首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The in vitro metabolism of [14C-methoxy] or [32P]azinphosmethyl by subcellular fractions of abdomens from a resistant and a susceptible strain of houseflies was studied. The degradative activity in both strains was associated with the microsomal and soluble fractions and required NADPH and glutathione, respectively. The resistant strain possessed higher activity for both the mixed-function oxidases and the glutathione transferase than the susceptible strain, and both systems appear to be important in the resistance mechanism. The mixed-function oxidases were involved in the oxidative desulfuration as well as the dearylation of azinphosmethyl. A glutathione transferase located in the soluble fraction catalyzed the formation of desmethyl azinphosmethyl and methyl glutathione. This enzyme also demethylated azinphosmethyl oxygen analog. Although the soluble fraction exhibited both glutathione S-alkyltransferase and S-aryltransferase activity against noninsecticidal substrates, no evidence of the transfer of the benzazimide moiety from azinphosmethyl to glutathione was obtained. Sephadex G-100 chromatography of the soluble enzymes revealed a common eluting fraction responsible for both types of transferase activity.  相似文献   

2.
Decreased acetylcholinesterase (AChE) sensitivity and metabolic detoxification mediated by glutathione S-transferases (GSTs) were examined for their involvement in resistance to acephate in the diamondback moth, Plutella xylostella. The resistant strain showed 47.5-fold higher acephate resistance than the susceptible strain had. However, the resistant strain was only 2.3-fold more resistant to prothiofos than the susceptible strain. The resistant strain included insects having the A298S and G324A mutations in AChE1, which are reportedly involved in prothiofos resistance in P. xylostella, showing reduced AChE sensitivity to inhibition by methamidophos, suggesting that decreased AChE1 sensitivity is one factor conferring acephate resistance. However, allele frequencies at both mutation sites in the resistant strain were low (only 26%). These results suggest that other factors such as GSTs are involved in acephate resistance. Expression of GST genes available in P. xylostella to date was examined using the resistant and susceptible strains, revealing no significant correlation between the expression and resistance levels.  相似文献   

3.
The metabolism of fenitrothion was investigated in highly resistant (Akita-f) and susceptible (SRS) strains of the house fly, Musca domestica L. The Akita-f strain was 3500 times more resistant to fenitrothion than the SRS strain. Fenitrothion, topically applied to the flies, was metabolized in vivo far faster in the Akita-f strain than in the SRS strain. In vitro studies revealed that fenitrothion was metabolized by a cytochrome P-450-dependent monooxygenase system and glutathione S-transferases. The former oxidase system metabolized fenitrothion in vitro into fenitrooxon and 3-methyl-4-nitrophenol as major metabolites, and into 3-hydroxymethyl-fenitrothion and 3-hydroxymethyl-fenitrooxon as minor metabolites. Glutathione S-transferases metabolized fenitrothion into desmethylfenitrothion. The cytochrome P-450-dependent monooxygenase system and glutathione S-transferases of the resistant Akita-f strain had 1.4 to 2.2 times and 9.7 times, respectively, as great activities as those of the susceptible SRS strain. These results suggest the importance of glutathione S-transferases in fenitrothion resistance in the Akita-f strain.  相似文献   

4.
The factors which cause lindane resistance in the Third Yumenoshima strain, a strain of house flies highly resistant to insecticides, were studied using hexadeuterated lindane. Hexadeuterated lindane has the same physicochemical properties as lindane, but the former is much less biodegradable than the latter. The LD50 ratio of lindane to hexadeuterated lindane in this strain, deuterium isotope effect on LD50 values, was larger than that in SNAIDM, a susceptible (nonresistant) strain. The penetration rates of labeled and nonlabeled lindane through the insect cuticle were about the same for both strains. Thus, penetration rate does not cause resistance. The metabolic degradation of lindane in the resistant strain in vivo occurred much faster than in the susceptible strain. This was also the case for lindane degradation processes in vitro such as microsomal oxidation and glutathione conjugation. In both strains, significant isotope effects were observed in the degradation rates in vitro of labeled and nonlabeled lindane. Therefore, principal biodegradation and detoxication pathways should include reactions which cleave the CH bonds. When the much less biodegradable d6 counterpart of lindane was applied to both strains, the susceptible strain became much more highly intoxicated than the other within 20 to 30 min. This indicates that a combination of both greater degradability and probably lower sensitivity at the action site are the main factors underlying resistance in the Third Yumenoshima strain.  相似文献   

