objectives of this study were to (1) determine cross-transferability of O. fragrans and Chionanthus retusus derived SSRs in diverse Osmanthus taxa, (2) quantify the influence of locus-specific factors on cross-transferability, and (3) determine the genetic relationships between accessions. We tested 70 SSR markers derived from O. fragrans and C. retusus in 24 accessions of Osmanthus. Sixty-seven markers showed transfer to at least one other Osmanthus species with an overall transfer rate of 84% of loci across taxa. Genotyping with 42 microsatellite markers yielded a total of 367 loci. Number of alleles per locus ranged from 2 to 17 with a mean of 8.7 ± 4.8. Mean observed and expected heterozygosities were 0.560 ± 0.225 and 0.688 ± 0.230, respectively. Percent of polymorphic loci ranged from 40% in Osmanthus delavayi to 100% in O. fragrans. Osmanthus fragrans had the highest mean number of alleles per locus (4.2) while O. delavayi had the lowest (1.1). A reduced suite of eight-markers can distinguish between accessions with non-exclusion probabilities of identity from 3.91E?04 to 2.90E?07. The SSR markers described herein will be immediately useful to characterize germplasm, identify hybrids, and aid in understanding the level of genetic diversity and relationships within the cultivated germplasm.  相似文献   

13.
Plants of the Pilocarpus genus (Rutaceae) are popularly known as jaborandi and are the only source of pilocarpine, an imidazole alkaloid used in eye-drops for the treatment of glaucoma as well as for the stimulation of sweat and lachrymal glands. Alkaloid extracts from leaf samples of seven species of Pilocarpus, from the states of São Paulo and Maranhão in Brazil, were analyzed using HPLC–ESI–MS/MS. The samples contained between 0.88 ± 0.04 and 1.00 ± 0.14% of alkaloids in relation to the dry weight of their leaves, with significant differences in results (P ≤ 0.05) found only between Pilocarpus microphyllus planted in the state of Maranhão and Pilocarpus spicatus, Pilocarpus trachyllophus, Pilocarpus pennatifolius and Pilocarpus jaborandi; as well as between Pilocarpus spicatus and Pilocarpus racemosus. Pilocarpine was not found in P. spicatus, whereas in the other species it ranged from 2.6 ± 0.1 to 70.8 ± 1.2% of total alkaloids. P. microphyllus planted in the state of Maranhão for pilocarpine extraction had the highest total alkaloid content, but it had only 35% of pilocarpine in relation to total alkaloids. Three other species contained more pilocarpine in relation to total alkaloids: P. jaborandi (70.8%), P. racemosus (45.6%) and P. trachyllophus (38.7%); and could be candidates for pilocarpine extraction. Differences in alkaloid content were significant for all these samples (P ≤ 0.05). Imidazole alkaloids were observed and partially characterized based on their retention times and high resolution mass. The seven species analyzed had different imidazole alkaloid profiles, but only one did not present quantifiable pilocarpine contents in its leaves. The Pilocarpus genus shows potential for the prospection of novel alkaloids.  相似文献   

14.
Maize (Zea mays L.) and Asian rice (Oryza sativa L.), two most important cereals for human nutrition, have undergone strong artificial selection during a long period of time. Currently, a number of genes with stronger signals of selection have been identified through combining genomic and population genetic approach, but research on artificial selection of maize and Asian rice is scarcely done from the perspective of phenotypic difference of a number of agronomic traits. In this study, such an investigation was carried out on the basis of 179 published studies about phenotypic quantitative trait locus (QTL) mapping of Zea and Oryza species via QTL sign test. At the overall level, the proportions of antagonistic QTLs of Zea and Oryza species were 0.2446 and 0.2382 respectively, deviating significantly from neutrality. It indicated that these two genera have undergone similar selection strength during their evolutionary process. A previous study showed that 4 traits undergoing the directional selection during domestication were identified in Asian rice via QTL sign test, and 16 individual traits in Asian rice and 38 ones in maize that newly detected in this study deviated significantly from neutrality as well, demonstrating the dominant influence of artificial selection on them. Moreover, analysis of different categories of cross type including O. sativa × Oryza rufipogon (perennial and annual forms) crosses, maize × teosinte (Zea mays subsp. parviglumis) crosses, O. sativa × O. sativa crosses, and maize × maize crosses showed that their proportions of antagonistic QTLs were 0.1869, 0.1467, 0.2649, and 0.2618 respectively. These results revealed that selection strength of domestication is significantly stronger than that of modern genetic improvement. However, interestingly, the proportion of antagonistic QTLs (0.1591) in maize × maize with long-term selection was very similar to that (0.1467) in the maize × teosinte (Zea mays subsp. parviglumis) crosses. It suggested that some favorable traits could be cultivated within a few decades if we carry out strong selection. In addition, the proportions of antagonistic QTLs of the widely cultivated hybrids of rice (Minghui 63 × Zhenshan 97) and maize (Zheng 58 × Chang 7-2) in China were 0.309 and 0.3472 respectively. It suggested that selection during modern genetic improvement has significantly acted on them.  相似文献   

15.

Purpose

Geobacteraceae are important dissimilatory Fe (III)-reducing microorganisms, influencing the cycling of metals, nutrients as well as the degradation of organic contaminants. However, little is known about their distribution, diversity, and abundance of Geobacteraceae and the effects of environment factors and geographic distance on the distribution and diversity of Geobacteraceae in paddy soils remain unclear. Therefore, the objectives of this study were to investigate the distribution, diversity, and abundance of Geobacteraceae in paddy soils and to determine key factors in shaping the Geobacteraceae distribution, environmental factors, geographic distance, or both and to quantify their contribution to Geobacteraceae variation.

