首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study tested the hypothesis that the effects of the opiate antagonist naloxone on GnRH (and LH) secretion is affected by photoperiod length and testosterone (T) concentrations. The effect of infusing naloxone on GnRH and LH pulse patterns was determined in four groups of orchidectomized sheep: long day (LD) photoperiod treated with T, LD without T (LDC), short day photoperiod (SD) with T, SDC (n = 5-7/group). Hypophyseal-portal and jugular blood samples were collected at 10 min intervals for 4 h before and 4 h during naloxone infusion (1 mg/kg/h). Neither photoperiod nor T affected either mean GnRH or LH whereas naloxone (P < 0.01) increased both. LD photoperiod (P < 0.01), T (P < 0.01) and naloxone (P < 0.01) all increased LH pulse amplitude whereas only naloxone increased GnRH pulse amplitude (P < 0.01). There was an interaction (P < 0.01) between steroid and naloxone on LH, but not GnRH, pulse amplitude. Both LD photoperiod and T increased both LH and GnRH (P < 0.01) interpulse-interval (IPI). Naloxone decreased GnRH IPI (P < 0.01). The LH/GnRH pulse amplitude ratio was (P < 0.02) increased by T--likely a secondary response to the T-induced increase in IPI. These results are interpreted as showing that in the ram the endogenous opiate peptides regulate both GnRH pulse frequency and amplitude, but that their specific role is modulated by photoperiod and T. These results do not support the concept that the opiate peptides are the primary mediators of the negative feedback effects of T.  相似文献   

2.
The effects of n-methyl-d,l-aspartate (NMA), a neuroexcitatory amino acid agonist, on luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) secretion in gilts treated with ovarian steroids was studied. Mature gilts which had displayed one or more estrous cycles of 18 to 22 d were ovariectomized and assigned to one of three treatments administered i.m.: corn oil vehicle (V; n = 6); 10 micrograms estradiol-17 b/kg BW given 33 hr before NMA (E; n = 6); .85 mg progesterone/kg BW given twice daily for 6 d prior to NMA (P4; n = 6). Blood was collected via jugular cannulae every 15 min for 6 hr. Pigs received 10 mg NMA/kg BW i.v. 2 hr after blood collection began and a combined synthetic [Ala15]-h GH releasing factor (1-29)-NH2 (GRF; 1 micrograms/kg BW) and gonadotropin releasing hormone (GnRH; .2 micrograms/kg BW) challenge given i.v. 3 hr after NMA. NMA did not alter LH secretion in E gilts. However, NMA decreased (P < .02) serum LH concentrations in V and P4 gilts. Serum LH concentrations increased (P < .01) after GnRH in all gilts. NMA did not alter PRL secretion in P4 pigs, but increased (P < .01) serum PRL concentrations in V and E animals. Treatment with NMA increased (P < .01) GH secretion in all animals while the GRF challenge increased (P < .01) serum GH concentrations in all animals except in V treated pigs. NMA increased (P < .05) cortisol secretion in all treatment groups. These results indicate that NMA inhibits LH secretion and is a secretagogue of PRL, GH and cortisol secretion with ovarian steroids modulating the LH and PRL response to NMA.  相似文献   

