共查询到20条相似文献,搜索用时 93 毫秒
1.
【目的】 文章旨在探讨基于高分辨率多光谱遥感影像进行冬小麦种植面积早期快速提取、冬小麦空间分布情况快速制图与精度验证的方法,为山东省冬小麦高产、优质种植和农艺肥水的处方决策提供全局性信息。【方法】 (1)对Sentinel-2遥感影像数据进行预处理,然后采用历史种植分布数据自动提取与人工选取相结合方式构建冬小麦识别样本库,将样本分为小麦、林地、水体、建筑和道路及其他作物五大类;(2)采用随机森林算法计算机自动分类与影像人工解译相结合的方式,提取研究区冬小麦种植面积,绘制冬小麦种植空间分布图,并进行精度验证。【结果】 (1)解译得到研究区冬小麦种植面积为54.41万hm2,冬小麦种植面积的总体分布精度为97.05%,kappa系数为0.94,解译效果良好;(2)该文提出的方法可实现冬小麦种植面积高精度提取以及快速制图。【结论】 早期精准掌握冬小麦种植面积及空间分布信息,能够为地方政府和农业部门指导农事活动提供科学依据。 相似文献
2.
小麦种植面积遥感监测是小麦估产的基本要素,准确而及时地提取不同灌溉类型冬小麦种植面积及其空间分布信息可为冬小麦长势监测以及产量评估提供科学依据。以山西省闻喜县冬小麦为研究对象,以Sentinel-2A影像为基础数据源,选择主成分(PCA)、红边归一化植被指数(RENDVI)、纹理特征等3个特征变量,结合实地调查样本点,采用随机森林算法,提取冬小麦种植面积,并结合数字高程模型(DEM)提取雨养区和灌溉区冬小麦种植面积。结果表明,Sentinel-2A遥感数据适合作为县域尺度冬小麦监测的数据源;主成分分析、纹理特征和RENDVI的引入可以提高单时相遥感影像对县域冬小麦分类的识别能力;随机森林算法和数字高程模型结合可以实现雨养区和灌溉区冬小麦种植面积的提取。 相似文献
3.
县域尺度上基于GF-1PMS影像的冬小麦种植面积遥感监测 总被引:1,自引:0,他引:1
为探究县域尺度上基于高分一号卫星(GF-1)PMS影像进行冬小麦遥感监测的可行性及精准性,以河南省滑县为研究区,遴选2015年2月上旬GF-1 PMS影像6景,对影像进行辐射定标、FLAASH大气校正、NNDiffuse融合、几何精校正、地图投影转换等预处理后,在外业调查和样本分析的基础上构建一种新的冬小麦决策树分类模型,模型第1层决策方案中NDVI0.311的像元为冬小麦,得到冬小麦的粗分类结果;在此基础上进行第2层决策分类,以进一步提高冬小麦的分类精度,分类方案为第1波段地表反射率0.146、第2波段地表反射率0.148、第3波段地表反射率0.135、第4波段地表反射率0.250的像元为冬小麦。对分类结果进行形态学滤波处理,以消除或减少分类结果中孤立的像元。分别基于决策树分类模型与ENVI软件自带的IsoData非监督分类模型,对比分析GF-1PMS影像和同时期Landsat-8OLI影像在冬小麦面积提取上的精度。结果表明:基于新构建的决策树分类模型,2015年滑县冬小麦种植面积为115 715.81hm2,混淆矩阵检验总体精度为99.62%,Kappa系数为0.99;PMS影像提取冬小麦的混淆矩阵总体精度比OLI影像高出9个百分点。说明县域尺度上基于单时相GF-1PMS影像在冬小麦收获前提取冬小麦种植面积是可行的,提取精度较高。 相似文献
4.
基于Landsat 8的OLI影像对徐州市2013—2017年植被数据进行植被提取。通过OLI影像对K-L变换、归一化植被指数NDVI及原始波段的相关系数进行计算,从而选取3种最优波段进行组合,利用SVM监督分类对5年城市数据进行植被提取。结果表明,原生波段与衍生波段的合成影像有效提高了植被提取精度,同时数据分析也显示出徐州市辖区内存在植被面积较小、植被空间分布不均等问题,并提出徐州市植被规划的合理建议。 相似文献
5.
