首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Data from 534 steers representing six sire breed groups were used to develop live animal ultrasound prediction equations for weight and percentage of retail product. Steers were ultrasonically measured for 12th-rib fat thickness (UFAT), rump fat thickness (URPFAT), longissimus muscle area (ULMA), and body wall thickness (UBDWALL) within 5 d before slaughter. Carcass measurements included in USDA yield grade (YG) and quality grade calculations were obtained. Carcasses were fabricated into boneless, totally trimmed retail products. Regression equations to predict weight and percentage of retail product were developed using either live animal or carcass traits as independent variables. Most of the variation in weight of retail product was accounted for by live weight (FWT) and carcass weight with R2 values of 0.66 and 0.69, respectively. Fat measurements accounted for the largest portion of the variation in percentage of retail product when used as single predictors (R2 = 0.54, 0.44, 0.23, and 0.54 for UFAT, URPFAT, UBDWALL, and carcass fat, respectively). Final models (P < 0.10) using live animal variables included FWT, UFAT, ULMA, and URPFAT for retail product weight (R2 = 0.84) and UFAT, URPFAT, ULMA, UBDWALL, and FWT for retail product percentage (R2 = 0.61). Comparatively, equations using YG variables resulted in R2 values of 0.86 and 0.65 for weight and percentage of retail product, respectively. Results indicate that live animal equations using ultrasound measurements are similar in accuracy to carcass measurements for predicting beef carcass composition, and alternative ultrasound measurements of rump fat and body wall thickness enhance the predictive capability of live animal-based equations for retail yield.  相似文献   

2.
Hot carcasses from 220 steers (progeny of Hereford or Angus dams mated to Angus, Charolais, Galloway, Gelbvieh, Hereford, Longhorn, Nellore, Piedmontese, Pinzgauer, Salers, or Shorthorn sires) were used to develop equations to estimate weights and percentages of retail product (RP) and trimmable fat (TF) yields. Independent variables examined were 1) 12-13th rib fat probe (12RFD), 2) 10-11th rib fat probe (10RFD), 3) external fat score (EFS), 4) percentage of internal fat estimated hot (H%KPH), 5) hindquarter muscling score (HQMS), and 6) hot carcass weight (HCW). Right sides of the carcasses were fabricated into boneless retail cuts, trimmed to .76 cm of subcutaneous and visible intermuscular fat, and weighed. Cuts were trimmed to 0 cm of subcutaneous and visible intermuscular fat and reweighed. Multiple linear regression equations containing 12RFD, EFS, H%KPH, and HCW accounted for 95 and 89% of the variation in weight of total RP at .76 and 0 cm of fat trim, respectively. When weights of RP from the four primal cuts (.76 and 0 cm of fat trim) were the dependent variables, equations consisting of 12RFD, EFS, H%KPH, and HCW accounted for 93 to 84% of the variation. Hot carcass equations accounted for 83% of the variation in weight of total TF at both .76 and 0 cm of fat trim. Furthermore, equations from hot carcass data accounted for 54 and 51% of the variation in percentage of total RP and 57 and 50% of the variation in percentage of RP from the four primal cuts at .76 and 0 cm of fat trim, respectively. Hot carcass prediction equations accounted for 72% of the variation in percentage of total TF at both fat trim levels. Hot carcass equations were equivalent or superior to equations formulated from chilled carcass traits.  相似文献   

