首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the magnetic resonance (MR) imaging characteristics of bone marrow in the pelvis and femur of normal, young dogs. Six greyhounds were imaged at 4, 8, 12, and 16 months of age. Sagittal images of the femur and dorsal images of the pelvis were obtained with T1-weighted, fast spin echo (FSE) T2-weighted, and short tau (T1) inversion recovery (STIR) sequences. On T1-weighted images areas with high signal intensity, similar to fat, included the femoral heads, mid-diaphysis of the femur, femoral condyles, and the body of the ilium. T2-weighted images were characterized by uniform intermediate signal intensity (less than fat, but greater than muscle) in the femoral head, high signal intensity, similar to fat, in the mid-diaphysis of the femur and ilial body, and intermediate to high signal intensity in the femoral condyle. By 16 months high signal intensity was seen in the diaphysis and distal metaphysis on both T1- and T2-weighted images. On STIR images the femoral head had intermediate to low signal intensity, compared with muscle. The mid-diaphysis of the femur was of low signal intensity, similar to fat, and the body of the ilium had mixed signal intensity at all ages. The femoral condyle had inhomogenous, intermediate to low signal intensity at 4 months, but was of uniform low signal intensity at 8-16 months.  相似文献   

2.
The diagnosis of discospondylitis is based mainly on diagnostic imaging and laboratory results. Herein, we describe the magnetic resonance imaging (MRI) findings in 13 dogs with confirmed discospondylitis. In total there were 17 sites of discospondylitis. Eleven (81.1%) of the dogs had spinal pain for >3 weeks and a variable degree of neurologic signs. Two dogs had spinal pain and ataxia for 4 days. Radiographs were available in nine of the dogs. In MR images there was always involvement of two adjacent vertebral endplates and the associated disk. The involved endplates and adjacent marrow were T1‐hypointense with hyperintensity in short tau inversion recovery (STIR) images in all dogs, and all dogs also had contrast enhancement of endplates and paravertebral tissues. The intervertebral disks were hyperintense in T2W and STIR images and characterized by contrast enhancement in 15 sites (88.2%). Endplate erosion was present in 15 sites (88.2%) and was associated with T2‐hypointense bone marrow adjacent to it. In two sites (11.8%) endplate erosion was not MR images or radiographically. The vertebral bone marrow in these sites was T2‐hyperintense. Epidural extension was conspicuous in postcontrast images at 15 sites (88.2%). Spinal cord compression was present at 15 sites (88.2%), and all affected dogs had neurologic signs. Subluxation was present in two sites (11.8%). MRI shows characteristic features of discospondylitis, and it allows the recognition of the exact location and extension (to the epidural space and paravertebral soft tissues) of the infection. Furthermore, MRI increases lesion conspicuity in early discospondylitis that may not be visualized by radiography.  相似文献   

3.
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.  相似文献   

4.
When ex vivo magnetic resonance (MR) imaging studies are undertaken, specimen conservation should be taken into account when interpreting MR imaging results. The purpose of this study was to assess MR changes during time in the anatomic structures of the equine digit on eight cadaver limbs stored at 4°C. The digits were imaged within 12 h after death and then after 1, 2, 7, and 14 days of refrigeration. After the last examination, four feet were warmed at room temperature for 24 h and reimaged. Sequences used were turbo spin echo (TSE) T1, TSE T2, short tau inversion recovery (STIR), and double-echo steady state (DESS). Images obtained were compared subjectively side by side for image quality and signal changes. Signal-to-noise ratio (SNR) was measured and compared between examinations. There were no subjective changes in image quality. A mild size reduction of the synovial recesses was detected subjectively. No signal change was seen subjectively except for bone marrow that appeared slightly hyperintense in STIR and slightly hypointense in TSE T2 sequence after refrigeration compared with day 0. Using quantitative analysis, significant SNR changes in bone marrow of refrigerated limbs compared with day 0 were detected in STIR and TSE T2 sequences. Warming at room temperature for 24 h produced a reverse effect on SNR compared with refrigeration with a significant increase in SNR in TSE T2 images. After 14 days of refrigeration a statistically significant decrease of SNR was found in bone marrow in TSE T2 and DESS sequences. The SNR in the deep digital flexor tendon was not characterized by significant change in SNR.  相似文献   

