首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The medical records and magnetic resonance (MR) images of dogs with an acquired trigeminal nerve disorder were reviewed retrospectively. Trigeminal nerve dysfunction was present in six dogs with histologic confirmation of etiology. A histopathologic diagnosis of neuritis (n=2) or nerve sheath tumor (n=4) was made. Dogs with trigeminal neuritis had diffuse enlargement of the nerve without a mass lesion. These nerves were isointense to brain parenchyma on T1-weighted (T1W) precontrast images and proton-density-weighted (PDW) images and either isointense or hyperintense on T2-weighted (T2W) images. Dogs with a nerve sheath tumor had a solitary or lobulated mass with displacement of adjacent neuropil. Nerve sheath tumors were isointense to the brain parenchyma on T1W, T2W, and PDW images. All trigeminal nerve lesions enhanced following contrast medium administration. Atrophy of the temporalis and masseter muscles, with a characteristic increase in signal intensity on T1W images, were present in all dogs.  相似文献   

2.
Magnetic resonance imaging (MRI) examinations from 18 dogs with a histologically confirmed peripheral nerve sheath tumor (PNST) of the brachial plexus were assessed retrospectively. Almost half (8/18) had a diffuse thickening of the brachial plexus nerve(s), six of which extended into the vertebral canal. The other 10/18 dogs had a nodule or mass in the axilla (1.2-338 cm3). Seven of those 10 masses also had diffuse nerve sheath thickening, three of which extended into the vertebral canal. The majority of tumors were hyperintense to muscle on T2-weighted images and isointense on T1-weighted images. Eight of 18 PNSTs had only minimal to mild contrast enhancement and many (13/18) enhanced heterogeneously following gadolinium DTPA administration. Transverse plane images with a large enough field of view (FOV) to include both axillae and the vertebral canal were essential, allowing in-slice comparison to detect lesions by asymmetry of structures. Higher resolution, smaller FOV, multiplanar examination of the cervicothoracic spine was important for appreciating nerve root and foraminal involvement. Short tau inversion recovery, T2-weighted, pre and postcontrast T1-weighted pulse sequences were all useful. Contrast enhancement was critical to detecting subtle diffuse nerve sheath involvement or small isointense nodules, and for accurately identifying the full extent of disease. Some canine brachial plexus tumors can be challenging to detect, requiring a rigorous multiplanar multi-pulse sequence MRI examination.  相似文献   

3.
Kazutaka  Yamada  DVM  Kazuro  Miyahara  DVM  PhD  Motoyoshi  Sato  DVM  PhD  Tsuneo  Hirose  DVM  PhD  Yukihiro  Yasugi  Yukio  Matsuda  Kazuhisa  Furuhama  DVM  PhD 《Veterinary radiology & ultrasound》1995,36(6):523-527
The present study was designed to establish the appropriate technical conditions for magnetic resonance imaging (MRI) of the head and abdomen in rats using a low magnetic field strength (0.2 T) MRI unit equipped with three radio frequency (RF) coils: a custom-made solenoid coil, a temporomandibular joint surface coil and a knee quadrature (QD) RF coil. Male adult Sprague-Dawley rats were used. T1 and T2 relaxation times of both anatomic regions were measured from T1 and T2 maps. An appropriate parameter was then used to make final T1 and T2 weighted images. It was found that the most suitable coil for the head was the custom-made soleniod coil, and that for the abdomen, the knee QD coil. The T1 and T2 relaxation times were 314 to 316 msec and 72 to 74 msec for the head, and 220 to 252 msec and 42 to 51 msec for the abdomen. The optimum parameters for the head were TR/TE = 400/38 msec in T1 weighted images and TR/TE = 1,800/110 msec in T2 weighted images, and for the abdomen, TR/TE = 300/25 msec in T1 weighted images and TR/TE = 1,500/110 msec in T2 weighted images. These results demonstrate that a low magnetic field strength MRI unit has potential for MRI study of the brain and abdomen in rats.  相似文献   

4.
T2-weighted fast spin echo and conventional spin echo are two magnetic resonance (MR) pulse sequences used to image the brain. Given the same scan parameters the resolution of fast spin-echo images will be inferior to that of conventional spin-echo images. However, fast spin-echo images can be acquired in a shorter time allowing scan parameters to be optimized for increased resolution without increasing the time to an unacceptable level. MR imaging of the brain of 54 dogs, suspected of having parenchymal brain abnormalities was performed using a 1.5 T scanner. Acquisition time ranged from 4 min 24 s to 7 min 16 s (average = 5 min 15 s) for fast spin-echo scans and from 6 min 32 s to 11 min 26s (average = 7 min 55s) for conventional spin-echo scans. All reviewers consistently rated the resolution of fast spin-echo images higher than the conventional spin-echo images (P = 0.000). The potential disadvantages of fast spin-echo acquisitions (motion artifacts, blurring, and increased hyperintensity of fat) did not affect the resolution of the images. Fast spin echo offers increased resolution in a comparable time to conventional spin echo by increased number of excitations and finer matrix size, thus improving the signal-to-noise ratio and spatial resolution, respectively.  相似文献   

