首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CHEN Ditao 《干旱区科学》2020,12(3):397-412
Playing an important role in global warming and plant growth, relative humidity(RH) has profound impacts on production and living, and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area. However, information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited. This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method, and the path analysis was used to clarify the impact of temperature(T), precipitation(P), actual evapotranspiration(ETa), wind speed(W) and sunshine duration(S) on RH. The results demonstrated that climatic conditions in North Xinjiang(NXJ) was more humid than those in Hexi Corridor(HXC) and South Xinjiang(SXJ). RH had a less significant downtrend in NXJ than that in HXC, but an increasingly rising trend was observed in SXJ during the last five decades, implying that HXC and NXJ were under the process of droughts, while SXJ was getting wetter. There was a turning point for the trend of RH in Xinjiang, which occurred in 2000. Path analysis indicated that RH was negatively correlated to T, ETa, W and S, but it increased with increase of P. S, T and W had the greatest direct effects on RH in HXC, NXJ and SXJ, respectively. ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ, while T was the dominant factor in SXJ.  相似文献   

2.
ZHANG Zhen 《干旱区科学》2022,14(4):441-454
High Mountain Asia (HMA) region contains the world's highest peaks and the largest concentration of glaciers except for the polar regions, making it sensitive to global climate change. In the context of global warming, most glaciers in the HMA show various degrees of negative mass balance, while some show positive or near-neutral balance. Many studies have reported that spatial heterogeneity in glacier mass balance is strongly related to a combination of climate parameters. However, this spatial heterogeneity may vary according to the dynamic patterns of climate change at regional or continental scale. The reasons for this may be related to non-climatic factors. To understand the mechanisms by which spatial heterogeneity forms, it is necessary to establish the relationships between glacier mass balance and environmental factors related to topography and morphology. In this study, climate, topography, morphology, and other environmental factors are investigated. Geodetector and linear regression analysis were used to explore the driving factors of spatial variability of glacier mass balance in the HMA by using elevation change data during 2000-2016. The results show that the coverage of supraglacial debris is an essential factor affecting the spatial heterogeneity of glacier mass balance, followed by climatic factors and topographic factors, especially the median elevation and slope in the HMA. There are some differences among mountain regions and the explanatory power of climatic factors on the spatial differentiation of glacier mass balance in each mountain region is weak, indicating that climatic background of each mountain region is similar. Therefore, under similar climatic backgrounds, the median elevation and slope are most correlated with glacier mass balance. The interaction of various factors is enhanced, but no unified interaction factor plays a primary role. Topographic and morphological factors also control the spatial heterogeneity of glacier mass balance by influencing its sensitivity to climate change. In conclusion, geodetector method provides an objective framework for revealing the factors controlling glacier mass balance.  相似文献   

3.
Topography plays an important role in determining the glacier changes. However, topography has often been oversimplified in the studies of the glacier changes. No systematic studies have been conducted to evaluate the relationship between the glacier changes and topographic features. The present study provided a detailed insight into the changes in the two branches (east branch and west branch) of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains since 1993 and systematically discussed the effect of topography on the glacier parameters. This study analyzed comprehensive recently observed data (from 1992/1993 to 2018/2019), including mass balance, ice thickness, surface elevation, ice velocity, terminus, and area, and then determined the differences in the changes of the two branches and explored the effect of topography on the glacier changes. We also applied a topographic solar radiation model to analyze the influence of topography on the incoming shortwave radiation (SWin) across the entire glacier, focusing on the difference in the SWin between the two branches. The glacier mass balance of the east branch was more negative than that of the west branch from 1992/1993 to 2018/2019, and this was mainly attributed to the lower average altitude of the east branch. Compared with the west branch, the decrease rate of the ice velocity was lower in the east branch owing to its relatively increased slope. The narrow shape of the west branch and its southeast aspect in the earlier period resulted in a larger glacier terminus retreat of the west branch. The spatial variability of the SWin across the glacier surface became much larger as altitude increased. The SWin received by the east branch was slightly larger than that received by the west branch, and the northern aspect could receive more SWin, leading to glacier melting. In the future, the difference of the glacier changes between the two branches will continue to exist due to their topographic differences. This work is fundamental to understanding how topographic features affect the glacier changes, and provides information for building different types of relationship between the glacier area and ice volume to promote further studies on the basin-scale glacier classification.  相似文献   

