首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
耐氟喹诺酮类鸡源性沙门氏菌DNA旋转酶gyrA基因序列分析   总被引:1,自引:0,他引:1  
取临床分离的对5种氟喹诺酮类药物(环丙沙星、氧氟沙星、恩诺沙星、单诺沙星和沙拉沙星)均耐药的9株鸡源性沙门氏菌耐药株,提取其染色体DNA。设计引物gyrAF和gyrAR扩增其DNA旋转酶gyrA基因的氟喹诺酮类耐药决定区(QRDR),对PCR扩增产物进行测序及序列分析。与质控菌株相比,9株临床分离耐药株中只有菌株38和60的gyrA基因发生单碱基突变,菌株38的gyrA基因第371位碱基发生C→T突变,菌株60的gyrA基因第350位碱基发生A→C突变,两处突变均位于QRDR内,其余菌株的核苷酸未发生任何突变。菌株38的碱基突变导致gyrA基因第121位氨基酸发生R→C取代,即Arg→Cys;菌株60的碱基突变导致gyrA基因第114位氨基酸发生M→L取代,即Met→Leu。上述结果提示,gyrA基因QRDR突变并非沙门氏菌耐药性产生的主要原因。  相似文献   

2.
采用常规PCR法,以雏鸡沙门氏菌NCTC5776作为质控菌株,取临床分离的对5种氟喹诺酮类药物(环丙沙星、氧氟沙星、恩诺沙星、单诺沙星和沙拉沙星)均耐药的9株鸡源性沙门氏菌耐药株,提取其染色体DNA.设计引物parCF和parCR、parEF和parER,分别扩增菌株拓扑异构酶IVparC基因和parE基因的氟喹诺酮类...  相似文献   

3.
养殖场分离的耐氟喹诺酮类药物的大肠杆菌基因突变研究   总被引:2,自引:0,他引:2  
【目的】探讨从养殖场动物、环境和饲养员分离的大肠杆菌的gyrA 和parC 基因突变特征。【方法】用琼脂稀释法测定环丙沙星和恩诺沙星对菌株的最小抑菌浓度。PCR扩增gyrA 和parC 基因的喹诺酮耐药决定区,扩增的片段长度分别为525 bp和487 bp,PCR产物直接测序。【结果】在63株突变株中,在GyrA 亚基发生的氨基酸替代有Ser83→Leu(62株)和Asp87→Asn(52株)、Asp87→Tyr(2株)、Asp87→His(2株);ParC 亚基的氨基酸替代有Ser80→Ile(47株)、Ser80→Arg(2株)和Glu84→Val(3株)、Glu84→Lys(4株)、Glu84→Gly(5株)、Glu84→Ala(1株)。环丙沙星对菌株的MIC小于0.125μg·ml-1时,GyrA和ParC亚基均没有任何变异;环丙沙星的MIC为0.125~0.25 μg·ml-1时,GyrA亚基出现单一氨基酸替代;环丙沙星的MIC为0.5~32μg·ml-1时,出现GyrA 83位和87位双替代或者GyrA83和ParC80位双替代;环丙沙星的MIC为4~128μg·ml-1,发生GyrA 双替代和ParC单替代;环丙沙星的MIC在16~128μg·ml-1,发生GyrA双替代和ParC 双替代。【结论】不同来源的耐氟喹诺酮类药物的大肠杆菌GyrA和ParC具有多种氨基酸替代类型,而且GyrA和ParC突变位点的数量与菌株对氟喹诺酮类耐药水平呈正相关。  相似文献   

4.
鸭源大肠杆菌对氟喹诺酮类耐药机制的研究   总被引:1,自引:0,他引:1  
目的:分析鸭源大肠杆菌对喹诺酮类药物耐药机制。方法:微量肉汤稀释法测定4种喹诺酮类药物对22株鸭源大肠杆菌分离菌及恩诺沙星诱导耐药菌的抗菌活性,并通过PCR和DNA测序检测DNA促旋酶和拓扑异构酶Ⅳ基因(gyrA、gyrB、parC、parE)突变情况。结果:22株分离菌及诱导菌均扩增出目的片段,有18株菌对喹诺酮类药物耐药,耐药率约为82%。基因测序及分析表明:在9个测序菌株中,分别有5、2、6和7株出现gyrA、gyrB、parC和parE碱基突变;其中,gyrA基因突变,gyrB与parC或parE基因同时突变与耐药表型一致,3株仅有parC或parE基因突变的菌株并不明显耐药。gyrA基因突变均为双突变(Ser104→Leu和Asp108→Asn)。结论:鸭大肠杆菌对喹诺酮类药物的耐药严重,其主要机制是喹诺酮类耐药决定区(QRDR)的基因突变,特别是多个位点同时突变导致高水平耐药。  相似文献   