5.
Glutathione S-alkyl- and S-aryltransferase activities and the glutathione-dependent reactions involved in the metabolism of diazinon, parathion, DDT and γ-BHC were determined in two susceptible and three resistant housefly strains. The relative rate of formation of desethyl diazinon and desethyl parathion and the degradation of γ-BHC paralleled the activities of the alkyl and aryltransferases in the various strains of houseflies suggesting that a single enzyme might be involved. DDT-dehydrochlorinase showed different relative rates among the strains indicating that the dechlorination was catalyzed by a different enzyme. The enzyme responsible for the conjugation of the pyrimidinyl moiety of diazinon appears to be different from the one which catalyzes the conjugation of the p-nitrophenyl moiety of parathion. The dearylation reactions were not mediated by the glutathione S-aryltransferase in the various housefly strains.  相似文献   

6.
A strain of the fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from corn in Citra, Florida, showed high resistance to carbaryl (562-fold) and methyl parathion (354-fold). Biochemical studies revealed that various detoxification enzyme activities were higher in the field strain than in the susceptible strain. In larval midguts, activities of microsomal oxidases (epoxidases, hydroxylase, sulfoxidase, N-demethylase, and O-demethylase) and hydrolases (general esterase, carboxylesterase, β-glucosidase) were 1.2- to 1.9-fold higher in the field strain than in the susceptible strain. In larval fat bodies, various activities of microsomal oxidases (epoxidases, hydroxylase, N-demethylase, O-demethylases, and S-demethylase), glutathione S-transferases (CDNB, DCNB, and p-nitrophenyl acetate conjugation), hydrolases (general esterase, carboxylesterase, β-glucosidase, and carboxylamidase) and reductases (juglone reductase and cytochrome c reductase) were 1.3- to 7.7-fold higher in the field strain than in the susceptible strain. Cytochrome P450 level was 2.5-fold higher in the field strain than in the susceptible strain. In adult abdomens, their detoxification enzyme activities were generally lower than those in larval midguts or fat bodies; this is especially true when microsomal oxidases are considered. However, activities of microsomal oxidases (S-demethylase), hydrolases (general esterase and permethrin esterase) and reductases (juglone reductase and cytochrome c reductase) were 1.5- to 3.0-fold higher in the field strain than in the susceptible strain. Levels of cytochrome P450 and cytochrome b5 were 2.1 and 1.9-fold higher, respectively, in the field strain than in the susceptible strain. In addition, acetylcholinesterase from the field strain was 2- to 85-fold less sensitive than that from the susceptible strain to inhibition by carbamates (carbaryl, propoxur, carbofuran, bendiocarb, thiodicarb) and organophosphates (methyl paraoxon, paraoxon, dichlorvos), insensitivity being highest toward carbaryl. Kinetics studies showed that the apparent Km value for acetylcholinesterase from the field strain was 56% of that from the susceptible strain. The results indicated that the insecticide resistance observed in the field strain was due to multiple resistance mechanisms, including increased detoxification of these insecticides by microsomal oxidases, glutathione S-transferases, hydrolases and reductases, and target site insensitivity such as insensitive acetylcholinesterase. Resistance appeared to be correlated better with detoxification enzyme activities in larval fat bodies than in larval midguts, suggesting that the larval fat body is an ideal tissue source for comparing detoxification capability between insecticide-susceptible and -resistant insects.  相似文献   