基于RS的冬小麦种植面积提取及最佳时相选择 总被引:1,自引:0,他引:1
为探求冬小麦种植面积提取的方法,本研究通过多种图像处理方法对TM数据进行处理,结合实地调查和研究区主要种植作物的物候历,利用TM数据提取了冬小麦的种植面积。同时为了提高解译精度,结合GIS进行了两次目视解译过程,消除了分类器分类会出现的多分和漏分现象。结果表明:通过分类后计算混淆矩阵与地面真实感兴趣区(ROI)进行比较,发现Mahalanobis Distance分类法阈值(最大误差距离)为2.9时分类效果最佳。得到2007年研究区域冬小麦遥感监测面积为560 650 hm2,提取精度达到了95.23%。三个地区以临汾地区提取精度最高,而晋中地区最低。因此利用该方法提取冬小麦种植面积是可行的。 相似文献
6.
7.
【目的】 利用2018—2019年冬小麦生长季的雷达数据对河南省驻马店市上蔡县、正阳县、平舆县、汝南县的冬小麦种植面积进行提取,为雷达数据在冬小麦种植面积提取研究提供参考。【方法】 文章在对冬小麦生长关键物候期多时相Sentinel-1A SAR(Synthetic Aperture Radar,合成孔径雷达)数据中VV极化和VH极化影像的后向散射系数进行分析的基础上,利用最大似然法开展了河南省驻马店市上蔡县、正阳县、平舆县、汝南县4个“产粮大县”的冬小麦种植面积提取研究,并通过统计年鉴数据对VV极化和VH极化的冬小麦提取结果进行了初步评价。利用2018年12月22日,2019年3月28日和2019年4月21日的SAR时间序列影像数据进行冬小麦分类提取。【结果】 从整个研究区来看VV极化方式的提取结果为4 461.14 km2,VH极化的结果为4 277.22 km2,与统计数据相比,VV极化的误差为13.17%,VH极化的误差为8.51%,VV极化的提取误差要大于VH极化的提取误差。各个县的结果显示,VH极化的提取误差均小于VV极化的结果,误差最小的为利用VH极化提取的正阳县的结果,误差仅为1.85%,误差最大的为利用VV极化提取的平舆县的结果,误差为19.72%。【结论】 基于冬小麦生长关键物候期多时相Sentinel-1A的后向散射系数,能够实现较高精度的冬小麦种植面积提取。 相似文献
8.
为了快速、准确地获取作物分布信息,探索使用主动遥感影像(Sentinel-1A)和被动遥感影像(Sentinel-2)提取冬小麦空间分布的可行性。首先,根据冬小麦的物候特征,合成冬小麦全生育期的Sentinel-1A影像;并依据各类地物的NDVI(归一化植被指数)时序曲线合成一期高质量的冬小麦越冬后Sentinel-2影像。其次,设计Sentinel-1A影像、Sentinl-2影像和融合Sentinel-1A与Sentinl-2主被动遥感影像3种分类方案,然后在Google Earth Engine(GEE)云平台上基于随机森林算法对冬小麦进行分类。结果表明,基于全生育期Sentinel-1A影像的冬小麦用户精度和生产者精度分别为83.15%和86.44%,提取结果中存在较多的“椒盐”噪声;基于冬小麦越冬后Sentinl-2影像的冬小麦用户精度和生产者精度分别为87.98%和84.75%,提取精度较使用全生育期Sentinel-1A影像有所提高,但分类结果受“异物同谱”的影响,产生许多错分;融合主被动遥感影像的冬小麦用户精度和生产者精度分别为96.57%和95.48%,相较于仅使用单... 相似文献
9.
【目的】冬小麦种植面积的提取对保障粮食安全和估产工作具有重要意义,已有冬小麦面积监测方法存在的所需数据量多、时间滞后等问题亟待解决。【方法】基于入冬前的2017年11月21日(分蘖期)和2017年12月24日Landsat8 OLI影像,将MIR、NIR和RED波段进行HSV变换,并计算地物的NDVI;利用全国土地利用图提取耕地与非耕地两类地物,统计分析两类地物NDVI值、H波段值的关系并设置阈值,初步提取疑似小麦种植区;利用小麦两个时相S值增大的特点准确提取小麦种植区域。【结果】利用多时相遥感数据中NDVI、H和S差别提取的试验区冬小麦种植面积,与地面调查、县区统计年鉴数据有较高的一致性。【结论】HSV阈值划分方法适用于冬小麦种植面积提取,能够提高小麦面积估算的时效性。 相似文献
10.
