首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to evaluate a validation reliability of single‐step genomic best linear unbiased prediction (ssGBLUP) with a multiple‐lactation random regression test‐day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test‐day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305‐day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R2) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R2 was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R2 were observed when genotyped cows were added. An application of ssGBLUP to a multiple‐lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls.  相似文献   

2.
Single‐step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single‐step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non‐genotyped daughters. Genetic values were estimated with the single‐step model and with different reduced single‐step models. Including more relatives of genotyped cows in the reduced single‐step model resulted in a better agreement of results with the single‐step model. Accuracies of genetic values were largest with single‐step and smallest with reduced single‐step when only the cows genotyped were modelled. The results indicate that a reduced single‐step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality.  相似文献   

3.
The purpose of this study was to examine accuracy of genomic selection via single‐step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix ( G ) is replaced by an approximation of G ?1 based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G ?1 and the approximated G ?1 via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G ?1 and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method.  相似文献   

4.
In single‐step genomic evaluation using best linear unbiased prediction (ssGBLUP), genomic predictions are calculated with a relationship matrix that combines pedigree and genomic information. For missing pedigrees, unknown selection processes, or inclusion of several populations, a BLUP model can include unknown‐parent groups (UPG) in the animal effect. For ssGBLUP, UPG equations also involve contributions from genomic relationships. When those contributions are ignored, UPG solutions and genetic predictions can be biased. Options to eliminate or reduce such bias are presented. First, mixed model equations can be modified to include contributions to UPG elements from genomic relationships (greater software complexity). Second, UPG can be implemented as separate effects (higher cost of computing and data processing). Third, contributions can be ignored when they are relatively small, but they may be small only after refinements to UPG definitions. Fourth, contributions may approximately cancel out when genomic and pedigree relationships are constructed for compatibility; however, different construction steps are required for unknown parents from the same or different populations. Finally, an additional polygenic effect that also includes UPG can be added to the model.  相似文献   

5.
The number of genotyped animals has increased rapidly creating computational challenges for genomic evaluation. In animal model BLUP, candidate animals without progeny and phenotype do not contribute information to the evaluation and can be discarded. In theory, genotyped candidate animal without progeny can bring information into single‐step BLUP (ssGBLUP) and affect the estimation of other breeding values. We studied the effect of including or excluding genomic information of culled bull calves on genomic breeding values (GEBV) from ssGBLUP. In particular, GEBVs of genotyped bulls with daughters and GEBVs of young bulls selected into AI to be progeny tested (test bulls) were studied. The ssGBLUP evaluation was computed using Nordic test day (TD) model and TD data for the Nordic Red Dairy Cattle. The results indicate that genomic information of culled bull calves does not affect the GEBVs of progeny tested reference animals, but if genotypes of the culled bulls are used in the TD ssGBLUP, the genetic trend in the test bulls is considerably higher compared to the situation when genomic information of the culled bull calves is excluded. It seems that by discarding genomic information of culled bull calves without progeny, upward bias of GEBVs of test bulls is reduced.  相似文献   

6.
Single-step genomic best linear unbiased prediction with the Algorithm for Proven and Young (APY) is a popular method for large-scale genomic evaluations. With the APY algorithm, animals are designated as core or noncore, and the computing resources to create the inverse of the genomic relationship matrix (GRM) are reduced by inverting only a portion of that matrix for core animals. However, using different core sets of the same size causes fluctuations in genomic estimated breeding values (GEBVs) up to one additive standard deviation without affecting prediction accuracy. About 2% of the variation in the GRM is noise. In the recursion formula for APY, the error term modeling the noise is different for every set of core animals, creating changes in breeding values. While average changes are small, and correlations between breeding values estimated with different core animals are close to 1.0, based on the normal distribution theory, outliers can be several times bigger than the average. Tests included commercial datasets from beef and dairy cattle and from pigs. Beyond a certain number of core animals, the prediction accuracy did not improve, but fluctuations decreased with more animals. Fluctuations were much smaller than the possible changes based on prediction error variance. GEBVs change over time even for animals with no new data as genomic relationships ties all the genotyped animals, causing reranking of top animals. In contrast, changes in nongenomic models without new data are small. Also, GEBV can change due to details in the model, such as redefinition of contemporary groups or unknown parent groups. In particular, increasing the fraction of blending of the GRM with a pedigree relationship matrix from 5% to 20% caused changes in GEBV up to 0.45 SD, with a correlation of GEBV > 0.99. Fluctuations in genomic predictions are part of genomic evaluation models and are also present without the APY algorithm when genomic evaluations are computed with updated data. The best approach to reduce the impact of fluctuations in genomic evaluations is to make selection decisions not on individual animals with limited individual accuracy but on groups of animals with high average accuracy.  相似文献   

