首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine how rapidly trimethoprim-sulfamethoxazole affects serum total thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations in euthyroid dogs and how quickly hormone concentrations return to reference values following discontinuation of administration. DESIGN: Prospective study. ANIMALS: 7 healthy euthyroid dogs. PROCEDURE: Dogs were given trimethoprim-sulfamethoxazole (26.5 to 31.3 mg/kg [12 to 14.2 mg/lb], PO, q 12 h) for a maximum of 6 weeks. A CBC and Schirmer tear test were performed and serum total T4 and TSH concentrations were measured weekly. Administration of trimethoprim-sulfamethoxazole was discontinued if total T4 concentration was less than the lower reference limit and TSH concentration was greater than the upper reference limit or if persistent neutropenia developed. RESULTS: Six dogs had total T4 concentrations less than the lower reference limit within 3 weeks; T4 concentration was decreased after 1 week in 3 of these 6 dogs. In these 6 dogs, TSH concentration was greater than the upper reference limit within 4 weeks. In 1 dog, T4 and TSH concentrations were not affected, despite administration of trimethoprim-sulfamethoxazole for 6 weeks. Neutropenia developed in 4 dogs. In 1 dog, the neutropenia resolved while trimethoprim-sulfamethoxazole was still being administered. In the other 3, neutrophil counts returned to reference values 1 week after drug administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of trimethoprim-sulfamethoxazole at a dosage of 26.5 to 31.3 mg/kg, PO, every 12 hours can substantially alter serum total T4 and TSH concentrations and neutrophil counts in dogs within as short a time as a few weeks.  相似文献   

2.
3.
Effect of oral administration of prednisolone on thyroid function in dogs   总被引:4,自引:0,他引:4  
To determine the effect of oral administration of prednisolone on thyroid function, 12 healthy Beagles were given 1.1 mg of prednisolone/kg of body weight every 12 hours for 22 days after 8 days of diagnostic testing of the dogs before treatment with prednisolone. Thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) response tests were performed before treatment (days 1 and 8 of the study) and during treatment (days 21 and 28 of the study). Blood samples were collected daily at 8 AM and 2 and 8 PM to rule out normal daily hormone fluctuations as the cause of a potential decrease in serum triiodothyronine (T3), thyroxine (T4), and free T4 (fT4) concentrations. Serum T3, T4, and fT4 concentrations before treatment and 1 day and 21 days after the first prednisolone dose were compared by analyses of variance. Post-TSH and -TRH serum T3 and T4 concentrations before and during treatment were compared, using the Student t test for paired data. Oral administration of prednisolone significantly (P less than 0.005) decreased serum T3, T4, and fT4 concentrations in the 8 AM and 2 and 8 PM samples obtained 1 day and 21 days after the first prednisolone dose. Serum T4 and fT4 concentrations in 8 AM and 2 PM samples were significantly (P less than 0.05) lower 21 days after the first prednisolone dose than they were at 1 day after the first dose. Before treatment, serum T4 concentration in the 2 PM samples was significantly (P less than 0.05) higher than serum T4 concentration in 8 AM and 8 PM samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Phenobarbital can interfere with the thyroid axis in human beings and rats by accelerating hepatic thyroxine metabolism because of enzyme induction. In human beings, it also can interfere with the low-dose dexamethasone suppression test (LDDST) used to assess adrenal function by accelerating dexamethasone metabolism. This effect can cause a lack of suppression of pituitary ACTH and subsequent adrenal cortisol release after dexamethasone administration. The effects of phenobarbital on the thyroid axis, the adrenal axis, and adrenal function tests were prospectively investigated in 12 normal, adult dogs. Phenobarbital was administered at 5 mg per kilogram of body weight (range, 4.8–6.6 mg/kg) PO q12h for 29 weeks, resulting in therapeutic serum concentrations (20–40 μg/mL). Serum total thyroxine (TT4), free thyroxine (FT4) by equilibrium dialysis, total triiodothyronine (TT3), thyrotropin (TSH), and cholesterol were determined before and during phenobarbital treatment. LDDST, ACTH stimulation tests, and ultra-sonographic evaluation of the adrenal glands were performed before and during treatment. TT4 and FT4 decreased significantly ( P ≤ .05), TT3 had minimal fluctuation, TSH had only a delayed compensatory increase, and cholesterol increased during phenobarbital treatment. The delayed increase in TSH, despite persistent hypothyroxinemia, suggests that accelerated hepatic thyroxine elimination may not be the only effect of phenobarbital on the thyroid axis. There was no significant effect of phenobarbital on either of the adrenal function tests. With the methods employed, we did not find any effects of the drug on the hormonal equilibrium of the adrenal axis.  相似文献   