7.
Glutathione S-transferases (GSTs) catalyzing the conjugation of reduced glutathione (GSH) to a vast range of xenobiotics including insecticides were investigated in the psocid Liposcelis bostrychophila Badonnel. GSTs from susceptible and two resistant strains (DDVP-R for dichlorvos-resistant strain and PH3-R for phosphine-resistant strain) of L. bostrychophila were purified by glutathione-agarose affinity chromatography and characterized by their Michaelis-Menten kinetics towards artificial substrates, i.e., 1-chloro-2,4-dinitrobenzene (CDNB), in a photometric microplate assay. The specific activities of GSTs purified from two resistant strains were significantly higher than their susceptible counterpart. For the resistant strains, GSTs both showed a significantly higher affinity to the substrate GSH while a declined affinity to CDNB than those of susceptible strain. The inhibitory potential of ethacrynic acid was very effective with highest I50 value (the concentration required to inhibit 50% of GSTs activity) of 1.21 μM recorded in DDVP-R. Carbosulfan also exhibited excellent inhibitory effects on purified GSTs. The N-terminus of the purified enzyme was sequenced by Edman degradation, and the alignment of first 13 amino acids of the N-terminal sequence with other insect GSTs suggested the purified protein was similar to those of Sigma class GSTs.  相似文献   

8.
In vivo and in vitro metabolism of pyraclofos labeled with 14C on benzene ring was studied in the pyraclofos-resistant and -susceptible female houseflies. In vivo metabolism studies, the metabolic rate of pyraclofos was the same in both strains. Pyraclofos primarily undergoes metabolic detoxification by cleavage of P-S-alkyl bond, and cleavage of the P-O-aryl bond followed by CHP [1-(4-chlorophenyl)-4-hydroxypyrazole]]-glucose conjugation. Cleavage of P-O-aryl bond and CHP-glucose conjugation is more predominant in the resistant strain whereas the cleavage of P-S-propyl bond resulting in EHP-CHP [O-1-(4-chlorophenyl)pyrazol-4-yl ethyl hydrogen phosphate] is more preferred in the susceptible strain. CHP production by P-O-aryl bond cleavage was controlled by P450 monooxygenase and esterase. UDP-glucosyltransferase appeared to play an important role in the pyraclofos metabolism of the resistant strain. Production of CHP-glucose conjugate was largely reduced by piperonyl butoxide and S,S,S-tributylphosphorotrithioate in both strains. EHP-CHP production seemed to be controlled by P450 monooxygenase and stimulated by UDP-glucose.  相似文献   

9.
EPN is twice as toxic as EPNO to house flies from both the Diazinon-resistant strain and the susceptible strain. EPN and EPNO are also eight times more toxic to the susceptible than the resistant strain. This is due to the ability of the resistant strain to metabolize these compounds to a greater extent. Metabolism by the glutathione S-transferases present in the 100,000g supernatant is more extensive than that by the NADPH-dependent microsomal mixed-function oxidases. The glutathione S-transferases are the major route of metabolism for EPN and appear to be the principal mechanism conferring resistance. EPN was metabolized by the microsomal fraction via oxidative desulfuration to the oxygen analog, EPNO, and by oxidative dearylation to p-nitrophenol. EPNO was metabolized by the same system to p-nitrophenol and desethyl EPNO as well as to an unknown metabolite. The soluble fraction metabolized EPN to p-nitrophenol, S-(p-nitrophenyl)glutathione, O-ethyl phenylphosphonothioic acid, and S-(O-ethyl phenylphosphonothionyl)glutathione. The identification of the latter conjugate demonstrates a new type of metabolite of organophosphorus compounds. EPNO was metabolized by the soluble fraction to p-nitrophenol and S-(p-nitrophenyl)glutathione.  相似文献   