7.
The objectives of this study were to better understand the genetic architecture and the possibility of genomic evaluation for feed efficiency traits by (i) performing genome‐wide association studies (GWAS), and (ii) assessing the accuracy of genomic evaluation for feed efficiency traits, using single‐step genomic best linear unbiased prediction (ssGBLUP)‐based methods. The analyses were performed in residual feed intake (RFI), residual body weight gain (RG), and residual intake and body weight gain (RIG) during three different fattening periods. The phenotypes from 4,578 Japanese Black steers, which were progenies of 362 progeny‐tested bulls and the genotypes from the bulls were used in this study. The results of GWAS showed that a total of 16, 8, and 12 gene ontology terms were related to RFI, RG, and RIG, respectively, and the candidate genes identified in RFI and RG were involved in olfactory transduction and the phosphatidylinositol signaling system, respectively. The realized reliabilities of genomic estimated breeding values were low to moderate in the feed efficiency traits. In conclusion, ssGBLUP‐based method can lead to understand some biological functions related to feed efficiency traits, even with small population with genotypes, however, an alternative strategy will be needed to enhance the reliability of genomic evaluation.  相似文献   

8.
Genomic selection has been adopted nationally and internationally in different livestock and plant species. However, understanding whether genomic selection has been effective or not is an essential question for both industry and academia. Once genomic evaluation started being used, estimation of breeding values with pedigree best linear unbiased prediction (BLUP) became biased because this method does not consider selection using genomic information. Hence, the effective starting point of genomic selection can be detected in two possible ways including the divergence of genetic trends and Realized Mendelian sampling (RMS) trends obtained with BLUP and single-step genomic BLUP (ssGBLUP). This study aimed to find the start date of genomic selection for a set of economically important traits in three livestock species by comparing trends obtained using BLUP and ssGBLUP. Three datasets were used for this purpose: 1) a pig dataset with 117k genotypes and 1.3M animals in pedigree, 2) an Angus cattle dataset consisted of ~842k genotypes and 11.5M animals in pedigree, and 3) a purebred broiler chicken dataset included ~154k genotypes and 1.3M birds in pedigree were used. The genetic trends for pigs diverged for the genotyped animals born in 2014 for average daily gain (ADG) and backfat (BF). In beef cattle, the trends started diverging in 2009 for weaning weight (WW) and in 2016 for postweaning gain (PWG), with little divergence for birth weight (BTW). In broiler chickens, the genetic trends estimated by ssGBLUP and BLUP diverged at breeding cycle 6 for two out of the three production traits. The RMS trends for the genotyped pigs diverged for animals born in 2014, more for ADG than for BF. In beef cattle, the RMS trends started diverging in 2009 for WW and in 2016 for PWG, with a trivial trend for BTW. In broiler chickens, the RMS trends from ssGBLUP and BLUP diverged strongly for two production traits at breeding cycle 6, with a slight divergence for another trait. Divergence of the genetic trends from ssGBLUP and BLUP indicates the onset of the genomic selection. The presence of trends for RMS indicates selective genotyping, with or without the genomic selection. The onset of genomic selection and genotyping strategies agrees with industry practices across the three species. In summary, the effective start of genomic selection can be detected by the divergence between genetic and RMS trends from BLUP and ssGBLUP.  相似文献   

9.
Genomic selection is a method to predict breeding values using genome‐wide single‐nucleotide polymorphism (SNP) markers. High‐quality marker data are necessary for genomic selection. The aim of this study was to investigate the effect of marker‐editing criteria on the accuracy of genomic predictions in the Nordic Holstein and Jersey populations. Data included 4429 Holstein and 1071 Jersey bulls. In total, 48 222 SNP for Holstein and 44 305 SNP for Jersey were polymorphic. The SNP data were edited based on (i) minor allele frequencies (MAF) with thresholds of no limit, 0.001, 0.01, 0.02, 0.05 and 0.10, (ii) deviations from Hardy–Weinberg proportions (HWP) with thresholds of no limit, chi‐squared p‐values of 0.001, 0.02, 0.05 and 0.10, and (iii) GenCall (GC) scores with thresholds of 0.15, 0.55, 0.60, 0.65 and 0.70. The marker data sets edited with different criteria were used for genomic prediction of protein yield, fertility and mastitis using a Bayesian variable selection and a GBLUP model. De‐regressed EBV were used as response variables. The result showed little difference between prediction accuracies based on marker data sets edited with MAF and deviation from HWP. However, accuracy decreased with more stringent thresholds of GC score. According to the results of this study, it would be appropriate to edit data with restriction of MAF being between 0.01 and 0.02, a p‐value of deviation from HWP being 0.05, and keeping all individual SNP genotypes having a GC score over 0.15.  相似文献   