6.
OBJECTIVE: To investigate the effects of IM administration of acepromazine on indices of relative renal blood flow and glomerular filtration rate (GFR) by means of scintigraphy, as well as the effects on physiologic, hematologic, and serum biochemical variables in anesthetized dogs, compared with effects of administration of saline. ANIMAL: 6 healthy Beagles. PROCEDURE: Acepromazine (0.1 mg/kg) or physiologic saline (0.9 NaCI) solution was administered IM 30 minutes prior to induction of anesthesia with thiopentone; anesthesia was maintained with inspired isoflurane for 2.25 hours. Blood gases and circulatory and ventilatory variables were monitored. Renal function was evaluated by scintigraphic measurements of GFR and relative renal blood flow and analyses of serum and urine. Statistical analyses used ANOVA or Friedman ANOVA. RESULTS: Values of relative renal blood flow and GFR remained high despite low blood pressures. After administration of acepromazine, mean +/- SD arterial blood pressure was 66 +/- 8 mm Hg during anesthesia; this value was below the threshold (80 mm Hg) for renal autoregulation of GFR. In comparison, mean arterial blood pressure after administration of saline was significantly higher (87 +/- 13 mm Hg). However, between treatments, there were no significant differences in GFR, relative renal blood flow, or other indices of renal function. CONCLUSIONS AND CLINICAL RELEVANCE: Measurements of renal function and blood flow in dogs during anesthesia with thiopentone and isoflurane did not differ significantly between treatments, which suggested that acepromazine protects renal function despite inducing reduction in blood pressure, compared with effects of administration of saline.  相似文献   

7.
Obesity and weight loss have been shown to alter thyroid hormone homeostasis in humans. In dogs, obesity is the most common nutritional problem encountered and weight loss is the cornerstone of its treatment. Therefore, it is important to clarify how obesity and weight loss can affect thyroid function test results in that species. The objectives of this study were to compare thyroid function in obese dogs and in lean dogs and to explore the effects of caloric restriction and weight loss on thyroid hormone serum concentrations in obese dogs. In the first experiment, 12 healthy lean beagles and 12 obese beagles were compared. Thyroid function was evaluated by measuring serum concentrations of total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), thyrotropin (TSH), and reverse triiodothyronine (rT3) as well as a TSH stimulation test using 75 microg i.v. of recombinant human TSH. In the second experiment, eight obese beagles were fed an energy-restricted diet [average 63% maintenance energy requirement (MER)] until optimal weight was obtained. Blood samples for determination of TT4, FT4, TT3, TSH and rT3, were taken at the start and then weekly during weight loss. Only TT3 and TT4 serum concentrations were significantly higher in obese dogs as compared to lean dogs. In the second experiment, weight loss resulted in a significant decrease in TT3 and TSH serum concentrations. Thus obesity and energy restriction significantly alter thyroid homeostasis in dogs, but the observed changes are unlikely to affect interpretation of thyroid function test results in clinics.  相似文献   

8.
The purpose of this study was to evaluate the effect of the administration of meloxicam; carprofen; and a slow-acting disease modifying osteoarthritis agent, that contains chondroitin sulfate, purified glucosamine, and manganese ascorbate (CS-G-M), on thyroid function in dogs. Forty-six healthy (except for osteoarthritis) euthyroid dogs were blindly assigned to 3 treatment groups: meloxicam, carprofen, and CS-G-M. Each group received the recommended dose of the drug for 60 days. Sixteen other osteoarthritic euthyroid dogs, which received a placebo, were used as a control group to validate the study. For all groups, blood samples were collected on days 0, 30, and 60 to evaluate the serum total and free thyroxine, and endogenous thyrotropin concentrations. There were no significant differences among the treatment groups at each time or within each group over a 60-day period for all parameters. Moreover, none of these values were within the hypothyroid range. Based on the results of this study, the administration of meloxicam, carprofen, and CS-G-M did not affect canine thyroid function evaluation.  相似文献   