5.
人工诱导猪链球菌氟喹诺酮耐药株的靶位突变分析   总被引:1,自引:0,他引:1  
以4株临床分离的对环丙沙星和恩诺沙星敏感的猪链球菌2型菌株为研究对象,采用体外递增药物浓度的方法分别诱导了其对环丙沙星和恩诺沙星耐药的菌株,按CLSI推荐方法测定了环丙沙星和恩诺沙星对亲本敏感株和诱导耐药株的MIC,测定了亲本株和诱导耐药株的生长曲线,并采用PCR和基因测序的方法分析了诱导耐药株的DNA回旋酶(GyrA和GyrB)和拓扑异构酶Ⅳ(ParC和ParE)耐药决定区(QRDR)的基因突变和氨基酸序列变化.结果表明:浓度递增法成功诱导了猪链球菌对环丙沙星和恩诺沙星耐药性,其MIC分别由05 mg·L-1上升至128 mg·L-1;与敏感株比较,恩诺沙星与环丙沙星诱导的耐药菌在gyrA和gyrB,或parC和parE耐药决定区的氨基酸序列有突变,除了已报道的与氟喹诺酮耐药相关的ParC的Ser79Phe,GyrA的Ser81Arg,GyrB的Asp315Asn、Ser285Leu和Glu354Lys及ParE的Pro278Ser点突变外,在诱导菌中还出现了一些不曾报道的突变位点和氨基酸缺失,如GyrA的Gln118His和ParE的Asn297Tyr突变,GyrB的288~291位和ParC的62位氨基酸缺失.结果提示:逐步增加药物浓度可以诱导猪链球菌对氟喹诺酮类抗菌药耐药性,并导致主要靶位发生突变.  相似文献   

6.
Nine strains resistant to five fluoroquinolones (Ciprofloxacin, Ofloxacin, Enrofloxacin, Danofloxacin,Sarafloxacin) were isolated from clinical samples and extracted the chromosomal DNA of these strains. Designed primers to amplify the Quinolone-resistance-determining region (QRDR) of gyrB gene, then the PCR products were cloned and the sequence was analyzed. In comparison with the standarded strain NCTC5776, no mutation was found in the QRDR of gyrB gene of all resistant strains. The result indicated that the QRDR of gyrB has little relationship with fluoroquinolone resistance to salmonella.  相似文献   

7.
耐药性体外传递和耐药菌体内生存选择性研究   总被引:1,自引:0,他引:1  
 【目的】为了进一步验证GyrA基因突变与氟喹诺酮耐药性的关系,阐明与染色体无关的细菌耐药性或耐药基因垂直传递和水平传递特点,阐明控制抗菌药使用对控制细菌耐药性的作用。【方法】用PCR方法扩增了细菌GyrA和ParC基因;用耐四环素(TE)、氨苄青霉素(AMP)、复方新诺明(SXT)的大肠杆菌做供体菌,对TE、AMP、SXT敏感的大肠杆菌作受体菌,进行了体外结合传递试验;用耐药菌株在营养琼脂上垂直传递20代;在2组不携带耐药菌的SPF鸡消化道内分别接种多重耐药大肠杆菌和沙门氏菌,接种后混合饲养。【结果】发现耐环丙沙星(CIP)和恩诺沙星(ENR)菌株的GyrA基因表达的氨基酸第73和78位发生改变,parC基因表达的氨基酸没有变化;对TE、AMP、SXT的抗性能够在大肠杆菌之间水平传递,TE的结合传递频率为3×10-7;连传20代后菌株耐药性不变;耐药菌接种后3 d,2组鸡均分离到接种的菌株,但随时间推移,耐环丙沙星的菌株逐渐减少,23 d后消失。【结论】表明细菌对氟喹诺酮药的耐药表型与GyrA基因突变密切相关;细菌的非染色体耐药基因既能水平传播又能垂直传递,耐药菌能在鸡群中迅速扩散,但如果没有抗菌药的压力,又会很快从宿主体内消除。  相似文献   