3.
This study was conducted to determine the ability of additional ultrasound measures to enhance the prediction accuracy of retail product and trimmable fat yields based on weight and percentage. Thirty-two Hereford-sired steers were ultrasonically measured for 12th-rib fat thickness, longissimus muscle area, rump fat thickness, and gluteus medius depth immediately before slaughter. Chilled carcasses were evaluated for USDA yield grade factors and then fabricated into closely trimmed, boneless subprimals with 0.32 cm s.c. fat. The kilogram weight of end-point product included the weight of trimmed, boneless subprimals plus lean trim weights, chemically adjusted to 20% fat, whereas the fat included the weight of trimmed fat plus the weight of fat in the lean trim. Prediction equations for carcass yield end points were developed using live animal or carcass measurements, and live animal equations were developed including ultrasound ribeye area or using only linear measurements. Multiple regression equations, with and without ultrasound rump fat thickness and gluteus medius depth, had similar R2 values when predicting kilograms of product and percentages of product, suggesting that these alternative variables explained little additional variation. Final unshrunk weight and ultrasound 12th-rib fat thickness explained most of the variation when predicting kilograms of fat. Rump fat and gluteus medius depth accounted for an additional 10% of the variation in kilograms of fat, compared with the equation containing final weight, ultrasound ribeye area, and ultrasound 12th-rib fat thickness; however, the two equations were not significantly different. Prediction equations for the cutability end points had similar R2 values whether live animal ultrasound measurements or actual carcass measurements were used. However, when ultrasound ribeye area was excluded from live animal predictions, lower R2 values were obtained for kilograms of product (0.81 vs 0.67) and percentages of product (0.41 vs 0.17). Conversely, the exclusion of ultrasound ribeye area had little effect on the prediction accuracy for kilograms of fat (0.75 vs 0.74) and percentage fat (0.50 vs 0.40). These data substantiate the ability of live animal ultrasound measures to accurately assess beef carcass composition and suggest that the alternative ultrasound measures, rump fat and gluteus medius depth, improve the accuracy of predicting fat-based carcass yields.  相似文献   

4.
Five hundred thirty-four steers were evaluated over a 2-yr period to develop and validate prediction equations for estimating carcass composition from live animal ultrasound measurements and to compare these equations with those developed from carcass measurements. Within 5 d before slaughter, steers were ultrasonically measured for 12th-rib fat thickness (UFAT), longissimus area (ULMA), rump fat thickness (URPFAT), and body wall thickness (UBDWALL). Carcasses were fabricated to determine weight (KGRPRD) and percentage (PRPRD) of boneless, totally trimmed retail product. Data from steers born in Year 1 (n = 282) were used to develop prediction equations using stepwise regression. Final models using live animal variables included live weight (FWT), UFAT, ULMA, and URPFAT for KGRPRD (R2 = 0.83) and UFAT, URPFAT, ULMA, FWT, and UBDWALL for PRPRD (R2 = 0.67). Equations developed from USDA yield grade variables resulted in R2 values of 0.87 and 0.68 for KGRPRD and PRPRD, respectively. When these equations were applied to steers born in Year 2 (n = 252), correlations between values predicted from live animal models and actual carcass values were 0.92 for KGRPRD, and ranged from 0.73 to 0.76 for PRPRD. Similar correlations were found for equations developed from carcass measures (r = 0.94 for KGRPRD and 0.81 for PRPRD). Both live animal and carcass equations overestimated (P < 0.01) actual KGRPRD and PRPRD. Regression of actual values on predicted values revealed a similar fit for equations developed from live animal and carcass measures. Results indicate that composition prediction equations developed from live animal and ultrasound measurements can be useful to estimate carcass composition.  相似文献   