3.
Sixteen ovariectomized (OVX) mature gilts, averaging 139.6 ± 3.1 kg body weight (BW) were assigned randomly to receive either progesterone (P, 0.85 mg/kg BW, n=8) or corn oil vehicle (OIL, n=8) injections im twice daily for 10 d. On the day of experiment, all gilts received either the EAA agonist, N-methyl-d,l-aspartate (NMA; 10 mg/kg BW, iv) alone or NMA plus the EOP antagonist, naloxone (NAL, 1 mg/kg BW, iv), resulting in the following groups of 4 gilts each: OIL-NMA, OIL-NMA-NAL, P-NMA and P-NMA-NAL. Blood samples were collected via jugular cannula every 15 min for 6 hr. All pigs received NMA 5 min following pretreatment with either 0.9% saline or NAL 2 hr after blood collection began and a GnRH challenge 3 hr after NMA. Administration of NMA suppressed (P<0.03) LH secretion in OIL-NMA gilts and treatment with NAL failed to reverse the suppressive effect of NMA on LH secretion in OIL-NMA-NAL gilts. Similar to OIL-NMA gilts, NMA decreased (P<0.03) mean serum LH concentrations in P-NMA gilts. However, in P-NMA-NAL gilts, serum LH concentrations were not changed following treatment. All gilts responded to GnRH with increased (P<0.01) LH secretion. Additionally, administration of NMA increased (P<0.01) growth hormone (GH) and prolactin (PRL) secretion in both OIL-NMA and P-NMA gilts, but this increase in GH and PRL secretion was attenuated (P<0.01) by pretreatment with NAL in OIL-NMA-NAL and P-NMA-NAL gilts. Serum cortisol concentrations increased (P<0.01) in all gilts and the magnitude of the cortisol response was not different among groups. In summary, results of the present study confirmed previous findings that NMA suppresses LH secretion in both oil- and P-treated OVX gilts, but we failed to provide definitive evidence that EOP are involved in the NMA-induced suppression of LH secretion. However, NMA may, in part, activate the EOP system which in turn increased GH and PRL secretion in the gilt.  相似文献   

4.
To test the hypothesis that orexin-B acts directly on the anterior pituitary to regulate LH and growth hormone (GH) secretion, anterior pituitary cells from prepuberal gilts were studied in primary culture. On day 4 of culture, 10(5) cells/well were challenged with 0.1, 10 or 1000 nM GnRH; 10, 100 or 1000 nM [Ala15]-hGRF-(1-29)NH2 or 0.1, 1, 10 or 100 nM, orexin-B individually or in combinations with 0.1 and 1000 nM GnRH or 10 and 1000 nM GRF. Secreted LH and GH were measured at 4 h after treatment. Basal LH and GH secretion (control; n = 6 pigs) was 183 +/- 18 and 108 +/- 4.8 ng/well, respectively. Relative to control at 4 h, all doses of GnRH and GRF increased (P < 0.0001) LH and GH secretion, respectively. All doses of orexin-B increased (P < 0.01) LH secretion, except for the 0.1 nM dose. Basal GH secretion was unaffected by orexin-B. Addition of 1, 10 or 100 nM orexin-B in combinations with 0.1 nM GnRH increased (P < 0.001) LH secretion compared to GnRH alone. Only 0.1 nM (P = 0.06) and 100 nM (P < 0.001) orexin-B in combinations with 1000 nM GnRH increased LH secretion compared to GnRH alone. All doses of orexin-B in combination with 1000 nM GRF suppressed (P < 0.0001) GH secretion compare to GRF alone, while only 0.1 nM orexin-B in combination with 10 nM GRF suppressed (P < 0.01) GH secretion compared to GRF. These results indicate that orexin may directly modulate LH and GH secretion at the level of the pituitary gland.  相似文献   

5.
The aim of the present study was to clarify the effect of photoperiod on the secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8‐h or 16‐h photoperiod, and secretory patterns of GH for 4 h (12.00 to 16.00 hours) were compared. In addition, the goats were kept under a 16‐h photoperiod and orally administered saline (controls) or melatonin, and the effects of melatonin on the secretion of GH were examined. GH was secreted in a pulsatile manner. There were no significant differences in pulse frequency between the 8‐ and 16‐h photoperiods; however, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH‐releasing hormone (GHRH) was also significantly greater for the 16‐h photoperiod (P < 0.05). There were no significant differences in GH pulse frequency between the saline‐ and melatonin‐treated groups. However, GH pulse amplitude and mean GH concentrations were significantly greater in the saline‐treated group (P < 0.05). The present results show that a long photoperiod enhances the secretion of GH, and melatonin modifies GH secretion in female goats.  相似文献   