5.
The purpose of this study was to describe the appearance of the femoral head of normal, young, small breed dogs, and dogs with avascular necrosis using low-field (0.3 T) magnetic resonance (MR) imaging. Images of the femoral heads were obtained in the dorsal plane, and included T1-weighted spin-echo, T2-weighted fast spin-echo, fast spin echo-inversion recovery, and fluid attenuated inversion recovery pulse sequences. MR imaging features of the asymptomatic femoral heads and necks included uniform high signal intensity compared with muscle on T1- and T2-weighted images. There was either uniform enhancement or no enhancement on postcontrast T1-weighted images. The MR imaging findings of dogs affected with avascular necrosis differed from those of asymptomatic dogs. Typically, the affected dogs had inhomogeneous intermediate to low-signal intensity within the femoral head and neck compared with muscle on T1-weighted images, inhomogeneous enhancement of the femoral head and/or neck on postcontrast T1-weighted images, and inhomogeneous low- to high- signal intensity within the femoral head and neck on T2-weighted images.  相似文献   

6.
We describe the clinical, imaging, and necropsy findings of two horses with severe injury of the collateral ligaments of the distal interphalangeal (DIP) joint diagnosed using magnetic resonance (MR) imaging. In MR images it was possible to examine the collateral ligaments of the DIP joint from the origin at the middle phalanx to the insertion on the distal phalanx. Both horses in this report had abnormal high signal intensity within the collateral ligaments of the DIP joint, and one horse had abnormal high signal intensity within the bone of the distal phalanx on short tau inversion recovery (STIR) and T2-weighted imaging sequences. High signal intensity on STIR and T2-weighted images represents abnormal fluid accumulation indicative of inflammation, within ligament, tendon, or bone on these imaging sequences. Abnormalities were confirmed on necropsy in both horses. Injury of the collateral ligaments of the DIP joint should be considered as a source of pain in horses with lameness localized to the foot.  相似文献   

7.
An 8-year-old Yorkshire terrier developed acute onset coma and seizure after cranial trauma. Intracranial hemorrhage was suspected from the clinical signs and history. Low-field magnetic resonance (MR) imaging revealed a round mass within the right cerebral hemisphere, compressing the right lateral ventricle and displacing the longitudinal fissure to the left. The lesion was hypointense on T1-weighted images and hyperintense on T2-weighted images, consistent with an acute hemorrhage. MR imaging was performed every 24 h for 6 days from 1 h after the injury, and then on day 14 of hospitalization. With time, the signal intensity changed to hyperintense on Ti-weighted images. On T2-weighted images the center of the mass changed to hypointense, and then to hyperintense with a hypointense rim. These changes of signal intensity were related to hemoglobin oxidation.  相似文献   

8.
Magnetic resonance (MR) imaging is important in diagnosing musculoskeletal injuries in horses. However, there is still much to learn regarding the significance of lesions identified in equine MR images. Of particular importance is the clinical significance of signal change as a function of pulse sequence. We hypothesized that a resolution of tendon, ligament, and bone marrow lesions on short‐tau inversion recovery (STIR) images would be associated with a return to soundness, and that a persistence of tendon and ligament lesions on only T1‐weighted (T1w) gradient recalled echo (GRE) images would not be associated with persistent lameness. The medical records and MR images of 27 horses that had a hyperintense lesion in initial STIR MR images followed by a subsequent follow‐up MR imaging examination were reviewed. Horses whose tendon or ligament lesions had resolved on STIR images at the time of the recheck examination were significantly more likely to be sound than horses whose lesions persisted on STIR images (P=0.039). This association did not exist in horses with bone marrow lesions (P=1.00). Horses whose tendon or ligament lesions persisted only on T1w GRE images were no more likely to be sound than horses whose lesion persisted on at least one other sequence type (P=0.26). However, the low number of horses included in this analysis may have precluded identification of a significant difference in lameness status. Tendon or ligament lesions visualized on STIR images may represent active lesions that may contribute to lameness in the horse.  相似文献   

9.
A bone bruise is a magnetic resonance (MR) imaging sign thought to signify acute traumatic microfracture of trabecular bone with hemorrhage and edema in the marrow that may occur without grossly visible disruption of the adjacent cortices or overlying cartilage. In approximately 75% of people with acute anterior-cruciate ligament tears, bone bruises are detected in characteristic locations within the femur and tibia and are best seen as high-signal lesions using fat-suppression sequences. We questioned whether this is a component of naturally acquired stifle lameness in dogs and obtained short-tau inversion recovery (STIR) images of six dogs with stifle lameness. High-signal STIR lesions were detected in five of six (83%) dogs and eight of 12 (67%) limbs. We observed these lesions deep to the intercondylar fossa of the femur and intercondylar eminence of the tibia, which are atypical locations in people. High-signal STIR lesions were detected in dogs with only synovitis, partial tear of the cranial cruciate ligament (CCL) and complete tear of the CCL. One of these lesions was seen in the lateral tibial condyle, a typical location in humans with acute anterior cruciate ligament tear. As the MR imaging appearance of stress fractures and bone bruises are similar, and the high-signal STIR lesions are at attachment sites of the CCL, this finding may be due to stress disease or other unknown causes, rather than bone bruising. High-signal STIR lesions may be a common sign in naturally acquired canine stifle disease, but the pathogenesis, prognostic and diagnostic values need further investigation.  相似文献   