4.
Shunjun HU 《干旱区科学》2018,10(6):968-976
Salt-affected soils are mostly found in irrigated areas within arid and semi-arid regions where the groundwater table is shallow. Soils of this type have become an increasingly severe problem because they threaten both the environment and the sustainable development of irrigated agriculture. A tool to estimate phreatic evaporation is therefore urgently required to minimize the salinization potential of salt-affected areas. In this context, phreatic evaporation at zero water table depth (E0) is a key parameter for establishing a model for calculating phreatic evaporation. The aim of this study was to explore the law of phreatic evaporation and to develop structurally rational empirical models for calculating phreatic evaporation, based on E0 data of six types of soil (i.e., gravel, fine sand, sandy loam, light loam, medium loam, and heavy loam) observed using the non-weighing lysimeter and water surface evaporation (E601) data observed using a E601 evaporator of same evaporation area with a lysimeter-tube at the groundwater balance station of the Weigan River Management Office in Xinjiang Uygur Autonomous Region, China, during the non-freezing period (April to October) between 1990 and 1994. The relationship between E0 and E601 was analyzed, the relationship between the ratio of E0 to E601 and the mechanical compositions of different soils was presented, and the factors influencing E0 were discussed. The results of this study reveal that E0 is not equal to E601. In fact, only values of the former for fine sand are close to those of the latter. Data also show that E0 values are related to soil texture as well as to potential atmospheric evaporation, the ratio of E0 to E601 and the silt-clay particle content (grain diameter less than 0.02 mm) is negatively exponentially correlated, and that soil thermal capacity plays a key role in phreatic evaporation at E0. The results of this analysis therefore imply that the treatment of zero phreatic depth is an essential requirement when constructing groundwater balance stations to study the law of phreatic evaporation.  相似文献   

5.
Stipagrostis ciliata (Desf.) De Winter is a pastoral C4 grass grown in arid regions. This research work focused on assessing the growth of S. ciliata accessions derived from two different climate regions (a wet arid region in the Bou Hedma National Park in the central and southern part of Tunisia (coded as WA), and a dry arid region from the Matmata Mountain in the south of Tunisia (coded as DA)) under water stress conditions. Specifically, the study aimed to investigate the phenological and physiological responses of potted S. ciliata seedlings under different water treatments: T1 (200 mm/a), T2 (150 mm/a), T3 (100 mm/a) and T4 (50 mm/a). Growth phenology, net photosynthesis (Pn), stomatal conductance (gs), midday leaf water potential (Ψmd), predawn leaf water potential (Ψpd), soil water content (SWC) and soil water potential (Ψs) were observed during the water stress cycle (from December 2016 to November 2017). The obtained results showed that the highest growth potential of the two accessions (WA and DA) was recorded under treatment T1. The two accessions responded differently and significantly to water stress. Photosynthetic parameters, such as Pn and gs, decreased sharply under treatments T2, T3 and T4 compared to treatment T1. The higher water stress increased the R/S ratio (the ratio of root dry biomass to shoot dry biomass), with values of 1.29 and 2.74 under treatment T4 for accessions WA and DA, respectively. Principal component analysis (PCA) was applied, and the separation of S. ciliata accessions on the first two axes of PCA (PC1 and PC2) suggested that accession DA was detected in the negative extremity of PC1 and PC2 under treatments T1 and T2. This accession was characterized by a high number of spikes. For treatments T3 and T4, both accessions were detected in the negative extremity of PC1 and PC2. They were characterized by a high root dry biomass. Therefore, S. ciliata accessions responded to water stress by displaying significant changes in their behaviours. Accession WA from the Bou Hedma National Park (wet arid region) showed higher drought tolerance than accession DA from the Matmata Mountain (dry arid region). S. ciliata exhibits a significant adaptation capacity for water limitation and may be an important species for ecosystem restoration.  相似文献   