10.
11.
Genetic studies of glutathione-dependent reactions were conducted with a diazinon-resistant house fly strain in which resistance is controlled primarily by genes on chromsome II. The resistant strain was crossed with a susceptible strain which had mutant markers on chromosomes II, III, and V, and the F1 was backcrossed to the susceptible strain. Glutathione transferase activities of the resultant eight phenotypes were measured using 3,4-dichloronitrobenzene, methyl iodide, and γ-benzene hexachloride as substrates. High levels of all these activities are controlled by gene(s) on chromosome II. Further analysis was made by introducing diazinon resistance into a susceptible strain via genetic crossing-over. Intermediate activity levels for 3,4-dichloronitrobenzene and methyl iodide conjugations were introduced along with intermediate levels of resistance. Assays of individual flies of the synthesized strain revealed they were heterogeneous for glutathione-dependent activities, consisting of individuals with low, intermediate, and high transferase activity. Based on these results, high levels of the glutathione-dependent enzymes are not a major biochemical mechanism responsible for diazinon resistance. It was also demonstrated that glutathione S-aryltransferase and S-alkyltransferase in the house fly, as measured with 3,4-dichloronitrobenzene and methyl iodide, are inseparable genetically and may, therefore, be the same enzyme.  相似文献   

12.
The toxicity of several juvenile hormone analogs (JHAs) to susceptible and insecticide-resistant housefly (Musca domestica L.) strains was determined by an assay procedure in which larvae were exposed to residues of JHAs in glass vials. All JHAs tested were toxic and the most active compound, isopropyl 11-methoxy-3, 7, 11-trimethylododeca-2, 4-dienoate, was 100 times as toxic to the susceptible Orlando Regular strain as methyl parathion and 600 times as toxic as DDT.A 5- to 30-fold tolerance to the different JHAs was present in an insecticide resistant strain in which resistance is associated with a high level of NADPH-dependent microsomal oxidase activity controlled by a gene(s) on chromosome II. Cross-resistance was less marked in a strain with a chromosome V high oxidase gene and absent in strains with other resistance mechanisms.The data indicate that cross-resistance to JHAs in insects may occur in certain strains with high levels of oxidative detoxifying activity. Even so, the most active JHA was far more toxic to both susceptible and resistant strains than methyl parathion or DDT.  相似文献   

13.
A resistant strain of Phytoseiulus persimilis selected by methidathion pressure for several years metabolizes the [14C]methidathion faster than does the corresponding susceptible strain. The metabolism is for the main part glutathione dependent and gives the methidathion conjugate on glutathione as a first metabolite: S[5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl]-l-glutathione. In addition, glutathione transferase with chlorodinitrobenzene as a substrate has a threefold lower Km in R strain than in S strain. Furthermore, this reaction is competitively inhibited by methidathion with a Ki which is threefold lower in R than in S strain. These results indicated that in this strain of P. persimilis resistance is due to an elevated detoxication of methidathion by a glutathione transferase. Other parameters known to be able to induce resistance in arthropods have been compared in resistant and sensitive strains. Esterase and monooxygenase activity measured with chromogenic substrates are the same in the two strains as is the level of acetylcholinesterase and its inhibition by methidathion oxon. No difference between the two strains has been found in the penetration kinetics measured with [14C]methidathion. These results indicated that glutathione transferase is the only mechanism which has been selected in P. persimilis, although other mechanisms are known to be involved in resistance to other insecticides in phytoseiid mites.  相似文献   

14.
The in vivo and in vitro metabolism of vamidothion [O,O-dimethyl S-[2-(1-methylcarbamoyl)-ethylthio] ethylphosphorothiolate] as well as the in vitro metabolism of thiovamidothion [O,O-dimethyl S-[2-(1-methylcarbamoyl)ethylthio] ethylphosphorodithioate] was investigated in insecticide-resistant and susceptible house fly strains. Vamidothion was converted in vivo to the sulfoxide, the principle metabolite, and subsequently to the sulfone at a slower rate. Vamidothion and vamidothion sulfoxide were hydrolyzed at the PS and SC bond. The resulting primary alcohol metabolite was further oxidized to a carboxylic acid followed by decarboxylation. No metabolism of vamidothion or thiovamidothion occurred in vitro without the addition of NADPH. The addition of NADPH resulted in rapid conversion of vamidothion to the sulfoxide, and thiovamidothion was oxidatively metabolized to six metabolic products. No qualitative differences were found between resistant and susceptible strains, but there were signficant quantitative differences. The metabolism was highest in the Rutgers strain followed by Cornell-R, Hirokawa, and then CSMA strain. The route of vamidothion and thiovamidothion metabolism was via the cytochrome P-450-dependent monooxygenase system, and none of the resistant strains showed glutathione S-transferase activity toward vamidothion or thiovamidothion. No further oxidation of vamidothion sulfoxide to the sulfone was observed and also no hydrolysis products were formed, in vitro.  相似文献   