10.
We describe the abnormal magnetic resonance (MR) imaging findings in the deep digital flexor tendon (DDFT) and distal sesamoid bone in horses with radiographic changes compatible with navicular syndrome. Thirteen postmortem specimens were examined using a 1.5-T magnetic field, with spin echo (SE) T1-weighted, turbo SE (TSE) proton density-weighted (with and without fat saturation), and fat saturation TSE T2-weighted sequences. The limbs were then dissected to compare the MR findings with the gross assessment and histologic examination of the DDFT and distal sesamoid bones. Tendonous abnormalities were detected by MR imaging in 12 DDFTs and confirmed at necropsy. Most tendon lesions were located at the level of the distal sesamoid bone and the proximal recess of the podotrochlear bursa. Tendon lesions were classified based on their MR imaging features as core lesions, dorsal lesions, dorsal abrasions, and parasagittal splits. Areas of increased MR signal in the DDFTs were characterized by tendon fiber disturbance and lack of continuity of the collagen fibers, foci of edema, hemorrhages, and formation of lakes containing eosinophilic plasma-like material or amphophilic material of low density. Bone marrow signal alterations in the distal sesamoid bone were seen in all digits. Two main phenomena were responsible for the abnormal signal, respectively, in T1-weighted (decreased signal) and in T2-weighted fat-suppressed images (increased signal): a decrease in the fat marrow content in the trabecular spaces and an increase in the fluid content. Histologic examination revealed foci of bone marrow edema, hemorrhage, necrosis, and fibrosis. Cyst formation and trabecular abnormalities (disorganization, thinning, remodelling) were also observed in areas of abnormal signal intensity. Increased bone density because of trabecular thickening induced a decrease in signal in all sequences.  相似文献   

11.
This study was conducted to assess time-sensitive magnetic resonance (MR) changes in canine blood using low-field MR. Arterial and venous blood samples were collected from eight healthy beagle dogs. Samples were placed in 5-mL tubes and imaged within 3 hours of collection at 1 day intervals from day 1 to day 30. The following sequences were used: T1-weighted (T1W), T2-weighted (T2W), fluid-attenuated inversion recovery (FLAIR), short tau inversion recovery (STIR), and T2-star gradient-echo (T2*-GRE). Visual comparison of the images revealed that four relatively homogenous blood clots and twelve heterogeneous blood clots developed. The margination of the clot and plasma changed significantly on day 2 and day 13. On day 2, heterogeneous blood clots were differentiated into 2 to 3 signal layers in the T2W, T1W, and especially the STIR images. Hypointense signal layers were also detected in the blood clots in STIR images, which have T2 hypo, FLAIR hypo, and T1 hyper intense signals. In all images, these signal layers remained relatively unchanged until day 13. Overall, the results suggest that hematomas are complex on low-field MRI. Accordingly, it may not be feasible to accurately characterize hemorrhages and predict clot age based on low-field MRI.  相似文献   

12.
Signal changes within the bone marrow adjacent to osteoarthritic joints are commonly seen on magnetic resonance (MR) images in humans and in dogs. The histological nature of these lesions is poorly known. In this study, we describe the MR imaging of bone marrow lesions adjacent to the stifle joints of dogs with experimental osteoarthritis over 13 months. Histology of the proximal tibia at the end of the study was compared with the last MR imaging findings. In five adult dogs, the left cranial cruciate ligament was transected. Post-operatively, MR imaging was performed at 1, 2, 3, 4, 6, 8, and 13 months. Dogs were euthanised after 13 months and histological specimen of the proximal tibia were evaluated. Bone marrow edema like MR imaging signal changes were seen in every MR examination of all dogs in one or more locations of the proximal tibia and the distal femur. Lesions varied in size and location throughout the whole study with the exception of constantly seen lesions in the epiphyseal and metaphyseal region at the level of the tibial eminence. On histology, hematopoiesis and myxomatous transformation of the bone marrow and/or intertrabecular fibrosis without signs of bone marrow edema were consistent findings in the areas corresponding to the MR imaging signal changes. We conclude that within the bone marrow, zones of increased signal intensity on fat suppressed MR images do not necessarily represent edema but can be due to cellular infiltration. Contrary to humans, hematopoiesis is seen in bone marrow edema-like lesions in this canine model of osteoarthritis.  相似文献   