6.
Implementation of the Grain-for-Green project has led to rapid land cover changes and resulted in a significantly increased vegetation cover on the Loess Plateau of China during the past few decades. The main objective of this study was to examine the responses of soil water dynamics under four typical vegetation types against precipitation years. Soil water contents(SWCs) were measured in 0–4.0 m profiles on a hillslope under the four vegetation types of shrub, pasture, natural fallow and crop in a re-vegetated catchment area from April to October in normal(2010), dry(2011), wet(2014) and extremely wet(2013) years. The results indicated that precipitation and vegetation types jointly controlled the soil water temporal dynamics and profile characteristics in the study region. SWCs in 0–4.0 m profiles of the four vegetation types were ranked from high to low as cropfallowpastureshrub and this pattern displayed a temporal stability over the four years. In the extremely wet year, SWC changes occurred in the 0–2.0 m layer under shrub and pasture while the changes further extended to the depth of 4.0-m deep layers under fallow and crop. In the other three years, SWCs changes mainly occurred in the 0–1.0 m layer and kept relatively stable in the layers deeper than 1.0 m for all the four vegetation types. The interannual variation in soil depth of SWCs was about 0–2.0 m for shrub and pasture, about 0–3.4 m for fallow and about 0–4.0 m for crop, respectively. The dried soil layers formed at the depths of 1.0, 0.6, 1.6 and 0.7 m under shrub, and 1.0, 1.0, 2.0 and 0.9 m under pasture, respectively in 2010, 2011, 2013 and 2014. The infiltrated rainwater mostly stayed in the 0–1.0 m layer and hardly supplied to soil depth 1.0 m in normal, dry and wet years. Even in the extremely wet year of 2013, rainwater recharge depth did not exceed 2.0 m under shrub and pasture. This implied that soil desiccation was difficult to remove in normal, dry and wet years, and soil desiccation could be removed in 1.0–2.0 m soil layers even in the extremely wet year under shrub and pasture. The results indicated that the natural fallow was the best vegetation type for achieving sustainable utilization of soil water and preventing soil desiccation.  相似文献   

7.
潜在蒸散发估算的简化方法及其应用   总被引:1,自引:0,他引:1  
潜在蒸散发在区域水量平衡、干旱程度评价、农作物需水量等方面的研究中具有重要的作用。然而,潜在蒸散发的空间化处理一直以来都是相关研究面临的一个挑战。基于新疆地区1960—2017年66个气象站的观测数据,通过一种简单的参数方程,实现了潜在蒸散发(ET_0)的空间化处理。研究结果表明:①简化参数方程中的2个重要参数a,c的空间分布呈现一定的规律,参数a在空间上呈现东南高,西北低的特点;参数c则随海拔的增加而增大。②简化参数方程与Penman-Monteith方法相比,拟合结果在日、月和季节尺度上的R~2值均大于0. 90,且R~2值随时间尺度的增加而增大。③将简化参数方程的拟合结果与CRU数据和MOD16A2数据进行对比发现:简化参数方程与Penman-Monteith方法拟合的R~2值较高,拟合效果和偏差指标表现更佳,而CRU、MOD16A2数据拟合的R~2值较低。简化参数方程所获得的潜在蒸散发精度高且空间分辨率更高(500 m×500 m),是一种适用于新疆地区潜在蒸散发估算的简便有效的方法。  相似文献   

8.
GONG Yidan 《干旱区科学》2020,12(3):462-472
Soil water is a critical resource, and as such is the focus of considerable physical research. Characterization of the distribution and spatial variability of soil water content(SWC) offers important agronomic and environmental information. Estimation of non-stationary and non-linear SWC distribution at different scales is a research challenge. Based on this context, we performed a case study on the Chinese Loess Plateau, with objectives of investigating spatial variability of SWC and soil properties(i.e., soil particle composition, organic matter and bulk density), and determining multi-scale correlations between SWC and soil properties. A total of 86 in situ sampling sites were selected and 516 soil samples(0–60 cm depth with an interval of 10 cm) were collected in May and June of 2019 along the Yangling-Wugong-Qianxian transect, with a length of 25.5 km, in a typical wheat-corn rotation region of the Chinese Loess Plateau. Classical statistics and empirical mode decomposition(EMD) method were applied to evaluate characteristics of the overall and scale-specific spatial variation of SWC, and to explore scale-specific correlations between SWC and soil properties. Results showed that the spatial variability of SWC along the Yangling-Wugong-Qianxian transect was medium to weak, with a variability coefficient range of 0.06–0.18, and it was gradually decreased as scale increased. We categorized the overall SWC for each soil layer under an intrinsic mode function(IMF) number based on the scale of occurrence, and found that the component IMF1 exhibited the largest contribution rates of 36.45%–56.70%. Additionally, by using EMD method, we categorized the general variation of SWC under different numbers of IMFs according to occurrence scale, and the results showed that the calculated scales among SWC for each soil layer increased in correspondence with higher IMF numbers. Approximately 78.00% of the total variance of SWC was extracted in IMF1 and IMF2. Generally, soil texture was the dominant control on SWC, and the influence of the three types of soil properties(soil particle composition, organic matter and bulk density) was more prominent at larger scales along the sampling transect. The influential factors of soil water spatial distribution can be identified and ranked on the basis of the decomposed signal from the current approach, thereby providing critical information for other researchers and natural resource managers.  相似文献   