基于不同时相遥感的冬小麦种植面积的提取 总被引:2,自引:0,他引:2
卫星遥感技术能够快速、准确、大面积对农作物生长进行监测,多时相遥感监测可克服单时相遥感监测的不足,利于实现对农作物生长变化的动态监测。以江苏省大丰市为研究区域,选用拔节期和抽穗期两景环境(HJ)卫星遥感影像进行不同地物光谱信息识别与种植面积提取研究。首先,在分析两景HJ星影像植被光谱信息的基础上,提取出各自影像的归一化差值植被指数(NDVI)影像,并对两景NDVI影像分别进行加运算和减运算,得到另外两景NDVI合成影像。其次,通过对提取到的四景NDVI影像光谱信息进行比较分析,最终选用植被光谱信息特征较为明显的加运算合成影像进行冬小麦种植面积提取。最后,基于影像不同地物的NDVI阈值划分,并叠加GPS样点信息校正,提取到大丰市冬小麦种植面积数据及其空间分布信息。结果显示,大丰市遥感提取冬小麦种植面积为78 712.13 hm2,精度为92.51%。在该市20个乡镇(或农场)冬小麦种植面积提取精度中,精度大于95%有9个乡镇(或农场),精度在90%至95%之间的有7个乡镇(或农场),仅有4个乡镇(或农场)提取精度在80%至90%之间。说明,利用不同时相遥感合成运算方法得到的合成影像,能明显增强冬小麦光谱信息与其他植被信息特征区别,有利于实现高精度提取冬小麦种植面积的目的。 相似文献
11.
基于MODIS EVI时序数据的冬小麦种植面积提取 总被引:1,自引:0,他引:1
基于MODIS EVI构建的时间序列谱,结合冬小麦生育期形态变化特征,提取了河南省冬小麦种植面积.结果表明,冬小麦在EVI特征空间中具有独特的序列谱相特征,返青期后冬小麦整体EVI表现为逐渐升高,EVI在开花期后下降,灌浆后期快速降低;采用决策树分类方法实现冬小麦分离提取,整个河南省冬小麦识别面积与官方统计面积仅相差482.00×103 hm2,精度达到90.88%;EVI时间序列谱反映的作物生长过程的生理意义明确,采用MODIS EVI时间序列谱的遥感分类方法可以较好地实现冬小麦的遥感分类提取,满足冬小麦的长势监测和遥感估产的需要. 相似文献
12.
冬小麦是我国北方主要农作物之一,及时掌握冬小麦面积信息及长势情况,能够快速地为农业生产管理者以及财政部门提供决策依据,有利于小麦增产、提高农民收入。本文以山东省滨州、东营市为研究区,通过主成分分析、监督及非监督分类结合的方法提取ETM+遥感影像的冬小麦信息,以SPSS聚类分析法估测滨州市冬小麦长势,用距离加权法构建相邻轨道图像的植被长势分级模型并估测东营市的冬小麦长势。结果显示:小麦提取平均精度约为93.79%,冬小麦分布呈现“西多东少,南多北少”的特征,一般小麦分布较多的地区长势也较好。基于重叠区距离加权法构建的植被长势分级模型,能够在一定程度上消除相邻轨道遥感图像的时间差异,实现大区域的植被长势分析。 相似文献
13.
以河南省作为研究区域,采用冬小麦返青及拔节期间的高光谱数据MODIS-NDVI 16 d合成数据集,利用遥感手段对河南省冬小麦面积进行估测。利用剔除非耕地后的数据,使用最小噪声分离(MNF)的方法进行数据压缩处理,并基于连续最大角突锥模型的线性混合像元分解法进行估测计算。估测结果与当年河南省实际统计数据相比,在特殊气候影响下,其相对误差也仅在0~7%,说明这种方法提取效果较好,在农作物面积估测中具有较强的应用价值。 相似文献
14.