13.
Spinal MR images acquired from canine patients over a 7-year period were reviewed for the presence of vertebral endplate changes. Seventy-five dogs with 76 distinct lesions were identified. Presumptive diagnoses fell into five categories: reactive endplate changes (10 dogs/13.2%), discospondylitis (29 dogs/38.2%), vertebral osteochondrosis (7 dogs/9.2%), intravertebral disc herniation (Schmorl's nodes) (4 dogs/5.3%), and fatty infiltration (26 dogs/34.2%). Fatty infiltration occurred significantly more often in small breed dogs (P < 0.001) and tended to be multifocal. The following features were observed in discospondylitis as well as in other nonfatty endplate pathologies: irregular endplates, endplate hyperintensity in T2w or STIR images, reduced endplate signal intensity in T1w SE, variable T1w GRE signal intensity, and endplate contrast enhancement. Overlap between MR characteristics of nonfatty endplate changes should prompt cautious evaluation of adjacent structures.  相似文献   

14.
Twenty-one dogs with confirmed tumors of the spinal cord or paraspinal tissues were imaged with magnetic resonance (MR) imaging. Anatomical location, location in relation to the dura and the medulla (spinal cord), and bone infiltration were assessed on the MR images and compared to findings at surgery or necropsy. Localization of tumors in the intradural-extramedullary compartment was not always possible. Bone infiltration was correctly assessed in all but one dog, and the anatomical locations involved were accurately determined in all dogs. Sagittal T2-weighted images were helpful to determine the anatomical location. Transverse T1-weighted images pre and post Gd-DTPA administration were helpful for additional localization and definition of tumor extension.  相似文献   

15.
In humans affected with inflammatory myopathies, regions of altered signal intensity are found on magnetic resonance (MR) images of affected muscles. Although electromyography (EMG) is more practical for muscle disease evaluation, and a muscle biopsy is the only manner in which a definitive diagnosis can be made, MR imaging has proven useful if a specific anatomic localization is difficult to achieve. Three dogs with focal inflammatory myopathy diagnosed with the assistance of MR imaging are discussed and the findings are compared with those found in humans. MR images of the affected muscles in each dog were characterized by diffuse and poorly marginated abnormal signal on T1- and T2-weighted images. Marked enhancement was noted in these muscles after contrast medium administration. An inflammatory myopathy was confirmed histologically in all three dogs. A good association existed between the MR images and muscle inflammation identified histopathologically. MR imaging may be a useful adjunctive procedure for canine inflammatory myopathies.  相似文献   

16.
Spinal epidural empyema is defined an accumulation of purulent material in the epidural space of the vertebral canal. Spinal epidural empyema should be considered as a differential diagnosis in dogs with pyrexia, spinal pain, and rapidly progressing myelopathy. Magnetic resonance (MR) imaging is the imaging test of choice in humans. Here, we describe the MR imaging features of five dogs with confirmed spinal epidural empyema. The epidural lesions appeared as high or mixed signal masses in T2-weighted (T2W) images. Increased signal within the spinal cord gray matter at the site of the lesion was detected in T2W images in all dogs. Two patterns of enhancement were detected on postcontrast T1-weighted (T1W) images. Mild to moderate peripheral enhancement was seen in three dogs and a diffuse pattern of enhancement was seen in one. Discospondylitis was identified in three dogs on T1W postcontrast images. Decompressive spinal surgery was performed in all dogs. Bacteria isolated from the abnormal epidural tissue were Enterobacter cloacae, coagulase-positive Staphylococci, Pasteurella multocida, and Escherichia coli. In one dog bacteria were not isolated. These MR imaging features, along with appropriate clinical signs, can allow prompt diagnosis and appropriate treatment planning.  相似文献   