9.
Using a previously developed stochastic simulation model for plant disease epidemics, the relationship of the SADIE aggregation statistic I a with initial epidemic conditions, spore dispersal distance, sampling quadrat size and other spatial statistics was investigated. Most variation in I a was attributable to the initial spatial pattern of infected plants and sampling quadrat size. The importance of initial spatial pattern on SADIE clustering indices (for patches and gaps) was also demonstrated using a number of selected data sets. Correlation of I a with clustering indices was close to 1·0. Epidemics arising from the regular and random initial patterns resulted in the smallest and greatest I a values, respectively, at sampling times after disease spread had occurred. Furthermore, the variability in I a between simulation runs also varied greatly with initial patterns, being lowest and greatest for the clumped and random initial patterns, respectively. I a increased initially and then decreased with increasing incidence, especially for the clumped and random initial patterns. Overall, the effect of median spore dispersal distance on I a was very small, especially for the random initial pattern. The correlation between I a and intraclass correlation was generally small and varied greatly between initial patterns. However, there was a high positive correlation between I a and a parameter describing the rate of decline of autocorrelation over spatial lags, indicating that I a, clustering indices and autocorrelations measure some common properties of patterns.  相似文献   

10.
塔里木河干流下游生态输水后水量转化特征   总被引:6,自引:3,他引:3  
以塔里木河干流下游6次生态输水期间的河道监测资料为依据,对各河段的河道渗漏特征进行分析,得出了河道的耗水量既与水文地质条件有关,同时又与输水的时间相关.在此基础上,利用Processing Modflow软件对长期输水条件下河水转化为地下水的趋势进行了模拟,表明在间歇输水的条件下,河水转化为地下水的效率是逐渐降低,同时地下水的蒸腾量则逐渐上升,二者最终将趋于平衡,此时的地下水也将达到动态稳定的水位.  相似文献   

11.
农业水土资源是人类赖以生存的物质基础。为合理利用和开发西北旱区农业水土资源,利用经典统计学和地统计学方法研究了其水资源指数和耕地资源指数的空间变异特征。结果表明:西北旱区水资源指数和耕地资源指数均具有中等变异性特征,其半方差最优拟合模型分别是高斯模型和指数模型,且均呈现空间不均衡分布,分别具有较强和中等空间相关性,其空间变异主要受结构性因子的影响。研究结果不仅可为西北旱区农业水土资源的配置、高效利用和优化提供依据,也为在较大研究范围内开展空间因子变异特征研究提供了方法参考。  相似文献   

12.
采用经典统计学和地统计学方法,对玛纳斯河流域绿洲0~70 cm土层土壤水分的空间异质性及其影响因子进行研究.结果表明:各层土壤水分均符合正态分布.从变异系数看,均属于中等变异,变异系数介于0.293~0.371,其中表层水分变异程度最高,达到0.371;0~10 cm,10~20cm,20~30 cm和30~50 cm...  相似文献   