8.
鸡源肠杆菌质粒介导喹诺酮类耐药基因检测   总被引:7,自引:4,他引:3  
 【目的】对广东地区分离得到的鸡源肠杆菌进行质粒介导喹诺酮类耐药(PMQR)基因检测。【方法】采用纸片扩散法对84株鸡源肠杆菌临床分离株进行27种抗菌药物的敏感性测定。通过PCR检测质PMQR基因qnr、qepA和aac(6′)-Ib-cr。研究PMQR基因阳性菌株染色体gyrA、gyrB、parC、parE基因喹诺酮耐药决定突变区(QRDRs)的变异情况。【结果】84株鸡源肠杆菌对兽医临床常用的恩诺沙星、氟罗沙星、氨苄西林、复方新诺明、强力霉素以及利福平、链霉素、罗红霉素的耐药率很高,且为多重耐药;对氨苄西林/舒巴坦、氨曲南、多粘菌素E和头孢氨苄的敏感性高。在84株鸡源肠杆菌中检测到1株同时携带qnrB和aac(6′)-Ib-cr基因的肺炎克雷伯氏杆菌GDK05,整个qnrB基因的阅读框架与GenBankTM中的qnrB6一致,同时GDK05在gyrA基因的QRDR出现83位S→I变异,gyrB、parC、parE基因的QRDRs没有检测到变异。【结论】广东地区集约化养殖场鸡源肠杆菌对兽医临床常用抗菌药物耐药严重。本研究首次在兽医临床上检测到1株同时携带qnrB6和aac(6′)-Ib-cr基因的鸡源肺炎克雷伯氏菌。PMQR机制的出现预示着喹诺酮类耐药很可能会在兽医临床上更加快速而广泛地传播。  相似文献   

9.
【目的】了解我国耐喹诺酮类致病性嗜水气单胞菌主要毒力基因及引起耐药基因的突变情况,为致病性嗜水气单胞菌的防治及毒力基因和耐喹诺酮类药物机制的研究提供参考依据。【方法】通过计算机检索中国知网(CNKI)数据库、万方数据库、维普(VIP)中文科技期刊数据库、读秀知识库等,检索时限均从建库至2016年4月,查找收集有关嗜水气单胞菌对喹诺酮类药物耐药机制研究及其毒力基因、致病机理的相关文献,采用Cochrane协作网发布的RevMan 5.3进行常规Meta分析,以加拿大卫生药品技术总署编写的ITC软件进行间接比较Meta分析。【结果】最终纳入31篇文献,其中有19篇检测了致病菌株的毒力基因,含457株菌株;11篇检测了致病菌株的耐药基因,共101株菌株;8篇检测了耐药菌株的耐药基因突变位点,共88株菌株。我国致病性嗜水气单胞菌毒力基因的检出率为:astA基因91.30%、altA基因80.42%、aerA基因72.77%、hlyA基因66.85%、actA基因62.13%、ahpA基因56.18%、ahaI基因53.04%。淮河以北地区主要以hlyA基因为主,检出率(67.31%)显著高于淮河以南地区(P<0.05,下同),且高于全国平均检出率;淮河以南地区主要以actA基因为主,检出率(93.59%)显著高于淮河以北地区,也高于全国平均检出率。质粒介导的耐药基因检出率为:qnrB基因50.00%、qepA基因32.00%、qnrS基因27.91%、qnrA基因6.98%、qnrC和qnrD基因未检出。 gyrA83位点单突变检出率显著高于gyrA83、parC87双位点突变检出率[OR=0.49,95% CI(0.08,3.09),P=0.008]。【结论】我国致病性嗜水气单胞菌的分子检测方法为:淮河以南地区以毒力基因actA和aerA为致病性强的判断标准,淮河以北地区以毒力基因hlyA和aerA为致病性强的判断标准。目前我国耐喹诺酮类嗜水气单胞菌的基因突变位点主要是gyrA83单位点突变和gyrA83、parC87双位点突变。  相似文献   