17.
Lymphoma is one of the most common neoplasms in the dog. Despite its prevalence and the increasing use of advanced diagnostic imaging in veterinary patients only few reports of magnetic resonance imaging (MRI) findings in spinal lymphoma have been published to date. The purpose of this retrospective case series study was to describe the MRI findings in dogs with confirmed lymphoma affecting the spine and/or paraspinal soft tissues. Medical records were searched for patients that had MRI of the spine and a diagnosis of lymphoma during the period of 2005–2015. Data recorded from retrieved MRI studies were presence of focal or multifocal disease, structures involved, and signal characteristics on T2‐W, short tau inversion recovery (STIR), and T1‐W sequences prior to and following intravenous contrast medium administration. Six dogs met the inclusion criteria. Common findings included multifocal disease (4/6), vertebral involvement (5/6), spinal cord compression (4/6), and involvement of more than one spinal compartment (medullary cavity, vertebral canal, paraspinal soft tissues) (6/6). Vertebral changes were confined to the medullary cavity without evidence of cortical osteolysis. There was questionable involvement of the spinal cord in one case. All spinal and paraspinal lesions identified were T2‐W isointense to hyperintense, STIR hyperintense, T1‐W hypointense to isointense, and showed variable moderate to strong contrast enhancement. Additional lesions identified were enlarged intraabdominal lymph nodes, hepatomegaly, splenomegaly, and a splenic nodule. The STIR and T1‐W postcontrast sequences were subjectively the most useful in identification of the spinal and paraspinal lesions.  相似文献   

18.
To describe the signs that may be associated with intracranial inflammatory conditions, magnetic resonance (MR) images of 25 dogs that had inflammatory cerebrospinal fluid (CSF) were mixed with those of a control group of 40 dogs that had CSF negative for inflammatory disease and reviewed without knowledge of the clinical signs or diagnosis. CSF was considered inflammatory if the protein level was > 0.25 g/l and the white cell count was > 5 mm(-3). Abnormalities were found by MR imaging in 19 (76%) dogs with inflammatory CSF. Two dogs had focal lesions, 10 had multifocal lesions, and seven had diffuse lesions. Lesions affected all divisions of the brain. Mass effect was identified in seven (28%) dogs, including one that had a choroid plexus carcinoma. Lesions were hyperintense in T2-weighted images in 18 dogs and hypointense in T1-weighted images in six dogs. Multifocal or diffuse intraaxial lesions that were hyperintense in T2-weighted images were observed in 17 (68%) dogs with inflammatory CSF. Administration of gadolinium resulted in enhancement of intraaxial lesions in nine (36%) dogs and enhancement of meninges in seven (28%) dogs. Six (24%) dogs with inflammatory CSF had images interpreted as normal.  相似文献   

19.
The magnetic resonance (MR) imaging features of central nervous system lymphoma in eight dogs and four cats are described. Intracranial lesions affected the rostrotentorial structures in six dogs and caudotentorial structures in two cats. Lesions affected the spinal cord in two dogs and in two cats. One dog and one cat with intracranial lymphoma had signs of local extracranial extension and lymphadenopathy. Lesions were considered extraparenchymal in four dogs and three cats, intraparenchymal in two dogs and one cat, and appeared to have both intra- and extraparenchymal components in two dogs. All lesions were hyperintense in T2-weighted images when compared to white matter, most were hypointense in T1-weighted images (7/12), and most were hyperintense in fluid-attenuated inversion recovery (FLAIR) images (5/9). When compared to grey matter, these lesions appear either isointense (5/12) or hyperintense (7/12) on T2-weighted images, half of them were hypointense in T1-weighted images (6/12), and most were isointense in FLAIR images (7/9). Lesion margins were usually indistinct in T2-weighted images (10/12) and had perilesional hyperintensity in FLAIR images (7/9). The majority of lesions (10/12) had abnormal meninges around the lesion and half (6/12) had generalized contrast enhancement. Mass effect was evident in all lesions. Although not specific, when combined with the history and neurologic signs, MR features aid presumptive diagnosis that should be confirmed by cytology or histopathology.  相似文献   

20.
Pelvic limb lameness that was localized clinically to the lateral gastrocnemius head was observed in dogs without history of trauma. The aim of this retrospective study was to describe magnetic resonance imaging (MRI) findings of this condition. Nine dogs were identified, eight Border Collies and one Australian Shepherd. They all had chronic pelvic limb lameness; no signs of joint effusion or instability were present. In MR images there was high signal intensity in the lateral head of the gastrocnemius muscle around the sesamoid bone in T2‐weighted, T2*‐weighted, and STIR images and an iso‐ to mildly hyperintense signal in T1‐weighted images with marked contrast enhancement. The abnormal signal intensity most likely represents a myotendinous strain. The breed affiliation to Border Collies is striking, and a relation to biomechanical forces or motion pattern may be possible. Except for the dog with the most extensive lesion all dogs had an excellent outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号