首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
SSR标记在苹果种质资源及遗传育种研究中的应用   总被引:2,自引:0,他引:2  
SSR标记作为一种有效的分子标记手段,被广泛地应用于苹果种质资源和遗传育种研究中。对其在苹果种质资源保存、品种鉴定、遗传多样性、遗传连锁图谱构建、基因标记及定位等方面的应用做了简要概述。  相似文献   

2.
SSR分子标记技术在苹果种质资源及遗传育种研究中的应用   总被引:2,自引:2,他引:0  
简要介绍了SSR分子标记技术的基本原理及其优点,综述了SSR分子标记技术在苹果种质资源和遗传育种研究中的广泛应用,如在苹果品种鉴定、种质资源评价、亲缘关系和遗传多样性分析、遗传连锁图谱构建、基因标记及定位等方面的应用,并对其在苹果研究中存在的问题和应用前景进行了讨论,可为开展苹果分子遗传育种提供参考。  相似文献   

3.
孙玉彤 《河北农业科学》2011,15(4):45-47,57
SSR(simple sequence repeat)标记,又称微卫星标记,是建立在PCR基础上的1种新型DNA分子标记,其具有多态性高、重复性好、共显性、检测简单等优点,在果树树种的品种和亲缘关系鉴定等方面得到了广泛应用。目前,多利用已开发的苹果SSR标记引物来进行梨属植物研究。SSR简单易行,是1种高效的鉴定方法。就近年来SSR分子标记在梨的遗传图谱构建、遗传多样性、品种鉴定以及分子辅助育种中的应用进行了概述,旨为相关研究工作提供参考。  相似文献   

4.
SSR标记在水稻遗传育种中的应用   总被引:1,自引:0,他引:1  
SSR(simple sequence repeat)是一种基于PCR(polymerase chain reaction)的DNA分子遗传标记,广泛分布于整个植物基因组。笔者对SSR标记在构建水稻分子遗传图谱、基因定位和克隆、QTL(quantitative trait loci)分析、品种鉴定、分子标记辅助选择育种等方面的研究进展进行了综述。  相似文献   

5.
【目的】探索SCoT、SSR和SRAP 3类分子标记在油菜遗传多样性研究中的应用。【方法】用8份有代表性的油菜资源,从SRAP和SCoT标记中各筛选出40对扩增条带清晰、多态性高的引物和40对SSR核心标记,对43份抗菌核病油菜育种亲本材料的遗传多样性进行分析,比较这3类标记在多态性(PPB)、多态性信息含量(PIC)及标记指数(MI)等方面的差异,最后依据材料两两间遗传相似系数,对43份油菜材料进行聚类分析。【结果】在位点检测能力方面以SCoT最高,每条SCoT引物可检测的平均条带数为9.3,其次为SRAP(8.6),SSR最少(7.3)。但多态性信息含量(PIC)则相反,SSR的PIC值最高(0.76),其次为SRAP(0.69),SCoT的PIC值最低(0.65)。基于SCoT、SSR和SRAP 3种分子标记的材料间遗传相似系数分别为0.43~0.87,0.56~0.84和0.46~0.83。聚类分析表明,SRAP标记聚类结果接近于3种分子标记混合统计的聚类结果。【结论】多态性位点检测能力和标记效率之间并无直接的相关性;3类标记在43份材料间的遗传距离显著不相关,研究每类分子标记在相应物种中的核心标记更为重要。  相似文献   

6.
王玲玲  陈东亮  黄丛林  邢震 《安徽农业科学》2017,45(36):123-126,130
SSR分子标记是目前应用较广泛的分子标记技术之一。对SSR标记的原理、特点和开发方法进行了总结,综述了SSR分子标记技术在植物DNA指纹图谱构建、遗传多样性分析、种子纯度及真伪鉴定、遗传图谱构建、分子标记辅助育种等方面的应用现状,并对目前SSR标记应用中出现的问题进行了讨论,以期为下一步开展西藏野生观赏植物资源的分子研究奠定基础。  相似文献   

7.
SSR标记技术在大豆中的应用   总被引:1,自引:0,他引:1  
周文才  熊冬金 《安徽农业科学》2007,35(11):3156-3158
SSR分子标记因具有共显性、多态性丰富、在大豆基因组中分布广等众多优点而被广泛应用于大豆研究中.从大豆遗传多样性分析、分子图谱构建和QTL数量性状定位、品种鉴别3方面分别阐述了SSR分子标记在大豆研究中的应用和最新进展,并对SSR分子标记在大豆研究领域的发展前景进行了展望.  相似文献   

