首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
食品包装上的标签文本含有生产日期、营养成分、生产厂家等食品相关信息,这些不仅为消费者购买食品提供了重要依据,也有助于食品监督抽检机构发现潜在的食品安全问题。食品标签文本检测是食品标签自动识别的前提,有助于降低人工录入成本、提高数据处理效率。基于食品包装图像构建数据集,提出了一种基于语义分割的距离场模型,以检测食品标签。该模型包含像素分类和距离场回归两类任务,其中像素分类任务分割处理图像中的文本区域,距离场回归任务预测文本区域内的像素点到该区域边界的归一化距离。为提升模型的检测性能,在回归预测模块中通过增加注意力模块优化模型结构,并针对距离场回归任务损失值过小、影响模型训练优化问题对其损失函数进行了改进。消融实验结果表明,增加注意力模块和损失函数的改进使得模型的准确率分别提高了4.39、3.80个百分点,有效提高了检测准确率。食品包装图像数据集的对比实验表明,采用本文模型检测食品标签文本具有较好的性能,其召回率、准确率分别达到87.61%、76.50%。  相似文献   

2.
基于注意力机制的农业文本命名实体识别   总被引:4,自引:0,他引:4  
针对农业智能问答系统构建过程中传统的农业命名实体识别方法依赖人工特征模板、特征信息提取不充分、实体名称多样导致标注不一致等问题,提出一种基于注意力机制的农业文本命名实体识别方法.采用连续词袋模型(Continuous bag of words,CBOW)对输入字向量进行预训练,丰富字向量特征信息,缓解分词准确度对性能的...  相似文献   

3.
当前农业实体识别标注数据稀缺,部分公开的农业实体识别模型依赖手工特征,实体识别精度低。虽然有的农业实体识别模型基于深度学习方法,实体识别效果有所提高,但是存在模型推理延迟高、参数量大等问题。本研究提出了一种基于知识蒸馏的农业实体识别方法。首先,利用互联网的海量农业数据构建农业知识图谱,在此基础上通过远程监督得到弱标注语料。其次,针对实体识别的特点,提出基于注意力的BERT层融合模型(BERT-ALA),融合不同层次的语义特征;结合双向长短期记忆网络(BiLSTM)和条件随机场CRF,得到BERT-ALA+BiLSTM+CRF模型作为教师模型。最后,用BiLSTM+CRF模型作为学生模型蒸馏教师模型,保证模型预测耗时和参数量符合线上服务要求。在本研究构建的农业实体识别数据集以及两个公开数据集上进行实验,结果显示,BERT-ALA+BiLSTM+CRF模型的macro-F1相对于基线模型BERT+ BiLSTM+CRF平均提高1%。蒸馏得到的学生模型BiLSTM+CRF的macro-F1相对于原始数据训练的模型平均提高3.3%,预测耗时降低了33%,存储空间降低98%。试验结果验证了基于注意力机制的BERT层融合模型以及知识蒸馏在农业实体识别方面具有有效性。  相似文献   

4.
在虫情监测和害虫防范治理过程中,准确识别害虫是有效解决农业领域虫害问题的重要前提。依靠专家知识和人工经验进行虫情诊断的方式效率较为低下,自动化和智能化水平较差,而采用深度学习、计算机视觉等智能化技术手段可以大幅度提升害虫识别过程的效率、准确度,并降低人工成本。概述了基于深度学习的害虫识别技术发展现状,分析深度学习技术在害虫图像识别领域的实现原理和优势,阐述国内外专家学者在基于深度学习的害虫识别技术领域的最新研究进展,提出该技术领域面临的挑战,并对发展方向进行预测。该文可为深入开展害虫识别和分类技术在智慧农业上的应用研究提供参考。   相似文献   

5.
郭丽红  张磊 《河北农机》2024,(5):136-138
随着全球气候变化的加剧,极端天气事件频发,农业生产面临的气象灾害风险日益加大。传统的气象服务模式由于信息传递效率低、预测准确性不足等问题已经难以满足现代农业生产的需求。与此同时,信息技术、大数据、人工智能等领域的快速发展为农业气象服务的创新提供了强大的技术支撑。特别是人工智能技术在数据挖掘、模式识别、预测分析等方面有着强大能力,使得农业气象服务在精准化、个性化、智能化方面取得了突破性进展。因此,将智能化技术与农业气象服务相结合,开展农业气象智能化服务的应用研究,不仅顺应了时代发展的趋势,也是推动农业生产方式转型升级的必然要求。基于此,本文将探索农业气象智能化服务在农业生产中的应用实践。  相似文献   