5.
Pulsatile venous flow in the internal vertebral venous plexus of the cervical spine can lead to vertical, linear T2‐hyperintensities in the spinal cord at the cranial aspect of C3 and C4 in transverse T2‐weighted images in large breed dogs that are not accompanied by ghosting. The artifact is more conspicuous in pre‐ and postcontrast transverse T1‐weighted images and is accompanied by ghosting in that sequence, typical of a pulsatility artifact. A flow‐related artifact was confirmed as the cause for this appearance by noting its absence after either exchange of phase and frequency encoding direction or by flow compensation. Care should be exercised to avoid misdiagnosing this pulsatility artifact seen in transverse T2‐weighted images of the midcervical spine in large dogs as an intramedullary lesion when T1‐images or phase‐swap images are not available to confirm its artifactual origin.  相似文献   

6.
An 8-year-old Yorkshire terrier developed acute onset coma and seizure after cranial trauma. Intracranial hemorrhage was suspected from the clinical signs and history. Low-field magnetic resonance (MR) imaging revealed a round mass within the right cerebral hemisphere, compressing the right lateral ventricle and displacing the longitudinal fissure to the left. The lesion was hypointense on T1-weighted images and hyperintense on T2-weighted images, consistent with an acute hemorrhage. MR imaging was performed every 24 h for 6 days from 1 h after the injury, and then on day 14 of hospitalization. With time, the signal intensity changed to hyperintense on Ti-weighted images. On T2-weighted images the center of the mass changed to hypointense, and then to hyperintense with a hypointense rim. These changes of signal intensity were related to hemoglobin oxidation.  相似文献   

7.
8.
Magnetic resonance imaging was conducted on previously frozen left carpi from six normal dogs using a 1.5 Tesla magnet in combination with a transmit/receive wrist coil. Three-millimeter thick T1-weighted spin-echo images and 1-mm thick T2*-weighted gradient-recalled 3-D images were obtained in dorsal and sagittal planes. Carpi were embedded, sectioned, and stained. Anatomic structures on the histologic sections were correlated with the MR images. All of the carpal ligaments plus the radioulnar articular disc and the palmar fibrocartilage were identified on MR images. The accessorio-quartile ligament, which had not been well described previously in dogs, was also identified. It originated on the accessory carpal bone and inserted on the fourth carpal bone. The T2*-weighted gradient echo imaging technique provided better images than T1-weighted technique, largely because thinner slices were possible (1 mm vs. 3 mm), resulting in less volume averaging of thin ligaments with surrounding structures. Although MRI is currently the imaging modality of choice to identify ligamentous injury in humans, further studies are needed to determine if abnormalities can be detected in canine carpal ligaments using MRI.  相似文献   

9.
The most common cause of peripheral facial nerve paralysis in dogs, in the absence of otitis media, is thought to be idiopathic. Gadolinium-enhanced (Gd) magnetic resonance (MR) imaging has been used to study peripheral facial weakness in humans with a wide variety of disorders, including Bell's palsy, the clinical equivalent of idiopathic facial nerve paralysis in dogs. Gd-MR imaging may be useful to demonstrate abnormal enhancement of the intratemporal facial nerve. The aim of this study was to define the role of the Gd-MR imaging in dogs with idiopathic facial nerve paralysis, with regard to pattern of enhancement, and to search for prognostic information. Six dogs with peripheral facial nerve paralysis, followed between 2003 and 2005, were studied. Physical and neurologic examinations, as well as clinical tests, were performed, including routine hematology, serum biochemistry, thyroid screening, cerebrospinal fluid analysis, and MR imaging. The time interval between the onset of the clinical signs, the progress of the disease, and the final recovery was noted in each dog. The following four intratemporal segments of the facial nerve were analyzed: internal acoustic meatus, labyrinthine segment/geniculate ganglion, tympanic segment, and mastoid segment. Along its length, contrast enhancement was found in four dogs. In this group, contrast enhancement of the facial nerve was found in all segments of two dogs, in three segments of one dog, and in one segment of the other dog. In the four dogs with enhancement, one recovered completely in 8 weeks and three have not recovered completely. The two dogs without evidence of enhancement recovered completely in an average time of 4 weeks.  相似文献   