9.
Plasma von Willebrand factor antigen concentration was determined in 15 dogs with suspected hypothyroidism, in 1 dog with hyperthyroidism, and in 14 euthyroid dogs. The mean +/- SEM von Willebrand factor:antigen concentration in hypothyroid dogs (47.1% +/- 12.6%) was significantly decreased (P less than 0.0005), compared with that in euthyroid dogs (94.7 +/- 5.6%). Four hypothyroid dogs were given thyroxine for 1 month and all 4 had an increase in von Willebrand factor:antigen concentration. The plasma von Willebrand factor:antigen concentration was 200% in the hyperthyroid dog. Seemingly, reduced concentrations of plasma von Willebrand factor:antigen can be found in dogs in association with congenital von Willebrand disease or with von Willebrand disease acquired through hypothyroidism.  相似文献   

10.
Objective : To assess the value of thyroid scintigraphy to determine thyroid status in dogs with hypothyroidism and various non‐thyroidal illnesses. Methods : Thyroid hormone concentrations were measured and quantitative thyroid scintigraphy performed in 21 dogs with clinical and/or clinicopathological features consistent with hypothyroidism. Results : In 14 dogs with technetium thyroidal uptake values consistent with euthyroidism, further investigations supported non‐thyroidal illness. In five dogs with technetium thyroidal uptake values within the hypothyroid range, primary hypothyroidism was confirmed as the only disease in four. The remaining dog had pituitary‐dependent hyperadrenocorticism. Two dogs had technetium thyroidal uptake values in the non‐diagnostic range. One dog had iodothyronine concentrations indicative of euthyroidism. In the other, a dog receiving glucocorticoid therapy, all iodothyronine concentrations were decreased. Markedly asymmetric technetium thyroidal uptake was present in two dogs. All iodothyronine concentrations were within reference interval but canine thyroid stimulating hormone concentration was elevated in one. Non‐thyroidal illness was identified in both cases. Clinical Significance : In dogs, technetium thyroidal uptake is a useful test to determine thyroid function. However, values may be non‐diagnostic, asymmetric uptake can occur and excess glucocorticoids may variably suppress technetium thyroidal uptake and/or thyroid hormone concentrations. Further studies are necessary to evaluate quantitative thyroid scintigraphy as a gold standard method for determining canine thyroid function.  相似文献   

11.
The short-term effects of prednisone and phenobarbital on serum total thyroxine (tT4), free thyroxine (fT4), and thyroid stimulating hormone (TSH) were evaluated in euthyroid dogs. Twenty-six beagles were randomly divided into 3 groups receiving, respectively, a placebo, prednisone (1.2 to 2 mg/kg body weight, per os, every 12 hours for 3 weeks), or phenobarbital (1.8 to 3 mg/kg body weight for 1 week, then 2.7 to 4.5 mg/kg body weight, per os, every 12 hours for 2 weeks). Blood samples taken over a 6-week period were assayed for serum tT4, fT4, and TSH. Phenobarbital therapy in our study did not affect serum tT4, fT4, or TSH concentrations. Prednisone therapy, however, significantly decreased serum tT4 and fT4, but did not affect serum TSH concentrations.  相似文献   

12.
Effects of propranolol on thyroid function in the dog   总被引:1,自引:0,他引:1  
The effect of propranolol on thyroid function was evaluated in 6 mature euthyroid Beagles. Propranolol was administered orally in doses of 20 mg given 3 times daily for 2 weeks and then increased to 40 mg given 3 times daily for an additional 2 weeks. Six age- and sex-matched, euthyroid Beagles served as controls. Serum base-line concentrations of tetraiodothyronine (T4), triiodothyronine (T3), and reverse triiodothyronine (rT3) were measured before propranolol administration and at weekly intervals thereafter. Thyroid response to 5 IU of aqueous thyroid stimulating hormone administered IV was monitored before propranolol administration and at the 2- and 4-week treatment intervals. The T4, T3, and rT3 concentrations were measured by radioimmunoassay. There were no significant differences in base-line or postthyroid stimulating hormone serum concentrations of T4, T3, or rT3 in any individual or between the treatment or control groups at any treatment interval (P greater than 0.05). Seemingly, the therapeutic use of propranolol in euthyroid dogs should not alter thyroid hormone metabolism.  相似文献   