6.
[目的/意义]近年来,人工智能在农业领域的应用取得了显著进展,但仍面临诸如模型数据收集标记困难、模型泛化能力弱等挑战。大模型技术作为近期人工智能领域新的热点技术,已在多个行业的垂直领域中展现出了良好性能,尤其在复杂关联表示、模型泛化、多模态信息处理等方面较传统机器学习方法有着较大优势。[进展]本文首先阐述了大模型的基本概念和核心技术方法,展示了在参数规模扩大与自监督训练下,模型通用能力与下游适应能力的显著提升。随后,分析了大模型在农业领域应用的主要场景;按照语言大模型、视觉大模型和多模态大模型三大类,在阐述模型发展的同时重点介绍在农业领域的应用现状,展示了大模型在农业上取得的研究进展。[结论/展望]对农业大模型数据集少而分散、模型部署难度大、农业应用场景复杂等困难提出见解,展望了农业大模型未来的发展重点方向。预计大模型将在未来提供全面综合的农业决策系统,并为公众提供专业优质的农业服务。  相似文献   

7.
深度学习是目前人工智能领域最重要的技术之一,在学术领域和工程应用掀起了研究高潮。鉴于深度学习在农业领域的应用潜力和重要性,通过对深度学习有关文献的研究,首先详细描述了深度学习的概念,结合典型深度神经网络的结构特征,对其特点、优缺点、变体以及应用现状进行了综述;然后重点介绍了深度学习在语音识别、农业场景目标检测、农业图像语义分割领域的发展和应用;最后分析了深度学习在农业领域目前存在的问题和未来重点的研究方向。  相似文献   

8.
基于支持向量机的中文农业文本分类技术研究   总被引:1,自引:0,他引:1  
高效地组织、分类信息,是提供个性化农业信息推荐服务的基础。根据农业文本信息特点,提出了一种基于线性支持向量机(Support vector machine,SVM)的中文农业文本分类模型,首先构建农业行业分类关键词库,通过特征词选择和权重计算,构建分类器模型,实现信息的自动分类。实验选取了1 071个测试文档,并按照种植业、林业、畜牧业、渔业进行分类。结果表明,分类准确率为96.5%,召回率为96.4%。实验结果高于贝叶斯、决策树、KNN、SMO等分类算法,将该模型应用于农业物联网行业信息综合服务平台,运行结果表明,该方法能够实现中文农业文本信息的自动分类,响应时间满足系统要求。  相似文献   

9.
视觉SLAM技术是无人驾驶技术中的关键一环,可以为无人车提供环境地图信息以及精确的位置信息。直接使用传统的特征提取算法而不加改进,不利于视觉SLAM系统的位姿解算。基于语义分割对视觉SLAM技术中特征提取的环节进行了优化,使其特征点分布更加均匀,有利于无人车进行更加准确的位姿估计,并设计实验对方法的有效性进行了验证。实验结果表明:采用改进的方法有利于视觉SLAM系统进行更准确的定位和地图构建。  相似文献   

10.
“中国农技推广APP”农业问答社区存在提问数据量大、规范性差、涉及面广、噪声多、特征稀疏等影响文本语义匹配的问题,为了改善农业提问数据相似性判断的性能,提出了融合多语义特征的文本匹配模型Co_BiLSTM_CNN,从深度语义、词语共现、最大匹配度3个层面提取短文本特征,并利用共享参数的孪生网络结构,分别运用双向长短期记忆网络、卷积神经网络和密集连接网络构建文本匹配模型。试验结果表明,该模型可以更全面提取文本特征,文本相似性判断的正确率达94.15%,与其他6种模型相比,文本匹配效果优势明显。  相似文献   

11.
基于语义Web的农业生产协同决策服务机制研究   总被引:2,自引:0,他引:2  
针对分布式农业知识资源异构、自治和难以实现共享服务的问题,采用语义Web技术,提出了基于Web本体建模语言的异构农业知识资源描述模型和决策服务形式化表达模型.以模型为基础,将农业协同决策服务需求分解为多个决策流程片段,设计了基于上下文感知计算的农业问题协同决策服务机制,实现对多个决策流程任务和知识资源的按需调度,提高了农业知识资源的利用效率和协同推理效率.与其他方案不同,该机制进一步考虑了任务均衡分解与知识资源智能调度对协同决策服务机制的影响,并通过生猪疾病协同诊断决策系统的搭建进行了应用实例验证.实验表明,该方法在求解精度、决策效率方面优于传统农业智能决策方法.  相似文献   