10.
LOW FIELD MAGNETIC RESONANCE IMAGING OF THE CANINE CENTRAL NERVOUS SYSTEM   总被引:1,自引:0,他引:1  
Magnetic resonance (MR) imaging is a relatively new method of medical imaging. MR studies on the normal canine central nervous system were performed using a low field MR scanner. The regions of interest were the head, neck, and lumbar region. The MR findings in two patients with brain atrophy and cervical neck disc protrusion were also evaluated. Based on our findings it appears that low-field scanners will be satisfactory for use in veterinary diagnostic imaging.  相似文献   

11.
The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders.  相似文献   

12.
Susan M.  Newell  DVM  MS  John P.  Graham  MVB  MSc  Gregory D.  Roberts  DVM  MS  Pamela E.  Ginn  DVM  Cleatis L.  Chewning  RT    Jay M.  Harrison  MS  Camille  Andrzejewski  BS 《Veterinary radiology & ultrasound》2000,41(1):27-34
Magnetic resonance images of the cranial abdomen were acquired from 15 clinically normal cats. All cats had T1-weighted images, 8 cats had T2-images made and 7 cats had T1-weighted post Gd-DTPA images acquired. Signal intensity measurements for T1, T2, and T1 post contrast sequences were calculated for liver, spleen, gallbladder, renal cortex, renal medulla, pancreas, epaxial muscles, and peritoneal fat. On T1-weighted images the epaxial muscle had the lowest signal intensity, followed by renal medulla, spleen, renal cortex, pancreas, liver and fat, respectively. On T2-weighted images, epaxial muscle had the lowest signal intensity followed by liver, spleen, fat, and gallbladder lumen. Calculations of specific organ percent enhancement following contrast medium administration were made and compared with that reported in humans. A brief review of the potential clinical uses of MR in cats is presented.  相似文献   

13.
The hypotheses were that cardiac magnetic resonance imaging (cMRI) would accurately determine LV mass in domestic cats and would do so more accurately than echocardiography (ECHO). ECHO was performed on seven sedated cats. LV mass was calculated using the truncated ellipse formula from a right parasternal long-axis view. T1 weighted gradient echo cMRI was acquired from anesthetized cats during multiple phases of the cardiac cycle. Short-axis images were obtained by acquiring 3 mm thick contiguous slices perpendicular to the cardiac long axis. LV mass was determined using Simpson's rule. Endocardial and epicardial borders were traced on each slice at end-systole, end-diastole, and mid-cycle and the difference in areas was myocardial area. Myocardial area was multiplied by slice thickness to calculate myocardial volume. Total (summated) myocardial volume was multiplied by myocardial density (1.05) to obtain LV mass at three measured phases of the cardiac cycle. Cats were euthanized and the LV was dissected and weighed to determine true mass. CMRI at end-systole most accurately quantified LV mass and was more accurate than echocardiography (P = 0.0078). Actual LV mass ranged from 6.5 to 10.5 g (mean = 8.5 g, SD = 1.6 g) compared with MRI LV mass at end-systole, which ranged from 6.7 to 11.1 g (mean = 8.7 g, SD = 1.7 g) and echocardiographic LV mass at enddiastole, which ranged from 5.2 to 9.1 g (mean= 7.1 g, SD = 1.8 g). Inter- and intraobserver variability for cMRI was 2%. CMRI obtained at end-systole accurately and reliably quantifies LV mass in domestic cats. It is more accurate than the echocardiographic method used in this study.  相似文献   

14.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

15.
Janet S.  Muleya  BVM  MVM  Yasuho  Taura  DVM  Ph.D.  Munekazu  Nakaichi  DVM  PhD.  Sanenori  Nakama  DVM  Ph.D.  Akira  Takeuchi  DVM  Ph.D. 《Veterinary radiology & ultrasound》1997,38(6):444-447
The study was carried out to evaluate the applicability of magnetic resonance imaging (MRI) in detecting tumors in the abdomen of the dog. Abdominal ultrasound and MRI were performed on 8 dogs having a mass lesion on abdominal radiography. MR images were obtained in the transverse, sagittal and dorsal planes using T1- and T2-weighted spin echo pulse sequences. There was good visual correlation of the lesion site by MRI and ultrasonography (US).  相似文献   