10.
The degree of linkage disequilibrium (LD) between markers differs depending on the location of the genome; this difference biases genetic evaluation by genomic best linear unbiased prediction (GBLUP). To correct this bias, we used three GBLUP methods reflecting the degree of LD (GBLUP‐LD). In the three GBLUP‐LD methods, genomic relationship matrices were conducted from single nucleotide polymorphism markers weighted according to local LD levels. The predictive abilities of GBLUP‐LD were investigated by estimating variance components and assessing the accuracies of estimated breeding values using simulation data. When quantitative trait loci (QTL) were located at weak LD regions, the predictive abilities of the three GBLUP‐LD methods were superior to those of GBLUP and Bayesian lasso except when the number of QTL was small. In particular, the superiority of GBLUP‐LD increased with decreasing trait heritability. The rates of QTL at weak LD regions would increase when selection by GBLUP continues; this consequently decreases the predictive ability of GBLUP. Thus, the GBLUP‐LD could be applicable for populations selected by GBLUP for a long time. However, if QTL were located at strong LD regions, the accuracies of three GBLUP‐LD methods were lower than GBLUP and Bayesian lasso.  相似文献   

11.
We studied the effect of including GWAS results on the accuracy of single‐ and multipopulation genomic predictions. Phenotypes (backfat thickness) and genotypes of animals from two sire lines (SL1, n = 1146 and SL3, n = 1264) were used in the analyses. First, GWAS were conducted for each line and for a combined data set (both lines together) to estimate the genetic variance explained by each SNP. These estimates were used to build matrices of weights (D), which was incorporated into a GBLUP method. Single population evaluated with traditional GBLUP had accuracies of 0.30 for SL1 and 0.31 for SL3. When weights were employed in GBLUP, the accuracies for both lines increased (0.32 for SL1 and 0.34 for SL3). When a multipopulation reference set was used in GBLUP, the accuracies were higher (0.36 for SL1 and 0.32 for SL3) than in single‐population prediction. In addition, putting together the multipopulation reference set and the weights from the combined GWAS provided even higher accuracies (0.37 for SL1, and 0.34 for SL3). The use of multipopulation predictions and weights estimated from a combined GWAS increased the accuracy of genomic predictions.  相似文献   

12.
The Algorithm for Proven and Young (APY) enables the implementation of single‐step genomic BLUP (ssGBLUP) in large, genotyped populations by separating genotyped animals into core and non‐core subsets and creating a computationally efficient inverse for the genomic relationship matrix ( G ). As APY became the choice for large‐scale genomic evaluations in BLUP‐based methods, a common question is how to choose the animals in the core subset. We compared several core definitions to answer this question. Simulations comprised a moderately heritable trait for 95,010 animals and 50,000 genotypes for animals across five generations. Genotypes consisted of 25,500 SNP distributed across 15 chromosomes. Genotyping errors and missing pedigree were also mimicked. Core animals were defined based on individual generations, equal representation across generations, and at random. For a sufficiently large core size, core definitions had the same accuracies and biases, even if the core animals had imperfect genotypes. When genotyped animals had unknown parents, accuracy and bias were significantly better (p ≤ .05) for random and across generation core definitions.  相似文献   

13.
Reference populations for genomic selection usually involve selected individuals, which may result in biased prediction of estimated genomic breeding values (GEBV). In a simulation study, bias and accuracy of GEBV were explored for various genetic models with individuals selectively genotyped in a typical nucleus breeding program. We compared the performance of three existing methods, that is, Best Linear Unbiased Prediction of breeding values using pedigree‐based relationships (PBLUP), genomic relationships for genotyped animals only (GBLUP) and a Single‐Step approach (SSGBLUP) using both. For a scenario with no‐selection and random mating (RR), prediction was unbiased. However, lower accuracy and bias were observed for scenarios with selection and random mating (SR) or selection and positive assortative mating (SA). As expected, bias disappeared when all individuals were genotyped and used in GBLUP. SSGBLUP showed higher accuracy compared to GBLUP, and bias of prediction was negligible with SR. However, PBLUP and SSGBLUP still showed bias in SA due to high inbreeding. SSGBLUP and PBLUP were unbiased provided that inbreeding was accounted for in the relationship matrices. Selective genotyping based on extreme phenotypic contrasts increased the prediction accuracy, but prediction was biased when using GBLUP. SSGBLUP could correct the biasedness while gaining higher accuracy than GBLUP. In a typical animal breeding program, where it is too expensive to genotype all animals, it would be appropriate to genotype phenotypically contrasting selection candidates and use a Single‐Step approach to obtain accurate and unbiased prediction of GEBV.  相似文献   