13.
JIA Wuhui 《干旱区科学》2021,13(5):455-469
Groundwater is a vital water resource in arid and semi-arid areas. Diurnal groundwater table fluctuations are widely used to quantify rainfall recharge and groundwater evapotranspiration(ET_g). To assess groundwater resources for sustainable use, we estimated groundwater recharge and ET_g using the diurnal water table fluctuations at three sites along a section with different depths to water table(DWT) within a wetland of the Mukai Lake in the Ordos Plateau, Northwest China. The water table level was monitored at an hourly resolution using a Keller DCX-22 A data logger that measured both the total pressure and barometric pressure, so that the effect of barometric pressure could be removed. At this study site, a rapid water table response to rainfall was observed in two shallow wells(i.e., Obs1 and Obs2), at which diurnal water table fluctuations were also observed over the study period during rainless days, indicating that the main factors influencing water table variation are rainfall and ET_g. However, at the deep-water table site(Obs3), the groundwater level only reacted to the heaviest rainfalls and showed no diurnal variations. Groundwater recharge and ET_g were quantified for the entire hydrological year(June 2017–June 2018) using the water table fluctuation method and the Loheide method, respectively, with depth-dependent specific yields. The results show that the total annual groundwater recharge was approximately 207 mm, accounting for 52% of rainfall at Obs1, while groundwater recharge was approximately 250 and 21 mm at Obs2 and Obs3, accounting for 63% and 5% of rainfall, respectively. In addition, the rates of groundwater recharge were mainly determined by rainfall intensity and DWT. The daily mean ET_g at Obs1 and Obs2 over the study period was 4.3 and 2.5 mm, respectively, and the main determining factors were DWT and net radiation.  相似文献   

14.
Natural soil-forming factors such as landforms, parent materials or biota lead to high variability in soil properties. However, there is not enough research quantifying which environmental factor(s) can be the most relevant to predicting soil properties at the catchment scale in semi-arid areas. Thus, this research aims to investigate the ability of multivariate statistical analyses to distinguish which soil properties follow a clear spatial pattern conditioned by specific environmental characteristics in a semi-arid region of Iran. To achieve this goal, we digitized parent materials and landforms by recent orthophotography. Also, we extracted ten topographical attributes and five remote sensing variables from a digital elevation model (DEM) and the Landsat Enhanced Thematic Mapper (ETM), respectively. These factors were contrasted for 334 soil samples (depth of 0-30 cm). Cluster analysis and soil maps reveal that Cluster 1 comprises of limestones, massive limestones and mixed deposits of conglomerates with low soil organic carbon (SOC) and clay contents, and Cluster 2 is composed of soils that originated from quaternary and early quaternary parent materials such as terraces, alluvial fans, lake deposits, and marls or conglomerates that register the highest SOC content and the lowest sand and silt contents. Further, it is confirmed that soils with the highest SOC and clay contents are located in wetlands, lagoons, alluvial fans and piedmonts, while soils with the lowest SOC and clay contents are located in dissected alluvial fans, eroded hills, rock outcrops and steep hills. The results of principal component analysis using the remote sensing data and topographical attributes identify five main components, which explain 73.3% of the total variability of soil properties. Environmental factors such as hillslope morphology and all of the remote sensing variables can largely explain SOC variability, but no significant correlation is found for soil texture and calcium carbonate equivalent contents. Therefore, we conclude that SOC can be considered as the best-predicted soil property in semi-arid regions.  相似文献   

15.
Remote sensing tools are becoming increasingly important for providing spatial information on water use by different ecosystems. Despite significant advances in remote sensing based evapotranspiration (ET) models in recent years, important information gaps still exist on the accuracy of the models particularly in arid and semi-arid environments. In this study, we evaluated the Penman-Monteith based MOD16 and the modified Priestley-Taylor (PT-JPL) models at the daily time step against three measured ET datasets. We used data from two summer and one winter rainfall sites in South Africa. One site was dominated by native broad leaf and the other by fine leafed deciduous savanna tree species and C4 grasses. The third site was in the winter rainfall Cape region and had shrubby fynbos vegetation. Actual ET was measured using open-path eddy covariance systems at the summer rainfall sites while a surface energy balance system utilizing the large aperture boundary layer scintillometer was used in the Cape. Model performance varied between sites and between years with the worst estimates (R2<0.50 and RMSE>0.80 mm/d) observed during years with prolonged mid-summer dry spells in the summer rainfall areas. Sensitivity tests on MOD16 showed that the leaf area index, surface conductance and radiation budget parameters had the largest effect on simulated ET. MOD16 ET predictions were improved by: (1) reformulating the emissivity expressions in the net radiation equation; (2) incorporating representative surface conductance values; and (3) including a soil moisture stress function in the transpiration sub-model. Implementing these changes increased the accuracy of MOD16 daily ET predictions at all sites. However, similar adjustments to the PT-JPL model yielded minimal improvements. We conclude that the MOD16 ET model has the potential to accurately predict water use in arid environments provided soil water stress and accurate biome-specific parameters are incorporated.  相似文献   