5.
We evaluated 20 slaughtered cattle with ultrasound before hide removal to predict fat thickness and ribeye area at the 12th rib for possible use in carcass composition prediction. Carcasses were fabricated into boneless subprimals that were trimmed progressively from 2.54 to 1.27 to .64 cm maximum fat trim levels. Stepwise regression was used to indicate the relative importance of variables in a model designed to estimate the percentage of boneless subprimals from the carcass at different external fat trim levels. Variables included those obtained on the slaughter floor (ultrasound fat thickness and ribeye area; estimated percentage of kidney, pelvic, and heart [KPH] fat; and warm carcass weight) and those obtained from carcasses following 24 h in the chill cooler (actual fat thickness, actual ribeye area, estimated percentage of KPH fat, warm carcass weight, and marbling score). At all different subprimal trim levels, percentage KPH was the first variable to enter the model. In the models using measures taken on the slaughter floor, ultrasound fat thickness was the only other variable to enter the model. Ultrasound fat thickness increased R2 and decreased residual standard deviation (RSD) in models predicting subprimals at 2.54-cm maximum fat trim; however, at 1.27- and .64-cm trim levels, R2 and RSD increased. Models using the same two variables (except actual fat instead of ultrasound) in the cooler were similar to those using data from the slaughter floor. However, as more cooler measurement variables entered the models, R2 increased and RSD decreased, explaining a greater amount of the variation in the equation. Ultrasonic evaluation on the slaughter floor may be of limited application compared with the greater accuracy found in chilled carcass assessment.  相似文献   

6.
Five hundred thirty-four steers were evaluated over a 2-yr period to determine the accuracy of ultrasonic estimates of carcass 12th-rib fat thickness (CFAT) and longissimus muscle area (CLMA). Within 5 d before slaughter, steers were ultrasonically measured for 12th-rib fat thickness (UFAT) and longissimus muscle area (ULMA) using an Aloka 500V real-time ultrasound machine equipped with a 17.2-cm, 3.5-MHz linear transducer. Overall, correlation coefficients between ultrasound and carcass fat and longissimus muscle area were 0.89 and 0.86, respectively. Correlations for UFAT with CFAT were similar between years (0.86 and 0.90), whereas the relationship between ULMA and CLMA was stronger in yr 1 (r = 0.91; n = 282) than in yr 2 (r = 0.79; n = 252). Differences between ultrasonic and carcass measurements were expressed on both an actual (FDIFF and RDIFF) and absolute (FDEV and RDEV) basis. Mean FDIFF and RDIFF indicated that ultrasound underestimated CFAT by 0.06 cm and overestimated CLMA by 0.71 cm2 across both years. Overall mean FDEV and RDEV, which are indications of the average error rate, were 0.16 cm and 3.39 cm2, respectively. Analysis of year effects revealed that FDIFF, FDEV, and RDEV were greater (P < 0.01) in magnitude in yr 1. Further analysis of FDEV indicated that leaner (CFAT < 0.51 cm) cattle were overestimated and that fatter (CFAT > 1.02 cm) cattle were underestimated with ultrasound. Similarly, steers with small CLMA (< 71.0 cm2) were overestimated, and steers with large CLMA (> 90.3 cm2) were underestimated. The thickness of CFAT had an effect (P < 0.05) on the error of UFAT and ULMA measurements, with leaner animals being more accurately evaluated for both traits. Standard errors of prediction (SEP) adjusted for bias of ultrasound measurements were 0.20 cm and 4.49 cm2 for UFAT and ULMA, respectively. Differences in SEP were observed for ULMA, but not UFAT, by year. These results indicate that ultrasound can be an accurate estimator of carcass traits in live cattle when measurements are taken by an experienced, well-trained technician, with only small differences in accuracy between years.  相似文献   

7.
Live weight and ultrasound measures of fat thickness and longissimus muscle area were available on 404 yearling bulls and 514 heifers, and carcass measures of weight, longissimus muscle area, and fat thickness were available on 235 steers. Breeding values were initially estimated for carcass weight, longissimus muscle area, and fat thickness using only steer carcass data. Breeding values were also estimated for weight and ultrasound muscle area and fat thickness using live animal data from bulls and heifers, with traits considered sex-specific. The combination of live animal and carcass data were also used to estimate breeding values in a full animal model. Breeding values from the carcass model were less accurate and distributed more closely around zero than those from the live data model, which could at least partially be explained by differences in relative amounts of data and in phenotypic mean and heritability. Adding live animal data to evaluation models increased the average accuracy of carcass trait breeding values 91, 75, and 51% for carcass weight, longissimus muscle area, and fat thickness, respectively. Rank correlations between breeding values estimated with carcass vs live animal data were low to moderate, ranging from 0.16 to 0.43. Significant rank changes were noted when breeding values for similar traits were estimated exclusively with live animal vs carcass data. Carcass trait breeding values estimated with both live animal and carcass data were most accurate, and rank correlations reflected the relative contribution of carcass data and their live animal indicators. The addition of live animal data to genetic evaluation of carcass traits resulted in the most significant carcass trait breeding value accuracy increases for young replacements that had not yet produced progeny with carcass data.  相似文献   