14.
The objective of this study was to determine whether the linear regression (LR) method could be used to validate genomic threshold models. Statistics for the LR method were computed from estimated breeding values (EBVs) using the whole and truncated data sets with variances from the reference and validation populations. The method was tested using simulated and real chicken data sets. The simulated data set included 10 generations of 4,500 birds each; genotypes were available for the last three generations. Each animal was assigned a continuous trait, which was converted to a binary score assuming an incidence of failure of 7%. The real data set included the survival status of 186,596 broilers (mortality rate equal to 7.2%) and genotypes of 18,047 birds. Both data sets were analysed using best linear unbiased predictor (BLUP) or single‐step GBLUP (ssGBLUP). The whole data set included all phenotypes available, whereas in the partial data set, phenotypes of the most recent generation were removed. In the simulated data set, the accuracies based on the LR formulas were 0.45 for BLUP and 0.76 for ssGBLUP, whereas the correlations between true breeding values and EBVs (i.e. true accuracies) were 0.37 and 0.65, respectively. The gain in accuracy by adding genomic information was overestimated by 0.09 when using the LR method compared to the true increase in accuracy. However, when the estimated ratio between the additive variance computed based on pedigree only and on pedigree and genomic information was considered, the difference between true and estimated gain was <0.02. Accuracies of BLUP and ssGBLUP with the real data set were 0.41 and 0.47, respectively. This small improvement in accuracy when using ssGBLUP with the real data set was due to population structure and lower heritability. The LR method is a useful tool for estimating improvements in accuracy of EBVs due to the inclusion of genomic information when traditional validation methods as k‐fold validation and predictive ability are not applicable.  相似文献   

15.
The objectives of this study were to develop an efficient algorithm for calculating prediction error variances (PEVs) for genomic best linear unbiased prediction (GBLUP) models using the Algorithm for Proven and Young (APY), extend it to single-step GBLUP (ssGBLUP), and apply this algorithm for approximating the theoretical reliabilities for single- and multiple-trait models in ssGBLUP. The PEV with APY was calculated by block sparse inversion, efficiently exploiting the sparse structure of the inverse of the genomic relationship matrix with APY. Single-step GBLUP reliabilities were approximated by combining reliabilities with and without genomic information in terms of effective record contributions. Multi-trait reliabilities relied on single-trait results adjusted using the genetic and residual covariance matrices among traits. Tests involved two datasets provided by the American Angus Association. A small dataset (Data1) was used for comparing the approximated reliabilities with the reliabilities obtained by the inversion of the left-hand side of the mixed model equations. A large dataset (Data2) was used for evaluating the computational performance of the algorithm. Analyses with both datasets used single-trait and three-trait models. The number of animals in the pedigree ranged from 167,951 in Data1 to 10,213,401 in Data2, with 50,000 and 20,000 genotyped animals for single-trait and multiple-trait analysis, respectively, in Data1 and 335,325 in Data2. Correlations between estimated and exact reliabilities obtained by inversion ranged from 0.97 to 0.99, whereas the intercept and slope of the regression of the exact on the approximated reliabilities ranged from 0.00 to 0.04 and from 0.93 to 1.05, respectively. For the three-trait model with the largest dataset (Data2), the elapsed time for the reliability estimation was 11 min. The computational complexity of the proposed algorithm increased linearly with the number of genotyped animals and with the number of traits in the model. This algorithm can efficiently approximate the theoretical reliability of genomic estimated breeding values in ssGBLUP with APY for large numbers of genotyped animals at a low cost.  相似文献   