6.
Thyroid hormones permit the annual reproductive transition of seasonal breeders. Although, precise function of thyroid hormones in seasonal breeding is not well understood. In the present study, we examined effects of hypothyroidism on the hypothalamus-pituitary-gonadal axis in adult male golden hamsters after transition of the short-day photoperiod (SD; 8 h light: 16 h dark) condition. We confirmed that hypothyroid, which had been induced by administration of thiouracil in drinking water for 4 weeks, did not have direct effects on testes in male hamsters under the long-day photoperiod. Plasma concentrations of free T3 and T4 decreased 15 weeks after transition of SD condition. Plasma concentrations of testosterone in the hypothyroid group decreased earlier than in the control group after the transition from LD to SD. In animals treated with testosterone after castration, plasma concentrations of LH in the hypothyroid group decreased earlier than in the control group after the transition of SD. On the other hand, pituitary response to GnRH for LH release did not change in castrated hamsters as a result of hypothyroidism. These results suggest that thyroid hormones act the hypothalamus and might be required to maintain GnRH secretion in male golden hamsters.  相似文献   

7.
Two experiments were conducted to determine the minimal effective dose during lactation and site of action of N-methyl-d,l-aspartic acid (NMA) for elicitation of release of luteinizing hormone (LH) in female pigs. In the first experiment, three doses of NMA were given to lactating primiparous sows in which endogenous LH was suppressed by suckling of litters. In the second experiment, ovariectomized gilts were pretreated with estradiol benzoate or porcine antisera against GnRH to suppress LH and then given NMA to determine if it elicited secretion of LH directly at the anterior pituitary or through release of GnRH. In experiment 1, 3 lactating sows (17 +/- 1.5 d postpartum) were each given three doses of NMA (1.5, 3.0 and 5.0 mg/kg body weight [BW]; IV) on 3 consecutive days in a Latin Square design. Blood samples were collected every 10 min from -1 to 1 hr from injection of NMA. NMA at 1.5 and 3.0 mg/kg did not affect (p greater than .5) secretion of LH; however, 5 mg NMA/kg elicited a 114% increase (p less than .001) in circulating levels of LH during 1 hr after treatment. In experiment 2, 8 ovariectomized gilts were given either estradiol benzoate (EB; 10 micrograms/kg BW; IM n = 4) to suppress release of GnRH or porcine antiserum against GnRH (GnRH-Ab; titer 1:8,000; 1 ml/kg BW; IV; n = 4) to neutralize endogenous GnRH. Gilts infused with GnRH-Ab were given a second dose of antiserum 24 hr after the first. Gilts were then given NMA (10 mg/kg BW; IV) 33 hr after EB or initial GnRH-Ab. Blood samples were drawn every 6 hr from -12 to 24 hr from EB or GnRH-Ab treatments, and every 10 min from -2 to 2 hr from NMA. Serum LH declined (p less than .001) after EB (from 1.87 +/- .2 ng/ml at 12 hr before EB to 0.46 +/- .02 ng/ml during 24 hr after EB) and GnRH-Ab (from 1.97 +/- .1 to 0.59 +/- .02 ng/ml). In gilts treated with EB, the area under the curve (AUC) for the LH response (ng.ml-1.min) 1 hr after NMA (38.7 +/- 3) was significantly greater (p less than .01) than the 1 hr prior to NMA (21.3 +/- 1.5). Treatment with NMA had no effect (p greater than .5) on secretion of LH in gilts infused with GnRH-Ab.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Pituitary cells, from seven 160- to 170-day-old pigs, were studied in primary culture to determine the affects NPY on LH and GH secretion at the level of the pituitary. On day 4 of culture, medium was discarded, plates were rinsed twice with serum-free medium and cells were cultured in 1 ml fresh medium without serum and challenged individually with 10(-10), 10(-8) or 10(-6) M [Ala(15)]-h growth hormone-releasing factor-(1-29)NH(2) (GRF); 10(-9), 10(-8) or 10(-7) M GnRH or 10(-9), 10(-8), 10(-7) or 10(-6) M NPY individually or in combinations with 10(-9) or 10(-8) M GnRH or 10(-8) or 10(-6)M GRF. Cells were exposed to treatment for 4 h at which time medium was harvested and quantified for LH and GH. Basal LH secretion (control; n = 7 pituitaries) was 12 +/- 6 ng/well. Relative to control at 4 h, 10(-9), 10(-8) and 10(-7) M GnRH increased (P < 0.01) LH secretion by 169, 176 and 197%, respectively. Neuropeptide-Y did not alter (P > 0.4) basal LH secretion nor 10(-8) M GnRH-induced increase in LH secretion but 10(-9) M GnRH-stimulated LH secretion was reduced by NPY and was not different from control or GnRH alone. Basal GH secretion (control; n = 7 pituitaries) was 56 +/- 12 ng/well. Relative to control at 4 h, 10(-10), 10(-8) and 10(-6) M GRF increased GH secretion by 111%, 125% (P < 0.01) and 150% (P < 0.01), respectively. Only 10(-6) M (134%) and 10(-7) M (125%) NPY increased (P < 0.04) basal GH secretion. Addition of 10(-9), 10(-8) and 10(-7) M NPY in combination with 10(-8) M GRF suppressed (P < 0.04) GRF-stimulated GH secretion. However, 10(-9) M NPY enhanced (P < 0.06) the GH response to 10(-6) M GRF. These results demonstrate that NPY may directly modulate GH secretion at the level of the pituitary gland.  相似文献   