8.
Fine mapping of quantitative trait loci (QTL) for 16 ultrasound measurements and carcass merit traits that were collected from 418 hybrid steers was conducted using 1207 SNP markers covering the entire genome. These SNP markers were evaluated using a Bayesian shrinkage estimation method and the empirical critical significant thresholds (α = 0.05 and α = 0.01) were determined by permutation based on 3500 permuted datasets for each trait to control the genome-wide type I error rates. The analyses identified a total of 105 QTLs (p < 0.05) for seven ultrasound measure traits including ultrasound backfat, ultrasound marbling and ultrasound ribeye area and 113 QTLs for seven carcass merit traits of carcass weight, grade fat, average backfat, ribeye area, lean meat yield, marbling and yield grade. Proportion of phenotypic variance accounted for by a single QTL ranged from 0.06% for mean ultrasound backfat to 4.83% for carcass marbling (CMAR) score, while proportion of the phenotypic variance accounted for by all significant (p < 0.05) QTL identified for a single trait ranged from 4.54% for carcass weight to 23.87% for CMAR.  相似文献   

9.
Seven hundred and three native and crossbred Chinese Yellow cattle (mean live weight: 523 ± 38 kg) were slaughtered, chilled and segmented. The hot carcass weight (HCW, kg), fat thickness (FT, cm) and rib eye area (REA, cm2) were measured to predict weights and percentages of beef cattle retail cuts. A correlation analysis showed that the HCW and REA were positively correlated with the weights of the total retail cuts (TRC, kg), top grade retail cuts, prime retail cuts and percentage of total carcass weight. A regression analysis indicated that HCW and REA were the best predictors for the weight of total retail cuts (Y = ?16.71 + 0.382 HCW + 0.593 REA), and the HCW explained more of the variation than REA. Meanwhile, HCW and REA accounted for 62% of the variation of percentage of total retail cuts (Y = 43.24 ? 0.025 HCW + 0.170 REA), whereas the REA was more valuable than the HCW. The FT contributed little in estimating weight or percentage of retail cuts.  相似文献   

10.
The objective of this study was to re-evaluate our previously published technique of estimating total physically separable internal fat (IFAT) in beef cattle using real-time ultrasound (RTU) and carcass measurements from live animals by including more breed types and genders under different management scenarios. We expanded the original database and performed additional analyses. The database was gathered from 4 studies and contained 110 animals (16 bulls, 16 heifers, and 78 steers), being Angus (n = 56), Angus× 5/8 Angus × 3/8 Nellore (n = 18), and Angus crossbreds (n = 36). Ultrasound measurements were obtained 7 d before slaughter, including the 12th to 13th rib fat thickness (uBF) and ultrasound kidney fat depth (uKFd). The uKFd was measured in a cross-sectional image collected between the first lumbar and 13th rib as previously published. Carcass data were collected 48 h post-mortem and consisted of backfat thickness (cBF), kidney fat depth (cKFd) and KPH weight, live BW, and HCW. Whole gastrointestinal tracts were removed and dissected to obtain IFAT weights. Weight of IFAT was highly correlated with KPH weight (0.88) and cKFd (0.81) and moderately correlated with uKFd (0.71). Prediction equations were developed for estimating IFAT, KPH weight, and cKFd with the PROC REG of SAS using the stepwise statement. The best predictors of IFAT were KPH weight or cKFd and cBF (r(2) = 0.84 and 0.83 and root mean square errors (RMSE) of 4.23 and 4.33 kg, respectively). Ultrasound measurements of uKFd and uBF had an r(2) of 0.65 and RMSE of 6.07 kg when both were used to predict IFAT. The results of cross-validation analyses indicated that equations developed either with KPH weight or cKFd weight and cBF had greater precision than the equation developed with uKFd and uBF. Most of the errors associated with the mean square error of prediction were due to random, uncontrolled variation. These results were consistent with previously published evaluation of this technique. These findings confirm that this RTU technique allows the measurement of IFAT in a non-invasive way that may improve our ability to estimate IFAT in beef cattle, be used to more accurately formulate rations, and be applied in sorting cattle at feedyard.  相似文献   