10.
Ⅰ型马立克氏病强弱毒株Meq基因的克隆与序列分析   总被引:3,自引:0,他引:3  
[目的]为获得MDV-1强弱毒株Meq基因序列的差异。[方法]根据GENE BANK登录的马立克氏病毒Meq基因序列,设计一对引物,采用PcR技术对MDV—Ⅰ型国内商用CVI988/Rispens疫苗株和参考强毒京-1(BJ-1)株的Meq基因进行了扩增,并将扩增产物提纯后克隆到pcDNA3.1(+)上,进行酶切鉴定及测序验证。[结果]CVI988疫苗株和BJ-1强毒株的Meq基因开放阅读框(ORF)长度分别为1200和1197bp。通过与国际标准强毒GA株Meq基因进行比较,BJ-1株和CVI988株Meq基因中分别有一段180和177bp的插入序列,第211住核苷酸由G变为T,导致第71位氨基酸由丙氨酸A变为丝氨酸S;同时,CVI988株Meq基因第228位核苷酸由A变为G,导致第77位氨基酸由赖氨酸K变为谷氨酸E。此外,与BJ-1株相比,CVI988株Meq基因在576~578bp之间缺失3个碱基(ACC),并导致第193位脯氨酸P的缺失,该突变发生在一个多脯氨酸重复区域内。[结论]MDV-1强弱毒株Meq基因序列存在明显差异,为从其分子水平进行区分及生物学功能的研究奠定了基础。  相似文献   

11.
The molecular basis of the sparse fur mouse mutation   总被引:30,自引:0,他引:30  
The ornithine transcarbamylase-deficient sparse fur mouse is an excellent model to study the most common human urea cycle disorder. The mutation has been well characterized by both biochemical and enzymological methods, but its exact nature has not been revealed. A single base substitution in the complementary DNA for ornithine transcarbamylase from the sparse fur mouse has been identified by means of a combination of two recently described techniques for rapid mutational analysis. This strategy is simpler than conventional complementary DNA library construction, screening, and sequencing, which has often been used to find a new mutation. The ornithine transcarbamylase gene in the sparse fur mouse contains a C to A transversion that alters a histidine residue to an asparagine residue at amino acid 117.  相似文献   

12.
Increasing antimicrobial resistance (AR) has become a severe problem of public health in the world, whereas control of the AR of bacteria will be based on investigation of the AR mechanism. Furthermore, understanding the existent selectivity of AR organisms from animals can prevent the emergence and diffusion of AR effectively. PCR amplifications of gyrA and parC genes have been performed for detecting fluoroquinolones-resistance (FR) genes. A conjugational transfer test has been carried out using a donor which is resistant to tetracycline (TE), ampicillin (AMP), sulfamethoxazole-trimethoprim (SXT), and a recipient which is sensitive to TE, AMP, and SXT. The AR strains have been passed 20 passages. Two groups of chicken inoculated multi-AR Escherichia coli (E. coli) and multi-AR Salmonella, respectively, are mix-fed. The result shows that amino acid codons of Ser-83 and Asp-87 are mutations from gyrA and there are no mutations from parC genes in all the FR strains. Resistance to TE, AM, and SXT can transfer among E. coli and the conjugal transfer frequency of TE is 3×10^-7. AR can inherit in 20 passages at least. The multi-AR E. coli and Salmonella can be isolated from all chickens three days after inoculation but CIP-resistant strains decrease during the time run out and disappear at 23 days after inoculation. The results indicate that the mutations of gene gyrA are correlative with the FR phenotype. AR genes that are not connected to the chromosome can transfer horizontally and vertically. AR bacteria can diffuse quickly and eliminate naturally from the host if the chicken is not under the pressure of this antibiotic.  相似文献   

13.
绵羊BMP15和GDF9基因多态性与产羔性能间的关系   总被引:1,自引:0,他引:1  
本研究采用PCR-RFLP和PCR-SSCP技术分别对骨形态发生蛋白15(BMP15)基因FecXG突变和FecXL突变、生长分化因子9(GDF9)基因外显子Ⅰ、外显子Ⅱ部分核苷酸多态性及其与小尾寒羊、中国美利奴(新疆型)绵羊多胎品系、肉用品系、体大品系、萨福克、无角陶赛特、中国美利奴(新疆型)和德国肉用美利奴产羔数间的关系进行了分析,结果发现:(1)利用PCR-RFLP技术分析了小尾寒羊等8个品种BMP15 FecXG突变,在该位点未发现多态性;(2)利用PCR-SSCP技术分析了小尾寒羊等8个品种BMP15 FecXL所在区域的多态性,在BMP15基因存在G1047A转换,但并不引起BMP15氨基酸序列的改变,该突变与FecXL(G962A)不同,是在BMP15中新发现的一个突变。G1047A突变对小尾寒羊等7个品种的平均产羔数无显著影响;(3)在小尾寒羊等8个群体的GDF9外显子Ⅰ均未发现多态性;(4)在小尾寒羊等8个群体中发现存在G4突变,该突变对绵羊平均产羔数均无显著影响。以上结果提示:上述2个基因的4个分析区域不宜用于小尾寒羊等7个品种绵羊多羔性状的分子标记位点。  相似文献   