9.
The effects of body condition score of does and exposure to sexually active bucks after exposure to long-day artificial photoperiod were examined in mature anovulatory French Alpine goat in Northern Mexico. In June, goats in good (2.3 ± 0.2, scale 1 to 4; n = 10) or poor (1.6 ± 0.3; n = 10) body condition were exposed during 15 day to sexually active bucks, which had been exposed to long photoperiod (16:8-h light–dark cycle, starting in December). A third group of goats in good body condition was exposed to bucks kept under the natural photoperiod of this region (26° N). All goats in good body condition exposed to bucks treated with prolonged photoperiod exhibited estrus behavior, whereas only 50% of the does in poor body condition showed estrous behavior during the 15-day buck exposure. None of the does in good body condition showed estrus when exposed to bucks under natural photoperiod. These results revealed that a good body condition is required for maximum estrus response in anestrous Alpine goats and that exposure of bucks to long photoperiod in winter is essential for an adequate stimulus to reestablish estrus cycles in anovulatory Alpine does in Northern Mexico.  相似文献   

10.
The aim of the present study was to clarify the effect of photoperiod on nighttime secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8 h or 16 h dark photoperiod, and secretory patterns of GH for 8 h in the dark period were examined with the profile of prolactin (PRL) secretion. GH was secreted in a pulsatile manner in the dark period. There were no significant differences in pulse frequency between the 8‐ and 16‐h dark photoperiods; however, pulse amplitude tended to be greater in the group with the 16‐h dark photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the same photoperiod (P < 0.05). PRL secretion increased quickly after lights off under both photoperiods. The PRL‐releasing responses were weaker in the 8‐h than 16‐h dark photoperiod. The secretory response to photoperiod was more obvious for PRL than GH. The present results show that a long dark photoperiod enhances the nighttime secretion of GH in female goats, although the response is not as obvious as that for PRL.  相似文献   