15.
The induction of glutathione S-transferases and microsomal oxidases by host plants and allelochemicals was examined in sixth-instar larvae of insecticide-susceptible and resistant strains of the fall armyworm, Spodoptera frugiperda (J. E. Smith). Among 11 host plants studied, parsnip and parsley were the best inducers of glutathione S-transferase, resulting in increases of 39- and 19-fold, respectively, compared with the artificial diet. The inducer in parsnip leaves was identified by mass spectrometry, high-pressure liquid chromatography, gas chromatography, and thin-layer chromatography as xanthotoxin, a furanocoumarin. Xanthotoxin also showed a bimodal effect on the microsomal oxidase systems, increasing cytochrome P-450 content and heptachlor epoxidase activity but inhibiting aldrin epoxidase, biphenyl 4-hydroxylase, and p-chloro-N-methylaniline N-demethylase. Using indole 3-acetonitrile, indole 3-carbinol, and flavone as inducers, the inducing pattern of glutathione S-transferases was the same toward 3,4-dichloronitrobenzene, 1-chloro-2,4-dinitrobenzene, and methyl iodide. Microsomal oxidase and glutathione S-transferase were also inducible by host plants and allelochemicals in larvae of a carbaryl-resistant strain.  相似文献   

16.
The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in the resistant and susceptible strains (SS) of Liposcelis bostrychophila were investigated. The two resistant strains were the dichlorvos-resistant strain (DDVP-R) and the phosphine-resistant strain (PH3-R) with resistance ratios of 22.36 and 4.51, respectively. Compared to their susceptible counterpart, the AChE activity per insect and the specific activity of AChE in DDVP-R and PH3-R were significantly higher. There were also significant kinetic differences between DDVP-R and PH3-R. The apparent Michaelis-Menten constant (Km) for acetylthiocholine iodide (ATChI) was obviously lower in SS than that in PH3-R, indicating a higher affinity to the substrate ATChI in the susceptible strains. The affinity for the substrate ATChI in DDVP-R and SS were not significantly different. The Vmax value of the PH3-R was significantly greater when compared to the Vmax for the SS suggesting a possible over expression of AChE in this resistant strain. The inhibition of AChE to insecticide exposure in vitro revealed that all six insecticides were inhibitory for the extracted AChE’s. Based on the I50 values, AChE of the SS were more sensitive to dichlorvos, paraoxon-ethyl, malaoxon and demeton-S-methyl than those of the two resistant strains. As for carbaryl and eserine, the PH3-R suggested a significantly higher I50s compared to the susceptible strain, while, no significant differences were found between SS and DDVP-R.  相似文献   

17.
The effect of fumigants on glutathione and glutathione S-transferase in the Khapra beetle larvae (Trogoderma granarium) was studied by fumigating for 1, 3, and 5 hr with a dose causing 100% mortality at 24 hr of exposure. Glutathione and glutathione S-transferase were assayed in the cytosol at 1, 3, and 5 hr of exposure. Time-dependent depletion of glutathione was seen for all fumigants except carbon tetrachloride and phosphine. The depletion was maximum (60–70%) in the cases of methyl bromide, methyl iodide, and acrylonitrile, and least (20–30%) in the cases of ethylene dibromide and ethylene oxide. The order of glutathione depletion by various fumigants at 5 hr exposure was methyl iodide > methyl bromide = acrylonitrile > ethylene dichloride > ethylene oxide > ethylene dibromide. Glutathione S-transferase was induced by all fumigants except ethylene dibromide, methyl bromide being more potent than methyl iodide. The enzyme induction ranged from 186% by acrylonitrile to 40% by carbon tetrachloride. Mortality above 10% correlated well with the degree of GSH depletion (r = 0.729) whereas the latter did not correlate with the transferase induction.  相似文献   