11.
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented.  相似文献   

12.
To study the accuracy and precision of intramuscular fat prediction by ultrasound (USIMF) in lean cattle, prediction models were developed based on 325 pure and crossbred beef and dual purpose bulls originating from I) commercial herds (n = 180) and II) a performance test station (n = 145). The bulls were scanned across the 12th thoracic vertebrae using a Pie 200 SLC scanner. Five images were collected per individual bull for later processing in the lab. After slaughter, a 2.5 cm cross-sectional sample located by the 13th thoracic vertebrae was used for chemical analysis to determine intramuscular fat % (CHIMF; Mean 1.25%, SD 0.6%) at the image site. The data were analysed sequentially involving 1) the Total Dataset, 2) Dataset I and 3) Dataset II. Prediction models were developed separately for each dataset, using stepwise regression procedures. The validation model R2, RMSE, overall mean bias, SEP, rP and rank correlations for CHIMF and USIMF based on the best prediction model (Dataset I) were 0.48, 0.46%, − 0.02%, 0.46%, 0.70 and 0.67, respectively. Further improvement in prediction accuracy can probably be achieved by increasing the size of datasets and the CHIMF variation. The results strongly indicate that ultrasound has potential for IMF prediction in lean cattle, although the value in indirect selection of breeding cattle for meat quality needs to be further evaluated.  相似文献   

13.
Data from 970 feedlot steers and bulls were used to evaluate effects of different age end points on the accuracy of prediction models for percentage of retail product, retail product weight, and hot carcass weight. Cattle were ultrasonically scanned three to five times for fat thickness, longissimus muscle area, and percentage of intramuscular fat. Live animal measures of body weight and hip height were also taken during some of the scan sessions. Before development of prediction equations, live and ultrasound data were adjusted to four age end points using individual animal regressions. Age end points represented mean age at slaughter (448 d), mean age at the second-to-last scan before slaughter (414 d), mean age at the third-to-last scan before slaughter (382 d), and an age end point of 365 d. Ultrasound and live animal measures accounted for a large proportion of the variation in the dependent variables regardless of the age end point considered. For all three traits, final models based on independent variables adjusted to earlier ages of 365 and 382 d showed better or at least similar model R2 and root mean square errors than those based on independent variables adjusted to a mean slaughter age of 448 d. Validation of the models using independent data from 282 steers resulted in a mean across-age rank correlation coefficient of .78, .88, and .83 between actual and predicted values of the percentage of retail product, hot carcass weight, and retail product weight, respectively. Mean across-age rank correlation of breeding values for the corresponding traits were .92, .89, and .82. The results of this study suggest that live and ultrasound traits measured as early as 365 d could be used to predict end product traits as accurately as similar measures made before slaughter at age 448 d.  相似文献   