11.
Three experiments were conducted to determine the effects of n-methyl-D,L-aspartate (NMA), an agonist of the excitatory amino acid glutamate, on secretion of hormones in boars. In Exp. 1, boars (185.0+/-.3 d of age; mean +/- SE) received i.v. injections of either 0, 1.25, 2.5, 5, or 10 mg of NMA/kg BW. There were no effects of NMA (P>.1) on secretion of LH and testosterone. Treatment with NMA, however, increased (P<.01) circulating GH concentrations in a dose-dependent manner. In Exp. 2, boars (401 d of age) received an i.v. challenge of NMA at a dose of 10 mg/kg BW or .9% saline. Treatment with NMA, but not saline (P>.1), increased serum concentrations of LH (P<.01), GH (P <.01), and testosterone (P<.06). In Exp. 3, boars that were 152, 221, or 336 d of age were treated i.v. with NMA (10 mg/kg BW). Across ages, treatment with NMA increased circulating concentrations of LH (P<.07) and testosterone (P<.01). However, NMA increased (P<.01) mean GH concentrations in only the oldest boars. Treatment with NMA had no effect (P>.1) on circulating concentrations of estradiol or leptin; however, estradiol concentrations increased (P<.03) with age. In summary, NMA increased secretion of LH, GH, and testosterone in boars. However, endocrine responses to treatment with NMA may be influenced by age of the animal. Finally, NMA did not influence circulating concentrations of estradiol or leptin.  相似文献   

12.
The aim of the present study was to clarify the effect of photoperiod on secretory patterns of growth hormone (GH) in male goats. Adult male goats were kept at 20°C with an 8‐h or 16‐h light photoperiod, and secretory patterns of GH secretion were compared. In addition, plasma profiles of prolactin (PRL), insulin‐like growth factor‐I (IGF‐I) and testosterone (T) were also examined to characterize GH secretion. GH was secreted in a pulsatile manner. There was no significant difference in pulse frequency between the 8‐h and 16‐h photoperiods. However, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH releasing hormone was greater in the 16‐h than 8‐h photoperiod (P < 0.05). Plasma PRL and IGF‐I levels were higher in the 16‐h than 8‐h photoperiod (P < 0.05). In contrast, plasma T levels were lower in the 16‐h photoperiod (P < 0.05). These results show that a long light photoperiod enhances the secretion of GH as well as PRL and IGF‐I, but reduces plasma T concentrations in male goats.  相似文献   

13.
Thirty-nine adult light horse mares, geldings, and stallions were used in two experiments to assess the pituitary hormone and insulin responses to infusions of arginine, aspartic acid, lysine, glutamic acid, and N-methyl-D,L-aspartate (NMA). In Exp. 1, 27 horses were assigned to one of three infusion treatments: 1) physiological saline (1 L); 2) 2.855 mmol of arginine/kg BW in 1 L of water; or 3) 2.855 mmol of aspartic acid/kg BW in 1 L of water. In Exp. 2, 12 horses were assigned, in a multiple-square 4 x 4 Latin square design, to one of four infusion treatments: 1) 2 mL of saline/kg BW; 2) 2.855 mmol of lysine/kg BW in water; 3) 2.855 mmol of glutamic acid/kg BW in water; or 4) 1 mg of NMA/kg BW in water. In Exp. 1, an acute (within 20 min) release of growth hormone (GH) was induced (P = 0.002) by aspartic acid. In contrast, acute release of prolactin (P = 0.001) and insulin (P = 0.002) was induced only by arginine; moreover, the arginine effect on insulin was present only in mares (P = 0.011). In Exp. 2, an acute release of GH was induced (P = 0.001) by glutamic acid and NMA. In males, the glutamic acid-induced GH release was greater than that of NMA; in mares, the NMA-induced GH release was greater than that of glutamic acid (P = 0.069). Both lysine and glutamic acid induced (P = 0.001) acute release of prolactin, whereas an acute release of insulin was elicited (P = 0.002) only by lysine. The NMA-induced LH response was due almost entirely to the response in mares and stallions (P = 0.016), and the NMA-induced FSH release was due almost entirely to the response in mares (reproductive status effect; P = 0.004). In the horse, aspartic acid, glutamic acid, and NMA seem to stimulate GH release; arginine and lysine seem to stimulate prolactin and insulin release; and NMA seems to stimulate LH and FSH release. It seems that N-methyl-D-aspartate glutamate receptors are involved in controlling GH, LH, and FSH secretion, whereas other mechanisms are involved with prolactin secretion. These results also indicate that gonadal steroids interact with amino acid-induced pituitary hormone release in adult horses.  相似文献   