16.
The objective of this work was to compare the accuracy of radiographs and magnetic resonance imaging (MRI) for estimating appendicular osteosarcoma margins. The accuracy of computed tomography (CT) and bone scintigraphy was also assessed when these studies were available. Eight dogs with appendicular osteosarcoma underwent radiographic and MRI of affected limbs. In addition, bone scintigraphy was performed in six dogs and CT examination was performed in five dogs. Two observers jointly measured tumor length on all imaging studies. Correlative gross and histologic evaluation of all affected limbs was performed to determine tumor extent as measured from the nearest articular surface. Results from imaging studies were compared to gross and microscopic morphometry findings to determine the accuracy of each modality for determining tumor boundaries. MRI images were accurate with a mean overestimation of actual tumor length of 3 +/- 13%. T1-weighted non-contrast images were superior in identifying intramedullary tumor margins in most instances whereas contrast-enhanced images provided supplemental information in two dogs. Lateromedial and craniocaudal radiographs overestimated tumor length by 17 +/- 28% and 4 +/- 26%, respectively. Scintigraphy and CT overestimated tumor margins by 14 +/- 28% and 27 +/- 36%, respectively. MRI appears to be an accurate diagnostic imaging modality in determining intramedullary osteosarcoma boundaries. MRI should be considered as part of a pre-operative assessment of appendicular osteosarcoma, particularly when a limb-sparing procedure is contemplated.  相似文献   

17.
The diagnosis of discospondylitis is based mainly on diagnostic imaging and laboratory results. Herein, we describe the magnetic resonance imaging (MRI) findings in 13 dogs with confirmed discospondylitis. In total there were 17 sites of discospondylitis. Eleven (81.1%) of the dogs had spinal pain for >3 weeks and a variable degree of neurologic signs. Two dogs had spinal pain and ataxia for 4 days. Radiographs were available in nine of the dogs. In MR images there was always involvement of two adjacent vertebral endplates and the associated disk. The involved endplates and adjacent marrow were T1‐hypointense with hyperintensity in short tau inversion recovery (STIR) images in all dogs, and all dogs also had contrast enhancement of endplates and paravertebral tissues. The intervertebral disks were hyperintense in T2W and STIR images and characterized by contrast enhancement in 15 sites (88.2%). Endplate erosion was present in 15 sites (88.2%) and was associated with T2‐hypointense bone marrow adjacent to it. In two sites (11.8%) endplate erosion was not MR images or radiographically. The vertebral bone marrow in these sites was T2‐hyperintense. Epidural extension was conspicuous in postcontrast images at 15 sites (88.2%). Spinal cord compression was present at 15 sites (88.2%), and all affected dogs had neurologic signs. Subluxation was present in two sites (11.8%). MRI shows characteristic features of discospondylitis, and it allows the recognition of the exact location and extension (to the epidural space and paravertebral soft tissues) of the infection. Furthermore, MRI increases lesion conspicuity in early discospondylitis that may not be visualized by radiography.  相似文献   

18.
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.  相似文献   

19.
Simon R.  Platt  BVM&S  John  Graham  MVB  MSc  Cheryl L.  Chrisman  DVM  MS  Kathleen  Collins  DVM  Sundeep  Chandra  BVSc  PhD  Jeffrey  Sirninger  DVM  Susan M.  Newell  DVM  MS 《Veterinary radiology & ultrasound》1999,40(4):367-371
A 9-year-old male neutered mixed breed dog had a two-month history of progressive left thoracic limb lameness. There was electromyographic evidence of denervation potentials in all muscles of this limb. In magnetic resonance images a multilobulated, hyperintense mass was visible caudal to the middiaphysis of the left humerus on T-2 weighted images. The mass, which was isointense with surrounding tissue on T1 weighted images, extended proximally towards the brachial plexus. The mass was also visible as a fusiform structure of mixed echogenicity sonographically, although fine-needle aspiration performed at this time was nondiagnostic. A malignant peripheral nerve sheath tumor was diagnosed histopathologically.  相似文献   

20.
Whole body magnetic resonance imaging (whole body MR imaging) could potentially provide accurate cancer staging as a single imaging modality. This study was done to develop a whole body MR imaging protocol for a 1.5T MR instrument using four normal Beagle dogs (Phase 1) and then to assess the protocol's feasibility in cancer-bearing dogs (Phase II). In Phase I, anesthetized dogs were placed in dorsal recumbency with limbs flexed along the torso. T1, T2, and short tau inversion recovery sequences were acquired by spin echo or fast spin echo, and also using the more rapid single shot fast spin echo and gradient echo pulse sequences. Three large overlapping fields of view (FOV) were used to visualize the entire body and the sagittal and dorsal imaging planes were compared. Relative examination time, image quality, organ visibility and signal intensity were evaluated. Phase I results were used to establish a protocol that balanced image quality with examination time. In Phase II, whole body MR imaging was done on 10 dogs with cancer. Examination times were 60-75 min. Image quality was sufficient for all known lesions to be visualized, including mass lesions, pulmonary infiltrate, and lymphadenomegaly. Skeletal detail was sufficient to visualize known neoplastic lesions of the appendicular skeleton, yet it was suboptimal because of the large FOV and use of the body coil. Additional modifications of a whole body MR imaging protocol and continued technological improvements in MR imaging will further increase its potential for veterinary cancer staging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号