14.
[目的]了解广西猪瘟病毒(CSFV)流行毒株的变异规律及其与疫苗株的基因差异,为正确选择猪瘟疫苗和防制广西猪瘟提供参考依据.[方法]以广西本地的阳性猪瘟病料为研究对象,应用RT-PCR扩增CSFV的E2基因,经克隆、测序后用DNASTAR软件对其序列进行比对分析,并绘制遗传进化树.[结果]从41份疑似猪瘟病料中共扩增出4个阳性样品的E2基因(1140 bp),经序列比对分析发现,扩增获得的4株CSFV毒株(GXGG1、GXLC1、GXLC2和GXNN1)与兔化弱毒株(HCLV)、Shimen强毒株的核苷酸同源性为82.1%~82.3%和82.9%~83.4%、其推导氨基酸同源性为88.4%~89.2%和88.9%~90.0%,4株毒株间的E2基因核苷酸及其推导氨基酸同源性分别为90.8%~99.6%和94.2%~99.5%,且均属于基因群Ⅱ;E2基因推导的氨基酸表明,E2蛋白空间结构及抗原结构的氨基酸位点693Cys、737Cys、792Cys、818Cys、828Cys、856Cys、833Pro、834Thr、837Arg均未发生变异,但其单抗识别位点G713E、N729D、K734R发生变异.[结论]近年来广西CSFV流行毒株的变异未出现较大差异.与HCLV株、Shimen强毒株亲缘关系较远,但与Paderborn株、GXWZ02株亲缘关系较近.  相似文献   

15.
【目的】对7个柑橘衰退病毒(CTV)株系进行遗传变异研究,明确寄主甜橙和柚中CTV强弱毒株系p20的变异水平。【方法】运用RT-PCR、克隆及测序等技术建立CTV p20种群,并借助MEGA6构建单倍型系统发育树,运用软件DNAStar对两种寄主中CTV强弱毒种群的遗传结构、变异水平进行分析,运用DnaSP软件对各种群进行单倍型多样性、核苷酸多样性分析和中性检验分析。【结果】构建了7个CTV p20种群,由162条序列构成,包含11个单倍型,单个种群有1个或更多单倍型出现。序列分析发现,来自不同种群的单倍型对应的原始核苷酸序列一致性为88.2%—100.0%,对应的氨基酸序列的一致性为92.3%—100.0%,最低的氨基酸序列一致性发生在CT23-1和CT9-2之间;其中单倍型PeraIAC-4、CT22和CT9-1共有50条序列,对应的原始核苷酸序列一致性为100.0%,属优势单倍型,与标准株系T36亲缘关系较近;单倍型多样性最丰富的是甜橙种群PeraIAC,单倍型多样性为0.800,而单倍型多样性最低的是柚种群CT22,单倍型多样性为0.170;相比柚种群的单倍型多样性(0.170—0.552)和核苷酸多样性(0.00032—0.05919),甜橙种群具有更为丰富的单倍型多样性(0.513—0.800)和核苷酸多样性(0.04208—0.05677)。系统发育树分析表明,来自甜橙的分离株种群结构复杂,甜橙种群中检测到的单倍型与标准株系T30、T36、VT和T3均有相关性;与标准株系T3相距很近的CT31-2与优势单倍型在系统发育树上距离最远,对应的原始核苷酸序列一致性仅为88.3%。中性检验结果表明,CTV甜橙种群趋于平衡或收缩状态,而CTV柚种群除CT23外则趋于扩张状态;其中TR-514Y、CT31和CT23种群的Tajima’s D值、Fu和Li’s D*值以及Fu和Li’s F*值均为正值且达到显著水平,而CT9种群的Tajima’s D值、Fu和Li’s D*值以及Fu和Li’s F*值均为负值且达到显著水平。运用DnaSP软件对各种群进行重组分析表明,在各种群中均未检测到重组事件发生。种群变异分析发现,各种群突变克隆百分比在0—30.8%,碱基突变频率在0—7.706×10~(-4),其中CTV甜橙强毒种群有最高的突变克隆百分比(30.8%),最高的碱基突变频率(7.706×10~(-4)),最多的碱基突变数量(11个)和最多的突变位点(7个);CTV甜橙弱毒种群的突变克隆百分比和碱基突变频率均明显低于甜橙强毒种群,CTV柚弱毒种群的突变克隆百分比和碱基突变频率略低于柚强毒种群。碱基突变类型分析发现碱基突变以碱基替代为主,其中A→G突变为优势类型,仅在柚强毒种群CT3的156和157位点间检测到一个碱基插入突变类型,为碱基A插入,未检测到碱基缺失突变类型。【结论】在寄主甜橙和柚中CTV强弱毒p20种群结构及变异存在差异,CTV甜橙种群有着更复杂的种群结构和更高的种群变异水平,且CTV强毒种群变异更大。  相似文献   