14.
Yearling crossbred feedlot steers (n = 495) and heifers (n = 151) were ultrasonically measured at the 12-13th rib interface 24 h before slaughter to evaluate the accuracy of ultrasonic measurements of fat thickness (BFU) and longissimus muscle area (LMAU) for prediction of actual carcass measures. Isonification was with an Aloka 210DX ultrasound unit equipped with a 12.5-cm, 3.0-MHz, linear array transducer by two technicians. Carcass fat thickness (BFC) and longissimus muscle area (LMAC) were measured 48 h postmortem. Differences between ultrasonic and actual carcass measures were expressed in actual (BFDIFF and LMADIFF) and in absolute (magnitude of BFDIFF and magnitude of LMADIFF) terms for backfat and longissimus muscle area, respectively. When expressed as percentages of the actual carcass measures, the average absolute differences indicated error rates of 20.6% for backfat and 9.4% for longissimus muscle area. Average actual differences (BFDIFF and LMADIFF) indicated that underprediction occurred more often than overprediction for both measures. The BFU was within .25 cm of BFC 70% of the time, and LMAU was within 6.5 cm2 of LMAC 53% of the time. Ultrasound measurements BFU and LMAU more accurately predicted BFC and LMAC in thinner and more lightly muscled cattle, respectively. Simple correlation coefficients between ultrasonic and carcass measures were .75 (P less than .01) for BF and .60 (P less than .01) for LMA. Analyses of variance of absolute differences between ultrasonic and carcass measures indicated no significant differences to exist between technicians. Predictive accuracy of ultrasonic measures did not change as the level of experience of technicians increased during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Retail cutting tests were conducted on subprimals from cattle fed zilpaterol hydrochloride (ZH) to determine if the improved carcass composition and red meat yield resulting from ZH feeding would translate into increased retail yields of ready-to-cook products. As part of a 3-phase study, selection of carcasses from Holstein steers was done once (fall 2008), followed by the collection of carcasses from beef-type steers on 2 separate occasions (beef study I: summer 2009; beef study II: spring 2010). Each of the 3 groups of steers was assigned previously to 1 of 2 treatments, treated (fed 8.3 mg/kg of ZH for 20 d) or control (not fed ZH). All steers were slaughtered and carcasses were fabricated in commercial beef-processing establishments. Only those carcasses grading USDA Choice or higher were used. Five subprimals were used for both the calf-fed Holstein study (n = 546 subprimals) and beef study I (n = 576 subprimals): beef chuck, chuck roll; beef chuck, shoulder clod; beef round, sirloin tip (knuckle), peeled; beef round, top round; and beef round, outside round (flat). Seven subprimals were used in beef study II (n = 138 subprimals): beef chuck, chuck roll; beef round, sirloin tip (knuckle), peeled; beef round, top round; beef round, eye of round; beef loin, strip loin, boneless; beef loin, top sirloin butt, boneless; and beef loin, tenderloin. A simulated retail market environment was created, and 3 retail meat merchandisers prepared retail cuts from each subprimal so salable yields and processing times could be obtained. Differences in salable yields were found for the calf-fed Holstein steer chuck rolls (96.54% for ZH vs. 95.71% for control; P = 0.0045) and calf-fed Holstein steer top rounds (91.30% for ZH vs. 90.18% for control; P = 0.0469). However, other than heavier subprimals and an increased number of retail cuts obtained, total salable yields measured on a percentage basis and processing times were mostly unaffected by ZH. Cutability advantages of feeding ZH are achieved primarily in the carcass-to-subprimal conversion rather than in the subprimal-to-retail conversion.  相似文献   