14.
The objective of this study was to evaluate the efficacy of treating sexually inactive bucks with artificial long photoperiod or testosterone on the induction of estrus in anovulatory grazing goats. A total of 91 multiparous mixed-breed anestrous goats were randomly assigned to one of three treatment groups: (1) joining with bucks subjected to 2.5 month of artificial long days (16 h of light/day; n = 31), (2) joining with testosterone-treated bucks (n = 30), and (3) joining with untreated bucks (control; n = 30). There were no differences between the light-treated (100%) and testosterone-treated (93%) bucks in their ability to induce estrus in anovulatory does. On the other hand, none of the goats in contact with control bucks exhibited estrus. The interval from start of mating to estrus was shorter in goats with the light-treated bucks (37.9 ± 4.8 h) compared with does in contact with testosterone-treated bucks (58.3 ± 8.7 h). The overall pregnancy rate in goats joined with light-treated, testosterone-treated and control bucks was 84%, 77% and 0%, respectively, with no difference (P > 0.05) between the first two groups. Anogenital sniffing, approaches, mounting attempts, and mounts were highest (P < 0.01) in light-treated bucks and lowest in control bucks. It was concluded that testosterone-treated bucks and long-day-treated bucks were equally effective in synchronizing estrus in anovulatory goats and resulted in similar levels of fertility. Given that light-treated bucks are unviable in communal production systems of goats raised by resource-poor farmers, the sexual arousal of bucks with testosterone is a practical and reliable method to induce ovulation in anovulatory goats in pastoral goat systems in hot environments.  相似文献   

15.
The aim of the present study was to determine if the estradiol-induced luteinizing hormone (LH) surge is influenced by the constant exposure to TAK-683, an investigational metastin/kisspeptin analog, that had been established to depress the pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats. Ovariectomized goats subcutaneously received TAK-683 (TAK-683 group, n=6) or vehicle (control group, n=6) constantly via subcutaneous implantation of an osmotic pump. Five days after the start of the treatment, estradiol was infused intravenously in both groups to evaluate the effects on the LH surge. Blood samples were collected at 6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment or the estradiol infusion, to determine the profiles of pulsatile LH secretion. They were also collected at 2-h intervals from –4 h to 32 h after the start of estradiol infusion for analysis of LH surges. The frequency and mean concentrations of LH pulses in the TAK-683 group were remarkably suppressed 5 days after the start of TAK-683 treatment compared with those of the control group (P<0.05). On the other hand, a clear LH surge was observed in all animals of both groups. There were no significant differences in the LH concentrations for surge peak and the peak time of the LH surge between the TAK-683 and control groups. These findings suggest that the effects of continuous exposure to kisspeptin or its analog on the mechanism(s) that regulates the pulsatile and surge mode secretion of GnRH/LH are different in goats.  相似文献   