16.
This work focuses on the effects of variable amount of genomic information in the Bayesian estimation of unknown variance components associated with single‐step genomic prediction. We propose a quantitative criterion for the amount of genomic information included in the model and use it to study the relative effect of genomic data on efficiency of sampling from the posterior distribution of parameters of the single‐step model when conducting a Bayesian analysis with estimating unknown variances. The rate of change of estimated variances was dependent on the amount of genomic information involved in the analysis, but did not depend on the Gibbs updating schemes applied for sampling realizations of the posterior distribution. Simulation revealed a gradual deterioration of convergence rates for the locations parameters when new genomic data were gradually added into the analysis. In contrast, the convergence of variance components showed continuous improvement under the same conditions. The sampling efficiency increased proportionally to the amount of genomic information. In addition, an optimal amount of genomic information in variance–covariance matrix that guaranty the most (computationally) efficient analysis was found to correspond a proportion of animals genotyped ***0.8. The proposed criterion yield a characterization of expected performance of the Gibbs sampler if the analysis is subject to adjustment of the amount of genomic data and can be used to guide researchers on how large a proportion of animals should be genotyped in order to attain an efficient analysis.  相似文献   

17.
This study investigated genomic predictions across Nordic Holstein and Nordic Red using various genomic relationship matrices. Different sources of information, such as consistencies of linkage disequilibrium (LD) phase and marker effects, were used to construct the genomic relationship matrices (G‐matrices) across these two breeds. Single‐trait genomic best linear unbiased prediction (GBLUP) model and two‐trait GBLUP model were used for single‐breed and two‐breed genomic predictions. The data included 5215 Nordic Holstein bulls and 4361 Nordic Red bulls, which was composed of three populations: Danish Red, Swedish Red and Finnish Ayrshire. The bulls were genotyped with 50 000 SNP chip. Using the two‐breed predictions with a joint Nordic Holstein and Nordic Red reference population, accuracies increased slightly for all traits in Nordic Red, but only for some traits in Nordic Holstein. Among the three subpopulations of Nordic Red, accuracies increased more for Danish Red than for Swedish Red and Finnish Ayrshire. This is because closer genetic relationships exist between Danish Red and Nordic Holstein. Among Danish Red, individuals with higher genomic relationship coefficients with Nordic Holstein showed more increased accuracies in the two‐breed predictions. Weighting the two‐breed G‐matrices by LD phase consistencies, marker effects or both did not further improve accuracies of the two‐breed predictions.  相似文献   

18.
Bootstrap aggregation (bagging) is a resampling method known to produce more accurate predictions when predictors are unstable or when the number of markers is much larger than sample size, because of variance reduction capabilities. The purpose of this study was to compare genomic best linear unbiased prediction (GBLUP) with bootstrap aggregated sampling GBLUP (Bagged GBLUP, or BGBLUP) in terms of prediction accuracy. We used a 600 K Affymetrix platform with 1351 birds genotyped and phenotyped for three traits in broiler chickens; body weight, ultrasound measurement of breast muscle and hen house egg production. The predictive performance of GBLUP versus BGBLUP was evaluated in different scenarios consisting of including or excluding the TOP 20 markers from a standard genome‐wide association study (GWAS) as fixed effects in the GBLUP model, and varying training sample sizes and allelic frequency bins. Predictive performance was assessed via five replications of a threefold cross‐validation using the correlation between observed and predicted values, and prediction mean‐squared error. GBLUP overfitted the training set data, and BGBLUP delivered a better predictive ability in testing sets. Treating the TOP 20 markers from the GWAS into the model as fixed effects improved prediction accuracy and added advantages to BGBLUP over GBLUP. The performance of GBLUP and BGBLUP at different allele frequency bins and training sample sizes was similar. In general, results of this study confirm that BGBLUP can be valuable for enhancing genome‐enabled prediction of complex traits.  相似文献   

19.
Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.  相似文献   

20.
The aim was to conduct a weighted single‐step genome‐wide association study to detect genomic regions and putative candidate genes related to residual feed intake, dry matter intake, feed efficiency (FE), feed conversion ratio, residual body weight gain, residual intake and weight gain in Nellore cattle. Several protein‐coding genes were identified within the genomic regions that explain more than 0.5% of the additive genetic variance for these traits. These genes were associated with insulin, leptin, glucose, protein and lipid metabolisms; energy balance; heat and oxidative stress; bile secretion; satiety; feed behaviour; salivation; digestion; and nutrient absorption. Enrichment analysis revealed functional pathways (p‐value < .05) such as neuropeptide signalling (GO:0007218), negative regulation of canonical Wingless/Int‐1 (Wnt) signalling (GO:0090090), bitter taste receptor activity (GO:0033038), neuropeptide hormone activity (GO:0005184), bile secretion (bta04976), taste transduction (bta0742) and glucagon signalling pathway (bta04922). The identification of these genes, pathways and their respective functions should contribute to a better understanding of the genetic and physiological mechanisms regulating Nellore FE‐related traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号