18.
A housefly strain, originally collected in 1998 from a dump in Beijing, was selected with beta-cypermethrin to generate a resistant strain (CRR) in order to characterize the resistance and identify the possible mechanisms involved in the pyrethroid resistance. The resistance was increased from 2.56- to 4419.07-fold in the CRR strain after 25 consecutive generations of selection compared to a laboratory susceptible strain (CSS). The CRR strain also developed different levels of cross-resistance to various insecticides within and outside the pyrethroid group such as abamectin. Synergists, piperonyl butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF), increased beta-cypermethrin toxicity 21.88- and 364.29-fold in the CRR strain as compared to 15.33- and 2.35-fold in the CSS strain, respectively. Results of biochemical assays revealed that carboxylesterase activities and maximal velocities to five naphthyl-substituted substrates in the CRR strain were significantly higher than that in the CSS strain, however, there was no significant difference in glutathione S-transferase activity and the level of total cytochrome P450 between the CRR and CSS strains. Therefore, our studies suggested that carboxylesterase play an important role in beta-cypermethrin resistance in the CRR strain.  相似文献   

19.
Strains of sheep louse Bovicola ovis (Schrank) with various levels of resistance to pyrethroid and one strain with high degree of resistance to organophosphate (OP) insecticides were used to investigate the biochemical mechanisms of insecticide resistance, i.e., enhanced levels of general esterases, specific acetylcholinesterases (AChE), glutathione S-transferase (GST), and mixed function oxidases. Native gel electrophoresis combined with quantitative enzyme assays showed analogous expression profiles of several esterase isozymes in all the strains tested. The determination of the sensitivity of each esterase isozyme to five inhibitors (acetylthiocholine iodide, butyrylthiocholine iodide, paraoxon eserine sulfate, and pCMB) led to the identification of nine esterases in the B. ovis strain. Gel electrophoresis results are supported by enzyme assay studies where, except for the OP resistant strain, no differences in esterase activities were detected in all the pyrethroid resistant and susceptible strains assayed. Statistical analyses demonstrated that some strains have elevated GST activities compared to the susceptible reference strain.  相似文献   

20.
A field population of the rice stem borer (Chilo suppressalis Walker) with 203.3-fold resistance to triazophos was collected. After 8-generation of continuous selection with triazophos in laboratory, resistance increased to 787.2-fold, and at the same time, the resistance to isocarbophos and methamidophos was also enhanced by 1.9- and 1.4-fold, respectively, implying some cross-resistance between triazophos and these two organophosphate insecticides. Resistance to abamectin was slightly enhanced by triazophos selection, and fipronil and methomyl decreased. Synergism experiments in vivo with TPP, PBO, and DEM were performed to gain a potential indication of roles of detoxicating enzymes in triazophos resistance. The synergism results revealed that TPP (SR, 1.92) and PBO (SR 1.63) had significant synergistic effects on triazophos in resistant rice borers. While DEM (SR 0.83) showed no effects. Assays of enzyme activity in vitro demonstrated that the resistant strain had higher activity of esterase and microsomal O-demethylase than the susceptible strain (1.20- and 1.30-fold, respectively). For glutathione S-transferase activity, no difference was found between the resistant and the susceptible strain when DCNB was used as substrate. However, 1.28-fold higher activity was observed in the resistant strain when CDNB was used. These results showed that esterase and microsomal-O-demethylase play some roles in the resistance. Some iso-enzyme of glutathione S-transferase may involve in the resistance to other insecticides, for this resistant strain was selected from a field population with multiple resistance background. Acetylcholinesterase as the triazophos target was also compared. The results revealed significant differences between the resistant and susceptible strain. The Vmax and Km of the enzyme in resistant strain was only 32 and 65% that in the susceptible strain, respectively. Inhibition tests in vitro showed that I50 of triazophos on AChE of the resistant strain was 2.52-fold higher. Therefore, insensitive AChE may also involved in triazophos resistance mechanism of rice stem borer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号