15.
利用2004-2005年MODIS 16 d合成的NDVI最大值植被指数数据,基于NDVI光谱突变方法对山西省运城地区冬小麦种植面积进行提取。通过分析得出:2005年5-6月(2005161~2005129)提取的冬小麦面积与实测面积相关性最高,估测的冬小麦面积与实测面积的误差最小,准确性最高。 相似文献
16.
基于高光谱的冬小麦叶面积指数估算方法 总被引:3,自引:0,他引:3
【目的】冬小麦叶面积指数是评价其长势和预测产量的重要农学参数,高光谱技术监测叶面积指数的方法能够实现快速无损的监测管理。本文旨在将田间监测和高光谱遥感相结合,探索研究中国南方江汉平原地区冬小麦的最佳波段、光谱参数及监测模型。【方法】研究选取江汉平原的湖北省潜江市后湖管理区,利用ASD地物光谱仪和SunScan冠层分析系统在田间对冬小麦的冠层光谱及叶面积指数的变化进行监测,并探讨高光谱植被指数与冬小麦叶面积指数之间的定量关系。通过相关性分析、回归分析等方法构建6种植被指数与冬小麦叶面积指数的反演模型。【结果】冬小麦冠层光谱反射率中近红外波段870 nm,红光波谷670 nm,绿光波峰550 nm,蓝光450 nm波段对叶面积指数变化最为敏感,通过构建植被指数与叶面积指数模型,相关性均较好,决定系数(R2)为0.675-0.757,其中NDVI反演模型的R2最高为0.757。【结论】经模型精度检验,NDVI植被指数反演模型的精度较其它模型好,较适合对研究样区的冬小麦进行叶面积指数反演。 相似文献
17.
18.
利用TM影像更新研究区的土地利用数据,提取冬小麦可能出现的区域作为掩膜限定识别范围,从而可以减少其他植被类型信息的干扰;通过选取冬小麦样点,在时间序列NDVI数据中提取纯冬小麦的时序曲线,根据曲线特征构建时相识别模型;在限定的范围内根据识别模型提取冬小麦,进而将两个尺度数据进行综合处理和面积统计,冬小麦面积为268.65×10~3 hm~2;利用统计年鉴数据和随机抽样两种方法进行精度分析,结果显示面积精度为91.56%,位置精度为87.46%。与实地调查和人工解译相比,大大提供了工作效率,减少了工作量,适用于大面积区域尺度的冬小麦监测。 相似文献
19.
区域总量控制下的冬小麦种植面积空间分布优化 总被引:1,自引:0,他引:1
【目的】利用传统遥感与抽样相结合的方法进行农作物种植面积测量,只能获得区域总量,无法有效获取农作物种植面积空间分布信息。针对以上不足,开展区域总量控制下的冬小麦种植面积空间分布优化研究,从而提高冬小麦种植面积测量的空间分布精度。【方法】将整个遥感影像像元划分为3部分:"纯净冬小麦像元"、"混合冬小麦像元"和"典型非冬小麦像元"。综合软、硬分类方法各自的优势,在区域冬小麦总量面积一定的前提下,设定阈值确定混合冬小麦像元的空间分布范围。【结果】传统遥感与抽样相结合的方法提取出的冬小麦结果RMSE为0.13,优于硬分类方法(RMSE为0.16)和软分类方法(RMSE为0.20)。【结论】区域总量控制下的软、硬分类方法能够有效地对冬小麦种植面积空间分布进行优化,既保证了区域测量精度,又提高了空间分布的准确性。 相似文献
20.
冬小麦M808在辽宁省种植区划研究 总被引:5,自引:0,他引:5
1991~1998年引种乌克兰冬小麦M808在辽宁省40个地点试种,确定了M808在辽宁省种植的适宜区域及其在辽宁省可安全种植的北界。结论为:沈阳-海城-盖州-线的县(市)区为最适种植区;此外,铁岭-阜新以南,铁岭-沈阳-本溪以西地区(除建平县)为适宜种植区,昌图、康平、法库、彰武等县区及大连市全区为可能种植区;辽宁大部分及建平县为不能种植区,安全种植北界为阜新-新民-铁岭-本溪一线。 相似文献