16.
Effects of season and photoperiod on the anterior pituitary gland and testes were studied by responses to exogenous GnRH. Stallions were assigned to one of three treatments: 1) control, exposed to natural day length; 2) S-L, 8 h of light and 16 h dark (8:16) for 20 wk beginning July 16, 1982 then 16:8 from December 2, 1982 until March 5, 1984; or 3) S-S, 8:16 from July 16, 1982 until March 5, 1984. Approximately every 8 wk, stallions were administered GnRH (2 micrograms/kg BW) and blood was sampled at 20-min intervals for 2 h before and 8 h after GnRH administration. Concentrations of LH, FSH and testosterone were determined. Baseline concentrations (mean of pre-GnRH samples) of all hormones fluctuated seasonally (P less than .05), but only LH and testosterone displayed seasonal changes (P less than .05) in maximum response to GnRH (highest concentration above baseline after GnRH). The FSH response to GnRH was not affected (P greater than .05) by season, photoperiod or the season X treatment interaction. Exposure of S-L stallions to 16:8 in December resulted in early recrudescence of baseline concentrations of LH, FSH and testosterone. Maximum concentration of testosterone in response to GnRH was stimulated by 16:8, but the increase in baseline LH concentrations in S-L stallions was not associated with an increase in maximum LH response to GnRH. Seasonal patterns of baseline concentrations of FSH and testosterone and maximum LH response to GnRH in S-S stallions were similar to those for control stallions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) release in goats. The PRL‐releasing response to an intravenous (i.v.) injection of SAL was examined after treatment with augmentation of central DA using carbidopa (carbi) and L‐dopa in male goats under 8‐h (8 h light, 16 h dark) or 16‐h (16 h light, 8 h dark) photoperiod conditions. The carbi and L‐dopa treatments reduced basal PRL concentrations in the 16‐h photoperiod group (P < 0.05), while a reduction was not observed in the 8‐h photoperiod group. The mean basal plasma PRL concentration in the control group for the 8‐h photoperiod was lower than that for the 16‐h photoperiod (P < 0.05). SAL significantly stimulated the release of PRL promptly after the injection in both the 8‐ and 16‐h photoperiod groups (P < 0.05). PRL‐releasing responses for the 16‐h photoperiod were greater than those for the 8‐h photoperiod (P < 0.05). The carbi and L‐dopa treatments blunted SAL‐induced PRL release in both the 8‐ and 16‐h photoperiods (P < 0.05). These results indicate that hypothalamic DA blunts the SAL‐induced release of PRL in male goats, regardless of the photoperiod, which suggests that both SAL and DA are involved in regulating the secretion of PRL in goats.  相似文献   

18.
Two experiments were conducted to determine whether exposure to a photoperiod of artificial long days in autumn increased milk yield in subtropical goats milked once (Exp. I) or twice daily (Exp. II). In Exp. I, starting at d 10 of lactation, 1 group of does was kept under naturally decreasing photoperiod (DD1X; n = 8), whereas the other group was submitted to an artificial photoperiod of long days (LD1X; n = 8; 16 h light:8 h darkness). The kids were weaned 28 d after parturition, and dams were manually milked once daily. Milk yield and milk components (fat, protein, and lactose) were assessed up to 140 d of lactation. From d 0 to 28 of lactation (suckling phase), mean daily milk yield did not differ between DD1X and LD1X goats (2.3 ± 0.2 kg vs. 2.4 ± 0.2 kg; P = 0.717). However, between d 29 and 84 (early milking phase), mean daily milk yield was greater in LD1X does than in DD1X does (2.6 ± 0.1 kg vs. 2.1 ± 0.1 kg; P = 0.001). Finally, between d 85 and 140 (late milking phase), mean daily milk yield was greater in LD1X goats than in DD1X goats (P ≤ 0.05) only during the first 2 wk. In Exp. II, one group of goats was exposed to a photoperiod of naturally decreasing days (DD2X; n = 8) and another group was submitted to an artificial photoperiod of long days (LD2X; n = 7). In both groups, kids were weaned on d 28 of lactation and the dams were manually milked twice daily. During the nursing phase, mean daily milk yield did not differ between the DD2X and LD2X groups (2.5 ± 0.3 kg vs. 2.6 ± 0.2 kg; P = 0.767). In the early milking phase, mean daily milk yield was greater in LD2X than in DD2X goats (3.3 ± 0.2 kg vs. 2.8 ± 0.2 kg; P = 0.022), whereas during the late milking phase, milk yield did not differ between the 2 groups (P = 0.946). In both experiments, milk composition was not significantly influenced by exposure to long-day photoperiod. We conclude that, in subtropical female goats that start lactation in late autumn, exposure to an artificial long-day photoperiod stimulates milk yield, even if goats are milked once daily. In addition, combining exposure to long days with twice-daily milking will increase further milk yield in such goats without affecting milk components.  相似文献   