8.
苹果EST-SSRs标记开发及其应用于苹果品种遗传多样性分析   总被引:1,自引:0,他引:1  
该研究旨在分析苹果EST中SSR位点分布规律,开发苹果EST-SSR引物,探究基于EST-SSR的苹果品种遗传差异。从NCBI公共数据库中下载63 708条苹果表达序列标签(Expressed sequence tag,EST),首先利用MI-SA软件进行SSR位点查找,筛选出符合条件的SSR位点,利用Primer 5.0 Plus软件设计49对引物,用非变性聚丙烯酰胺凝胶(PAGE)研究这些SSR引物的PCR扩增产物,总结其特点,并回收部分产物测序,以验证其真实性。结果显示63 708条苹果的EST序列中有5 423条含有总计6 153个SSR位点。二核苷酸、三核苷酸和六核苷酸重复是最主要的SSR类型,分别占总SSR的50.38%、14.85%和15.47%。电泳结果显示有33对引物能在22个苹果品种中扩增出理想的PCR产物,其中25对引物能扩增出多态性条带,测序结果显示引物能扩增出目标片段。ES7-SSR分子标记体系的聚类结果与富士系苹果家族关系基本吻合。  相似文献   

9.
SSR标记在棉花遗传育种中的应用   总被引:1,自引:0,他引:1  
SSR是建立在PCR.基础上的分子标记,具有多态性高、重复性好、共显性、操作简单等优点,已在棉花研究中被广泛应用。综述了SSR.标记的原理与特点,以及其在棉花遗传图谱构建、功能基因及QTLs定位分析、标记辅助育种、种质鉴定及遗传多样性分析等方面的应用;展望了SSR分子标记技术广阔的应用前景。  相似文献   

10.
以山定子和25份苹果栽培品种为试验材料,利用16对荧光SSR分子标记对供试材料进行分子鉴定,同时进行了遗传多样性分析,并构建了各供试材料的指纹数据和分子身份证。利用GenAlEx 6.501软件分析了遗传多样性,并基于Jaccard系数利用Ntsys软件对SSR扩增结果进行了UPGMA聚类分析。遗传多样性分析结果显示,16对SSR引物共扩增出139个等位基因位点,多态性等位基因数在5(NH015a)和11(CH05e03)之间,平均值为7.938;有效等位基因数在2.711(GD147)和6.563(GD142)之间,平均值为4.123;观察杂合度在0.654和0.962之间,平均值为0.802;期望杂合度在0.631和0.848之间,平均值为0.743;无偏杂合度期望值在0.644和0.864之间,平均值为0.758;香浓多样性指数平均值为1.616;固定指数平均值为-0.082;荧光SSR分析结果与已知苹果品种间的谱系较为一致,并从分子水平为山定子作为常用苹果砧木提供了验证;筛选出7对SSR核心引物,用于分子身份证的构建,并利用条形码技术将每对引物的分子身份证转化成可被机器快速扫描的条形码分子身份证。  相似文献   

11.
普通野生稻遗传多样性分析   总被引:1,自引:1,他引:0  
为了扩大水稻杂交育种中亲本的选择、改变目前遗传基础狭窄的状况,试验选用分布于水稻基因组的12条染色体上的30对SSR引物,对国内外的20份普通野生稻进行遗传多样性研究。结果显示,试验选取的30对SSR引物均具有多态性,多态性位点百分率为100%;这些多态性引物在20份材料中共扩增出220条多态性带,平均每对SSR引物可检测到3~11个等位基因,平均每个位点7.3条。Nei遗传距离及系统聚类和带型分析结果表明,在Nei遗传距离为1.3处可将20份材料分为3个类群,即2个国外群体和1个国内群体;同一生态型的稻种基本聚为一类,个别不同生态型的稻种由于品种间的基因交流,具有相对较近的亲缘关系。说明SSR是一种进行遗传多样性研究切实有效的方法;育种亲本的选择不能仅仅依据生态型。  相似文献   

12.
本试验利用SSR标记技术对20个麻核桃品种的遗传多样性进行研究。从12对引物中筛选出6对用于正式PCR扩增,共检测到52个遗传位点,其中多态性遗传位点50个,多态位点百分率为96%。遗传相似性分析结果显示麻核桃种质间具有丰富的遗传多样性,遗传相似系数变幅为0.17~0.90,说明SSR标记能将20份种质完全区分开。UPGMA聚类结果显示,供试材料在相似系数为0.61处聚为4类。  相似文献   

13.
鈕玉伟  杨志刚  罗兵  孙海燕 《安徽农业科学》2014,42(36):12833-12835,12853
[目的]采用SSR标记构建太湖稻区16个常规粳稻品种和16个杂交水稻品种DNA指纹图谱并进行遗传多样性分析.[方法]以筛选出的12对多态性高、稳定性好且在染色体上分布均匀的引物作为核心引物,构建太湖稻区32个主要栽植水稻品种DNA指纹图谱,以NTSYS-PCV2.10软件分析遗传多样性.[结果]12对SSR引物在32份材料中共扩增出了47个等位基因,平均每对引物4.7个,变幅2~6个;12对引物的多态性频率(FP)平均值为0.627,变幅0.266~0.833;以遗传相似系数0.74为阚值可将供试32个水稻品种分成4类.[结论]太湖稻区32个水稻品种遗传多样性相对狭窄.  相似文献   