13.
Trimethoprim-sulfadiazine was administered to horses in a randomized, placebo controlled study to determine the effects of potentiated sulfonamides on thyroid function in normal horses. The treatment group included eight horses that received trimethoprim-sulfadiazine mixed with molasses orally at 30 mg/kg once daily for eight weeks. The control group included 8 horses that received an oral placebo (flour mixed with molasses) once daily for the same period. Thyroid function was evaluated prior to initiation of treatment and after 8 weeks of treatment. Serum concentrations of total and free triiodothyronine (T3), total and free thyroxine (T4), and thyroid stimulating hormone (TSH) were determined at rest and after a thyrotropin-releasing hormone (TRH) stimulation test. There was no detectable difference between treatment and control groups.  相似文献   

14.
BACKGROUND: Differentiation between hypothyroidism and nonthyroidal illness in dogs poses specific problems, because plasma total thyroxine (TT4) concentrations are often low in nonthyroidal illness, and plasma thyroid stimulating hormone (TSH) concentrations are frequently not high in primary hypothyroidism. HYPOTHESIS: The serum concentrations of the common basal biochemical variables (TT4, freeT4 [fT4], and TSH) overlap between dogs with hypothyroidism and dogs with nonthyroidal illness, but, with stimulation tests and quantitative measurement of thyroidal 99mTcO4(-) uptake, differentiation will be possible. ANIMALS: In 30 dogs with low plasma TT4 concentration, the final diagnosis was based upon histopathologic examination of thyroid tissue obtained by biopsy. Fourteen dogs had primary hypothyroidism, and 13 dogs had nonthyroidal illness. Two dogs had secondary hypothyroidism, and 1 dog had metastatic thyroid cancer. METHODS: The diagnostic value was assessed for (1) plasma concentrations of TT4, fT4, and TSH; (2) TSH-stimulation test; (3) plasma TSH concentration after stimulation with TSH-releasing hormone (TRH); (4) occurrence of thyroglobulin antibodies (TgAbs); and (5) thyroidal 99mTcO4(-) uptake. RESULTS: Plasma concentrations of TT4, fT4, TSH, and the hormone pairs TT4/TSH and fT4/TSH overlapped in the 2 groups, whereas, with TgAbs, there was 1 false-negative result. Results of the TSH- and TRH-stimulation tests did not meet earlier established diagnostic criteria, overlapped, or both. With a quantitative measurement of thyroidal 99mTcO4(-) uptake, there was no overlap between dogs with primary hypothyroidism and dogs with nonthyroidal illness. CONCLUSIONS AND CLINICAL IMPORTANCE: The results of this study confirm earlier observations that, in dogs, accurate biochemical diagnosis of primary hypothyroidism poses specific problems. Previous studies, in which the TSH-stimulation test was used as the "gold standard" for the diagnosis of hypothyroidism may have suffered from misclassification. Quantitative measurement of thyroidal 99mTcO- uptake has the highest discriminatory power with regard to the differentiation between primary hypothyroidism and nonthyroidal illness.  相似文献   

15.
Thyroid function was assessed in euthyroid dogs (n = 20), dogs suffering from canine recurrent flank alopecia (CRFA, n = 18), and hypothyroid dogs (n = 21). Blood samples obtained from all dogs in each group were assayed for total thyroxine (TT4), thyrotropin (TSH), and thyroglobulin autoantibody (TgAA) serum concentrations. Total T4 and TSH serum concentrations were significantly decreased and increased, respectively, in the hypothyroid group compared with the other 2 groups. No significant differences in TT4 and TSH serum values were found between the euthyroid and CRFA groups. Thyroglobulin autoantibodies were detected in 10, 11.1, and 61.9% of euthyroid dogs, dogs with CRFA, and hypothyroid dogs, respectively. In conclusion, dogs suffering from CRFA have a normal thyroid function, and the determination of TT4 and TSH serum concentrations allows differentiation of these dogs from dogs with hypothyroidism, in most cases. Occasionally, the 2 diseases can be concomitant.  相似文献   