12.
基于卷积模型的农业问答语性特征抽取分析   总被引:1,自引:0,他引:1  
互联网农技推广社区每秒增衍问答数据近万组,这些海量数据具有隐性的词性、情感和冗余向量特征,实现数据聚合与数据块消减是该领域的难题。提出了一种基于卷积神经网络的农业问答情感极性特征抽取分析模型,结合农业分词字典,对数据集进行分词后使用Skip-gram模型转换为256维的词向量,利用批规范后的卷积神经网络对数据集进行训练,从而得到用于识别农技推广社区问答词性情感相似性的神经网络模型参数。试验结果表明,该方法能够准确识别测试样例集中的冗余队列,与其他5种文本分类方法进行比较,各项指标优势明显,针对测试集的语性特征抽取准确率达到82.7%。  相似文献   

13.
可重构的农业知识服务模式研究   总被引:1,自引:0,他引:1  
针对当前湖南省农村、农业与农民问题,通过分批走访农村中的农民、专业能手、农村大户、村支负责人、龙头企业与相应职能部门干部,提出了构建湖南省农业信息综合服务平台必须结合当前农村已有的公司+农户+基地形式,充分重构已有的农业知识体系,在逐步丰富农业知识库情况下,采取网络+呼叫中心+专家+信息员形式,提高农户、龙头企业与合作组织利用农业知识的能力,有效解决农村信息化服务瓶颈问题。  相似文献   

14.
张士东 《湖南农机》2012,(7):213-215
高句丽语言是高句丽民族的语言。随着其政权的消亡,其语言也逐渐消亡。现在对高句丽语的研究只能借助其地名、人名和官名。并且需要借助汉字,同时要借助汉语的上古音和中古音对当时的标注高句丽语的汉字进行语音还原。同时还要借助周边的民族及国家的语言同高句丽语进行比较才能够对高句丽语进行识别。高句丽语最主要的就是名词,而名词中的自然物又是记载比较详细的。将这些自然物继续分成数个小类,以便对该语言进行详尽地考察。  相似文献   

15.
基于深度语义分割的无人机多光谱遥感作物分类方法   总被引:5,自引:0,他引:5  
为精准获取农田作物种植分布信息以满足农业精细化管理需求,基于DeepLab V3+深度语义分割网络提出了一种面向无人机多光谱遥感影像的农田作物分类方法.通过修改输入层结构、融合多光谱信息和植被指数先验信息、并采用Swish激活函数优化模型,使网络在响应值为负时仍能反向传播.基于2018-2019年连续2年内蒙古自治区河...  相似文献   

16.
大数据、物联网和人工智能等现代信息技术在农业中的广泛应用,推动了农业农村现代化和智慧农业的发展,带动了农业经营主体对科技与知识的旺盛需求,农业知识服务成为农业转型升级和高质量发展的重要引擎。为解决现有农业知识分散无序、更新不及时、面向经营主体的知识服务不平衡、供需脱节等问题,本文总结分析了国内外农业知识服务的研究与实践现状,提出了一套基于农业全产业链、按照农业数据的全生命周期、面向农业经营主体的农业智能知识服务体系框架,设计了基于智能物联网(Artificial Intelligence & Internet of Things,AIoT)的农情感知与大数据汇聚治理、基于知识图谱的农业知识组织与计算挖掘,以及基于多场景的农业智能知识服务三个层次。文中归纳了包括空天地AIoT全维度农情感知、多源异构农业大数据汇聚治理、知识建模、知识抽取、知识融合、知识推理、跨媒体检索、智能问答、个性化推荐技术、决策支持等农业智能知识服务涉及的关键技术,并举例了其研究应用。最后从农业数据获取、模型构建、知识组织、智能知识服务技术和应用推广等方面探讨了未来农业智能知识服务的发展趋势及对策建议。总结发现,农业智能知识服务是破解当前农业知识服务供需矛盾,实现跨媒体农业数据到知识的跨越,推动农业知识服务向个性化、精准化和智能化升级的关键,亦是农业科技自立自强、现代农业提质增效的重要支撑。  相似文献   

17.
农业机械化与区域农业可持续发展关系实证分析   总被引:5,自引:0,他引:5  
农业机械化与区域农业可持续发展有密切的关系,但不同区域所表现的状况不同,既有协同发展的区域,又有发展不平衡的区域。为此,应用多元统计分析中的聚类分析法,对2011年我国各区域农业机械化与农业可持续发展的各项指标进行聚类,根据聚类结果对我国各区域的农业机械化与农业可持续发展的相关程度进行排列组合。结果显示:从地域分布来看,可以将我国的27个区域按照相关程度分为4大区域,并为这4类区域今后的农业生产提出相关参考建议。  相似文献   

18.
根据昌图县农业生产托管服务的实际情况,分析服务中存在的主要问题和监管难点。为有效监管生产托管服务的作业面积和服务质量,提出一种实时监管作业过程的智能监管模式,为提高监管的效率和效果提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号