16.
辽宁省稻瘟病菌无毒基因型鉴定及分析   总被引:1,自引:2,他引:1  
【目的】鉴定稻瘟病菌(Magnaporthe oryzae)的无毒基因型,了解无毒基因在不同地区流行菌株中的分布情况,为品种布局提供参考。【方法】根据已经克隆且与稻瘟病菌致病性相关的6个无毒基因序列设计引物,选取辽宁省稻瘟病常发区的26株稻瘟病菌单孢菌株,提取各菌株DNA样本作为模板,进行PCR扩增。通过琼脂糖凝胶电泳及PCR产物测序,对6个无毒基因PCR产物进行碱基和氨基酸序列的分析比较。对琼脂糖凝胶电泳未出条带的,设计不同引物进行验证性试验。【结果】在PCR产物电泳检测中,Avr1-CO39、Avr-pia和Avr-pii没有产物条带,对这3个无毒基因设计验证引物,其PCR产物电泳检测仍没有条带出现,其结果证明辽宁省各水稻主产区流行稻瘟病菌中多不携带Avr1-CO39、Avr-pia和Avr-pii;对于其他3个无毒基因 AvrPiz-t、Avr-pik和Avr-pita则有特异性扩增产物,说明这3个无毒基因在各稻区稻瘟病菌中以不同突变类型及不同频率出现。其中,与Pi2、Pi9和Piz-t对应的AvrPiz-t,分别在22个菌株的中被检测到,且有21个菌株的序列与其序列一致,说明该基因遗传相对稳定,也间接证明携带Pi2、Pi9和Piz-t 的水稻品种在辽宁地区的广谱抗性;与基因组序列不同的16号菌株,在DNA序列192 bp处发生一个单碱基C的缺失,从而导致移码突变,且碱基突变导致氨基酸序列至72位氨基酸时提前终止,而使该基因编码的蛋白质失去无毒基因的功能。与Pik、Pik-p、Pik-m和pik-s对应的Avr-pik,电泳检测结果表明各菌株均有特异性条带出现,经测序验证等位基因序列分为4种类型(B、D、F、G),其中12个菌株携带可为Pik或其等位基因Pik-m和pik-p所识别的D类型;9个菌株携带B类型,该等位基因曾被报道,但是否具有无毒基因的功能仍未验证;另有2个菌株携带F类型等位基因,该基因为首次发现,并分别出现在丹东和盘锦地区。其特点在于与D类型基因间存在143(A/G)的碱基差异,氨基酸序列翻译结果显示其为错义突变,即48(G/D);而其余3个菌株携带G类型等位基因,该基因亦属首次发现,且仅出现在抚顺新宾地区,碱基序列与D类型存在168(G/A)的差异,导致翻译提前终止,基因功能丧失。对于Avr-pita,26个菌株特异性扩增产物一致,但测序检测到5种等位基因类型,且均与Avr-pita有差异,碱基序列的变化多导致错义突变。这5种等位基因的氨基酸序列之间差异由3个氨基酸位点的差异所致,分别为83(D/N)、192(Y/C)和207(K/R),3处突变均在基因结构域范围内,几种等位基因均已见报道。【结论】辽宁稻区流行稻瘟病菌中Avr-pik、AvrPiz-t和Avr-pita分布较为广泛,选育及推广携带相应抗病基因的水稻品种可减轻稻瘟病的危害。  相似文献   