Materials and methods

Illumina sequencing and quantitative real-time PCR using a primer set targeting 16S rRNA genes of bacteria affiliated with the family Geobacteraceae were employed to measure the community composition, diversity, and abundance patterns of 16S rRNA genes of Geobacteraceae in 16 samples collected from north to south of China. MRT, Mantel test, and VPA were used to analyze the relationship between communities of Geobacteraceae and environmental factors and geographic distance.

Results and discussion

Quantitative PCR showed that the abundance of 16S rRNA genes of Geobacteraceae ranged from (1.20?±?0.18)?×?108 to 1.13?×?109?±?2.25?×?108 copies per gram of soil (dry weight) across different types of soils. Illumina sequencing results showed Geobacter was the dominant genus within the family of Geobacteraceae. Multivariate regression tree (MRT) analysis showed that soil amorphous iron contributed more (22.46 %) to the variation of dominant species of Geobacteraceae than other examined soil chemical factors such as pH (14.52 %), ammonium (5.12 %), and dissolved organic carbon (4.74 %). Additionally, more geographically distant sites harbored less similar communities. Variance partitioning analysis (VPA) showed that geographic distance contributed more to the variation of Geobacteraceae than any other factor, although the environmental factors explained more variation when combined. So, we detected the uneven distribution of Geobacteraceae in paddy soils of China and demonstrated that Geobacteraceae community composition was strongly associated with geographic distance and soil chemical factors including aFe, pH, Fe, DOC, C:N, and NO3 ?-N. These results greatly expand the knowledge of the distribution of Geobacteraceae in environments, particularly in terrestrial ecosystems.

Conclusions

Our results showed that geographic distance and amorphous iron played important roles in shaping Geobacteraceae community composition and revealed that both geographic distance and soil properties governed Geobacteraceae biogeography in paddy soils. Our findings will be critical in facilitating the prediction of element cycling by incorporating information on functional microbial communities into current biogeochemical models.
  相似文献   

16.
Environmental pollution with chromium is due to residues of several industrial processes. Bioremediation is an alternative actually considered to remove Cr (VI) from the environment, using adapted organisms that grow in contaminated places. Have been conducted studies with fungi mechanisms of interaction with chromium, most of which have focused on processes biosorption, characterized it by passive binding of metal components of the cell surface, and bioaccumulation, wherein the metal entry to cells occurs with energy expenditure. The paper presents the results of studies carried out on sorption of chromium (VI) ions from aqueous solutions by Fusarium sp. and Myrothecium sp. Both biomasses have the ability to take up hexavalent chromium during the stationary phase of growth and as well inactive conditions. Fusarium sp. showed 26% of biosorption with active biomass and 64% in inactive biomass; meanwhile, Myrothecium sp. obtained 97 and 82%, respectively. Both fungi showed adjust to pseudo-second-order model in active (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.96) and inactive biomass assay (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.99). The data of the active biomass test also confirmed to the intraparticle diffusion model (Fusarium sp. R 2 = 0.98; Myrothecium sp. R 2 = 0.93). The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Fusarium sp. and Myrothecium sp.  相似文献   

17.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

18.
Perception of farmers’ about the use of pesticides and genetic erosion of tetraploid wheat landraces of Ethiopia was assessed through focus group discussions with farmers, on-farm observations, personal interviews with farmers, by using structured questionnaires of temporal and spatial methods. A total of 1496 farmers from seven provinces in the country were interviewed. Farmers’ knowledge about pesticide increases suggests that they are not happy on using chemicals because of their negative impact on farm land. About 75 % of the farmers believe that, although the use of pesticides may increase the production of wheat, it has a negative impact on (human) health and environment. Women showed a higher concern for pesticides’ harmfulness than men. Farmers’ valuation of genetic erosion was estimated as reduced importance of landraces, as shown by a the lower proportion of landraces either grown or sold on the market. The four most important factors cited for loss of landraces were reduction in land area per capita, displacement by released/modern varieties of hexaploid wheat and teff, reduced benefit from landraces, and displacement by other crops and chat. Genetic erosion of 100 % was observed for Triticum dicoccon in the provinces of Gojam and Gonder and for T. polonicum in Tigray and Gojam. Overall, genetic erosion in the country was 32.0, 35.3, 55.9, 84.4 and 84.4 % for T. durum Desf., T. turgidum L., T. aethiopicum Jakubz., T. polonicum L. and T. dicoccon Schrank, respectively.  相似文献   

19.
20.
Iran is amongst the countries in the world widely known for cultivation of Prunus spp. (or stone fruits). It is both a centre of origin and diversity of the stone fruits. Numerous wild species as well as many cultivars and landraces of these fruit crops are important genetic resources today in Iran and can be used for improvement and breeding of scion and rootstock cultivars which are resistant to many biotic and abiotic stresses through modern genomics and genetic technologies. This paper discusses the distribution, ethno-botany, diversity and utilization of wild and domesticated genetic resources of stone fruits including almond (Prunus dulcis (Miller) D. A. Webb.), peach and nectarine (P. persica Batsch), European and Japanese plum (P. × domestica L., and P. salicina L., respectively), sweet and sour cherry (P. avium L., and P. cerasus L., respectively), and apricot (P. armeniaca L.), all of which are members of the Rosaceae family. The goal of this paper is to highlight the importance of Iran as a main contributor to the diversity of Prunus genetic resources in the world, as well as, present major achievements regarding identification, collection, evaluation, conservation and utilization of this valuable genetic resource in Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号