16.
A placebo-controlled experiment was performed to evaluate the effect of potassium bromide on the canine thyroid gland. Basal total thyroxine, free thyroxine, and basal thyrotropin serum concentrations were evaluated over a 6-month period in potassium bromide-treated and control dogs. A thyrotropin-releasing hormone stimulation test was also performed in all dogs at the beginning and conclusion of the study. Thyroid histopathology was compared between treated and control dogs at the end of the study. No difference was detected in any parameter between the two groups at the end of the study. A decline in thyroid hormone concentrations over the course of the study did occur in both groups of dogs. Potassium bromide does not appear to have a significant effect on canine thyroid function or morphology.  相似文献   

17.
The effects of thyroid hormones on the serum and cutaneous fatty acid concentration profiles of dogs were evaluated. Thyroidectomized dogs had significant (P less than 0.05) increases in serum oleic acid and linoleic acid concentrations, and decreases in concentration of dihomo-gamma-linolenic acid, arachidonic acid, and other elongation products of fatty acid metabolism. These changes were reversed in response to thyroid hormone replacement. Similar changes were found in cutaneous fatty acid concentration profiles. Thus, in dogs, thyroid hormones may be involved in the regulation of fatty acid delta-6-desaturase activity.  相似文献   

18.
OBJECTIVE: To determine the effects of racing and nontraining on plasma thyroxine (T4), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and thyroglobulin autoantibody (TgAA) concentrations in sled dogs and compare results with reference ranges established for dogs of other breeds. DESIGN: Cross-sectional study. ANIMALS: 122 sled dogs. PROCEDURE: Plasma thyroid hormone concentrations were measured before dogs began and after they finished or were removed from the Iditarod Trail Sled Dog Race in Alaska and approximately 3 months after the race. RESULTS: Concentrations of T4 and fT4 before the race were less than the reference range for nonsled dogs in 26% and 18% of sled dogs, respectively. Immediately after racing, 92% of sled dogs had plasma T4 concentrations less than the reference range. Three months after the race, 25% of sled dogs had plasma T4 concentrations less than the reference range. For T4, fT4, TSH, and TgAA, significant differences were not detected in samples collected before the race versus 3 months later. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma T4, fT4, and TSH concentrations decreased in dogs that complete a long distance sled dog race. Many clinically normal sled dogs have plasma T4 and fT4 values that are lower than the reference range for nonsled dogs. We suggest that the reference ranges for sled dogs are 5.3 to 40.3 nmol/L and 3.0 to 24.0 pmol/L for plasmaT4 and fT4 concentrations, respectively, and 8.0 to 370 mU/L for TSH.  相似文献   

19.
20.
OBJECTIVE: To investigate effects of carprofen on indices of renal function and results of serum bio-chemical analyses and effects on cardiovascular variables during medetomidine-propofol-isoflurane anesthesia in dogs. ANIMALS: 8 healthy male Beagles. PROCEDURES: A randomized crossover study was conducted with treatments including saline (0.9% NaCl) solution (0.08 mL/kg) and carprofen (4 mg/kg) administered IV. Saline solution or carprofen was administered 30 minutes before induction of anesthesia and immediately before administration of medetomidine (20 microg/kg, IM). Anesthesia was induced with propofol and maintained with inspired isoflurane in oxygen. Blood gas concentrations and ventilation were measured. Cardiovascular variables were continuously monitored via pulse contour cardiac output (CO) measurement. Renal function was assessed via glomerular filtration rate (GFR), renal blood flow (RBF), scintigraphy, serum biochemical analyses, urinalysis, and continuous CO measurements. Hematologic analysis was performed. RESULTS: Values did not differ significantly between the carprofen and saline solution groups. For both treatments, sedation and anesthesia caused changes in results of serum biochemical and hematologic analyses; a transient, significant increase in urine alkaline phosphatase activity; and blood flow diversion to the kidneys. The GFR increased significantly in both groups despite decreased CO, mean arterial pressure, and absolute RBF variables during anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Carprofen administered IV before anesthesia did not cause detectable, significant adverse effects on renal function during medetomidine-propofol-isoflurane anesthesia in healthy Beagles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号