17.
【目的】鉴定不同地区谷瘟病菌(Magnaporthe oryzae)所含无毒基因的类型,确定无毒基因在菌株中的分布及变异情况,为深入研究谷瘟病菌无毒基因变异机制提供参考。【方法】从中国北方谷子主产区不同区域内采集并分离76个谷瘟病菌的单孢菌株,提取其基因组DNA,根据目前已成功克隆的稻瘟病菌的7个无毒基因的核苷酸序列设计特异性引物,进行PCR扩增及电泳检测,并对部分菌株的无毒基因进行测序分析。【结果】在76个谷瘟病菌中,无毒基因ACE1、Avr-pita、Avr1-CO39和AvrPiz-t的扩增率为100%,无毒基因Avr-pik、Avr-pia和Avr-pii的扩增率分别为63.2%、42.1%和21.1%。在谷瘟病菌菌株P11和P34中,Avr1-CO39的扩增条带较预期片段大490 bp,测序结果发现菌株P11和P34中的Avr1-CO39基因序列完全一致,均在启动子区插入了490 bp核苷酸,该插入序列与non-LTR retrotransposon: Mg-SINE的相似度达99.16%。Avr-pita的测序结果发现,谷瘟病菌菌株中的Avr-pita基因序列变异较为丰富,其变异形式主要为单核苷酸的变异,包括单碱基的插入、缺失及多位点的SNP。Avr-pia的变异类型主要为整个无毒基因的缺失,经测序验证等位基因序列分为4种类型。Avr-pia-A与参考序列(AB498873.1)一致,包含10个菌株;Avr-pia-B包含20个菌株,在-116、-109和-16 bp处分别存在C/T、G/T和C/A变异,但与参考序列的CDS区序列相同;Avr-pia-C仅包含菌株P10,在+150 bp处存在T/G变异,但为同义突变;Avr-pia-D仅包含菌株P18,在+212 bp位点处存在C/T变异,导致该变异位点由编码苏氨酸突变为编码异亮氨酸。谷瘟病菌Avr-pii包含3种等位基因类型。Avr-pii-A型与参考序列(AB498874.1)一致,共包含14个菌株;Avr-pii-B型和Avr-pii-C型分别在+139和+64 bp处存在A/G变异,核苷酸的变异导致该位点由编码苏氨酸改为丙氨酸。Avr-pii-B型和Avr-pii-C型变异均为首次报道。单元型分析表明,AG2包含23个菌株,占供试菌株的30.2%,为优势单元型。【结论】明确了不同地区的谷瘟病菌中无毒基因ACE1、Avr-pita、Avr1-CO39和AvrPiz-t不存在地理来源的差异;而无毒基因Avr-pik、Avr-pia和Avr-pii在各地分布有差异。谷瘟病菌AG2单元型为优势单元型,其次是单元型AG1和AG5。  相似文献   

18.
A pair of frame shift mutations in the lysozyme gene of bacteriophage T4 results in the substitution of a glutamyl-tyrosyl sequence for the asparagine residue that is the penultimate amino-terminal amino acid in the lysozyme of the wild-type strain. One of the mutations has been identified as the insertion of two bases, the other as the insertion of a single base.  相似文献   

19.
The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perform PCR amplification. A cDNA encoding partial sodium channel gene was cloned from the fenvalerate-resistant and -susceptible strains. There were two nucleotide acid differences between fenvalerate-resistant strain and -susceptible strain, resulting in an amino acid mutation, Met→Leu. It is predicted that the mutation is related to the cotton aphid resistance to fenvalerate.  相似文献   

20.
利用RT-PCR技术对禽流感病毒新疆株A/Duck/XJ/4的M基因进行了扩增与克隆,得到了全长核苷酸序列为1 016 bp的M基因,序列分析表明,M基因最大的开放阅读框位于19~1 000碱基;M1蛋白位于19~777碱基,编码252个氨基酸.M2蛋白位于19~44碱基和733~1 000碱基,编码97个氨基酸.同源性分析显示,A/Duck/XJ/4 株M基因的核苷酸序列和氨基酸序列与所选H5N1亚型的参考毒株以及所选不同HA亚型的参考毒株均有很高的同源性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号