19.
Luteinizing hormone (LH) has been reported to increase in plasma shortly after switching photosensitive turkey hens from short-day (SD) photoperiods (6 hr light: 18 hr dark) to long-day (LD) photoperiods (14 hr light: 10 hr dark). An experiment was conducted to determine the timing and nature of these changes in plasma LH concentrations after the photostimulation of photosensitive turkey hens. The turkey hens were cannulated (jugular vein) to allow serial bleeding every 15 min for 48 hr. One group (controls) was continued under the SD photoperiod, and one group (treated) was switched to the LD photoperiod by the addition of 8 hr of light to the end of the photoperiod. In the control hens, no changes were seen in the observed or calculated baseline concentrations of LH or in the frequency and amplitude of LH peaks during the 48 hr of serial bleeding. In the treated hens, the observed and baseline concentrations of LH increased during the first LD scotoperiod, with a further increase during the second LD scotoperiod. This rapid increase was due to an increase in the baseline LH concentration, whereas no consistent changes were detected in the frequency and amplitude of LH peaks.  相似文献   

20.
Manipulation of photoperiod may provide a noninvasive, easily implemented, effective method to improve immune status and enhance the efficiency of production. The objective of this study was to evaluate the impact of manipulation of photoperiod on endocrine and immune responses of pregnant sows and their offspring. At d 83 of gestation, sows were moved to gestation stalls and kept on a photoperiod of 12 h of light:12 h of dark until d 90, when sows were assigned to a long day (LD; 16 h of light/d) or a short day (SD; 8 h of light/d) treatment. During farrowing and lactation, one-half of the sows remained on their initial photoperiod (LD:LD or SD:SD), whereas one-half were switched to the opposite treatment (LD:SD or SD:LD). Blood samples were collected from sows at d 0, 7, 14, and 21 posttreatment, 24-h postfarrowing, and the end of lactation (approximately d 21 postfarrowing). Piglets were bled at 7 and 21 d of age for immune measures. Relative to sows on LD, sows on SD had greater concanavalin A- (P = 0.003) and lipopolysaccharide- (P = 0.02) induced proliferative responses at d 7 but reduced responses at d 14. Compared with SD, sows on LD had a greater (P < 0.05) percentage of neutrophils and fewer (P < 0.05) lymphocytes at d 7, resulting in a greater (P = 0.05) neutrophil:lymphocyte ratio. Neutrophil phagocytosis was greater at d 21 in sows kept on LD. Cortisol concentrations tended to be greatest (P = 0.10) in sows on SD:SD at 24-h postfarrowing and throughout lactation. At 7 d of age, piglets on LD:SD had greater (P = 0.001) total white blood cells (WBC) and plasma cortisol (P = 0.001) relative to those on the other photoperiod treatments. Plasma immunoglobulin G was less (P = 0.001) in piglets from sows kept on SD:LD compared with the other photoperiod treatments. Piglets from sows kept on LD:LD tended to have lower total WBC (P = 0.08) at 21 d of age. Piglets from sows kept on SD:SD had greater concanavalin A- (P < 0.001) and lipopolysaccharide-induced (P < or = 0.10) proliferation responses and cortisol (P = 0.05). Phagocytosis was greater (P < 0.003) in piglets from sows that were kept on LD:LD. Cortisol (P = 0.02), WBC (P = 0.003), and immunoglobulin G (P = 0.001) were all influenced by gestational photoperiod treatment. These data indicate that photoperiod influences the immune status and endocrine response of piglets from dams that have been kept on a defined photoperiod. We conclude that photoperiod effects on piglets may be programmed in utero and can last throughout lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号