14.
苹果栽培品种的SSR鉴定及遗传多样性分析   总被引:3,自引:0,他引:3  
应用SSR技术对40个苹果栽培品种进行遗传多样性分析,12对SSR引物扩增出114个等位基因,平均每个位点9.5个,位点杂合度为0.237 8~0.682 7,遗传多样性指数为0.534 4。用3对引物(Hi01c11、Hi03d06和GD162)可将供试的40个品种完全区分开。聚类分析结果显示,40个苹果品种的相似系数的变化范围为0.705~0.982,表现出较高的遗传多样性。供试品种在相似系数0.862处被分为5大类群,与品种的系谱来源基本吻合。  相似文献   

15.
为了更深入地揭示小麦抗麦红吸浆虫品种(系)的遗传多样性,在田间虫圃对1562份小麦品种(系)损失率鉴定结果的基础上,取47份年度间鉴定抗性结果较为一致的材料,按损失率大小,由小到大排列起来,利用19对多态性SSR标记检测了参试材料的遗传多态性。结果表明,19对SSR标记在47份不同抗性品种中检测到104个等位基因,能够将所有品种区分开来,每对引物可以检测到3-8个等位基因,平均5.47个。47个小麦品种间的遗传距离从0.40~0.95不等,平均为0.71。高抗品种间遗传距离平均为0.66(0.40-0.95);中抗品种间的遗传距离平均为0.69(0.46~0.90);感虫品种间的遗传距离平均为0.69(0.53-0.95);高感品种间的遗传距离平均为0.68(0.41~0.90)。SSR标记聚类分析在遗传距离为0.74处将供试材料分为6大类群。抗虫品种晋麦65号单独聚为一类,同其余品种具有较远的亲缘关系,可作为新的抗源用于抗虫育种,并在吸浆虫发生地块推广种植。  相似文献   

16.
梨果实形状的SSR分子标记   总被引:2,自引:0,他引:2  
本研究以‘矮化梨’(Pyrus communis Linn.)×(‘茌梨’(Pyrus bretschneideri Rehd.)+‘新高梨’(Pyruspyrifolia Rehd.))F1代分离群体为试材,用分离群体分组分析法(Bulked Segregant Analysis,BSA)对梨果实形状(圆形/非圆形)进行了SSR标记分析。通过对源自梨和苹果基因组的281对SSR引物的筛选,获得了与梨果实形状相关的SSR标记CH02b10和CH02f06,其圆形/非圆形性状判断的符合率分别为91.67%和96.67%,并将所获得的标记在品种上进行分析。  相似文献   

17.
分析小麦抗蚜品种(系)的遗传多样性,为进一步培育和推广抗蚜品种提供依据。在田间对956份小麦品种(系)损失率鉴定结果的基础上,取47份年度间鉴定抗性结果较为一致的材料,按损失率大小,由小到大排列起来,利用筛选的18对多态性SSR标记检测了参试材料的遗传多态性。结果表明,18对SSR标记在47份不同抗性品种中检测到99个等位基因,能够将所有品种区分开来,每对引物可以检测到1~10个等位基因,平均为5.21个。47个小麦品种间的相对遗传距离在0.33~0.94之间,平均为0.65。高抗品种间相对遗传距离平均为0.59(0.39~0.77);中抗品种间的相对遗传距离平均为0.62(0.39~0.83);感虫品种间的相对遗传距离平均为0.62(0.37~0.83);高感品种间的相对遗传距离平均为0.64(0.37~0.84)。SSR标记聚类分析在相对遗传距离为0.67处将供试材料分为7大类群。选育和推广抗虫品种时尽可能选择聚类图中亲缘关系较远的材料。抗虫品种‘临远95-5322’单独聚为一类,同其余品种具有较远的亲缘关系,可作为新的抗源用于抗虫育种。  相似文献   

18.
基于表达序列标签(EST)的SSR标记因开发简便、快捷等特点,已在植物研究中得到广泛应用。简要列举木本植物中EST—SSR的可利用性和通用性,重点综述EST—SSR的多态性及其在木本植物遗传多样性评价方面的应用,期望为今后的相关研究提供参考。  相似文献   

19.
利用SSR分子标记技术对12份蕨类材料进行亲缘关系分析。结果表明,从180对引物中筛选出15对多态性高、重复性好的引物,对12份蕨类材料基因组DNA进行扩增,共扩增出117条带,其中多态性带98条,平均每对引物产生6.53条多态性带,多态性比例为83.76%。通过NTSYS—pc2.10e软件计算不同蕨类材料之间的遗传相似系数,并进行聚类分析。遗传分析表明,12份材料间的遗传相似系数为0.351~0.857,且聚类分析表明,遗传相似系数在0.61—0.63可将供试材料分为3个类群。应用SSR分子标记技术能较准确地分析蕨类不同材料之间的亲缘关系及遗传多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号