16.
黄土坡耕地地表微地形空间变异性研究   总被引:1,自引:0,他引:1  
以黄土高原普遍采用的人工锄耕、人工掏挖和等高耕作等管理措施的坡耕地为研究对象,利用半方差方法分析了不同耕作措施下坡面相对高程空间变异结构特征,以期为开展数值模拟坡面微地形的研究提供理论支持.结果表明:不同耕作措施下坡面相对高程具有较强的空间相关性,依次为等高耕作<人工掏挖<人工锄耕;人工锄耕与人工掏挖坡面具有自相似性特...  相似文献   

17.
KE Zengming 《干旱区科学》2021,13(12):1201-1214
Soil physical properties (SPP) are considered to be important indices that reflect soil structure, hydrological conditions and soil quality. It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China. In our study, three land restoration modes were selected including natural restoration land (NR), alfalfa land (AL) and maize land (ML). Soil texture composition, including the contents of clay, silt and sand, field capacity (FC), saturated conductivity (Ks) and bulk density (BD) were determined using a multifractal analysis. SPP were found to possess variable characteristics, although land consolidation destroyed the soil structure and decreased the spatial autocorrelation. Furthermore, SPP varied with land restoration and could be illustrated by the multifractal parameters of D1, ∆D, ∆α and ∆f in different modes of land restoration. Owing to multiple compaction from large machinery in the surface soil, soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes. Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP, which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR. In addition, compared with ML, ∆α values of NR and AL were 4.9- and 3.0-fold that of FC, respectively, and ∆α values of NR and AL were 2.3- and 1.5-fold higher than those of Ks, respectively. These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation. Thus, we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP.  相似文献   

18.
19.
利用由位于坡面上部的供水装置和坡面下部的试验土槽组成的试验装置系统,通过模拟降雨试验,研究了不同降雨强度(50、75和100 mm/h)和不同坡度(15°、20°和25°)条件下坡面侵蚀方式演变过程中汇水坡长对侵蚀产沙的作用.结果表明,黄土坡面片蚀-细沟侵蚀-切沟侵蚀方式演变过程中汇水坡长对侵蚀产沙具有重要作用,且受降雨强度、坡度和侵蚀方式演变过程的综合影响.汇水坡长增加,使坡面片蚀-细沟侵蚀-切沟侵蚀发育速度明显加快,侵蚀产沙量明显增加.在坡面侵蚀不同发育阶段,汇水坡长对坡面侵蚀的产沙作用也不尽相同.当坡面以切沟侵蚀为主时,汇水坡长对坡面侵蚀产沙的作用最大,其次是以细沟侵蚀为主时.而以坡面片蚀为主时,汇水坡长对坡面侵蚀产沙的作用最小.通过对坡面侵蚀产沙量与汇水坡长的相关分析表明,它们呈正线性关系.  相似文献   

20.
Accurate inversion of land surface evapotranspiration (ET) in arid areas is of great significance for understanding global eco-hydrological process and exploring the spatio-temporal variation and ecological response of water resources.It is also important in the functional evaluation of regional water cycle and water balance,as well as the rational allocation and management of water resources.This study,based on model validation analysis at varied scales in five Central Asian countries and China's Xinjiang,developed an appropriate approach for ET inversion in arid lands.The actual ET during growing seasons of the study area was defined,and the changes in water participating in evaporation in regional water cycle were then educed.The results show the simulation error of SEBS (Surface Energy Balance System) model under cloud amount consideration was 1.34% at 30-m spatial scale,2.75% at 1-km spatial scale and 6.37% at 4-km spatial scale.ET inversion for 1980-2007 applying SEBS model in the study area indicates:(1) the evaporation depth (May-September) by land types descends in the order of waters (660.24 mm) > cultivated land (464.66 mm) > woodland (388.44 mm) > urbanized land (168.16 mm) > grassland (160.48 mm) > unused land (83.08 mm);and (2) ET during the 2005 growing season in Xinjiang and Central Asia was 2,168.68×10 8 m 3 (with an evaporation/precipitation ratio of 1.05) and 9,741.03×10 8 m 3 (with an evaporation/precipitation ratio of 1.4),respectively.The results unveiled the spatio-temporal variation rules of ET process in arid areas,providing a reference for further research on the water cycle and water balance in similar arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号