16.
Real time ultrasound (RTU) measures of longissimus muscle area and fat depth were taken at 12 and 14 mo of age on composite bulls (n = 404) and heifers (n = 514). Carcass longissimus muscle area and fat depth, hot carcass weight, estimated percentage lean yield, marbling score, Warner-Bratzler shear force, and 7-rib dissectable seam fat and lean percentages were measured on steers (n = 235). Additive genetic variances for longissimus muscle area were 76 and 77% larger in bulls at 12 and 14 mo than the corresponding estimates for heifers. Heritability estimates for longissimus muscle area were 0.61 and 0.52 in bulls and 0.49 and 0.47 in heifers at 12 and 14 mo, respectively. The genetic correlations of longissimus muscle area of bulls vs heifers were 0.61 and 0.84 at 12 and 14 mo, respectively. Genetic correlations of longissimus muscle area measured in steer carcasses were 0.71 and 0.67 with the longissimus muscle areas in bulls and heifers at 12 mo and 0.73 and 0.79 at 14 mo. Heritability estimates for fat depth were 0.50 and 0.35 in bulls and 0.44 and 0.49 in heifers at 12 and 14 mo, respectively. The genetic correlation of fat depth in bulls vs heifers at 12 mo was 0.65 and was 0.49 at 14 mo. Genetic correlations of fat depth measured in bulls at 12 and 14 mo with fat depth measured in steers at slaughter were 0.23 and 0.21, and the corresponding correlations of between heifers and steers were 0.66 and 0.86, respectively. Live weights at 12 and 14 mo were genetically equivalent (r(g) = 0.98). Genetic correlations between live weights of bulls and heifers with hot carcass weight of the steers were also high (r(g) > 0.80). Longissimus muscle area measured using RTU was positively correlated with carcass measures of longissimus muscle area, estimated percentage lean yield, and percentage lean in a 7-rib section from steers. Measures of backfat obtained using RTU were positively correlated with fat depth and dissectable seam fat from the 7-rib section of steer carcasses. Genetic correlations between measures of backfat obtained using RTU and marbling were negative but low. These results indicate that longissimus muscle area and backfat may be under sufficiently different genetic control in bulls vs heifers to warrant being treated as separate traits in genetic evaluation models. Further, traits measured using RTU in potential replacement bulls and heifers at 12 and 14 mo of age may be considered different from the corresponding carcass traits of steers.  相似文献   

17.
The objective of this study was to determine technician effects of live animal ultrasonic estimates of fat thickness (FTU) and longissimus muscle area (LMAU). Steers (n = 36) representing four breed-types (Brown Swiss, Average Zebu-cross Mexican, Corriente Mexican, and typical British crossbred) of commercial slaughter cattle were isonified to estimate accuracy and repeatability of fat thickness (FT) and longissimus muscle area (LMA) measurements by two experienced technicians. Repeated measures of FTU and LMAU were taken by technicians on two consecutive days with an Aloka 500V ultrasound unit equipped with a 3.5-MHz, 172-mm scanning width, linear-array transducer. Ultrasonic estimates of fat thickness and LMAU were taken at the 12th and 13th rib interface 48 h before slaughter; carcass fat thickness (FTC) and longissimus muscle area (LMAC) were measured 48 h postmortem. Means for FTU, FTC, LMAU, and LMAC were .91 +/- .36 cm, .82 +/- .40 cm, 70.7 +/- 9.43 cm2, and 72.4 +/- 8.9 cm2, respectively. Ultrasound and carcass measures of FT and LMA were different (P less than .01) among breed-types but were not different (P greater than .10) between technicians or for technician x breed-type interactions. Pooled simple correlation coefficients (P less than .01) were .87 and .86 between FTU and FTC and .76 and .82 between LMAU and LMAC for Technicians 1 and 2, respectively. Repeatabilities estimated by intraclass correlation methods were .91 +/- .03 and .81 +/- .06 for images repeated over 2 d and .95 +/- .02 and .83 +/- .05 for images repeated by two technicians for FT and LMA, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We conducted a meta‐data analysis to develop prediction equations to estimate enteric methane (CH4) emission from beef cattle in Southeast Asia. The dataset was obtained from 25 studies, which included 332 individual observations on nutrient intakes, digestibilities, and CH4 emissions. Cattle were provided tropical forage or rice straw, with or without concentrates in individual pens equipped with indirect open‐circuit head hood apparatus. The simplest and best equation to predict daily CH4 emission was CH4 (g/day) = 22.71 (±1.008) × dry matter intake (DMI, kg/day) + 8.91 (±10.896) [R2 = 0.77; root mean square error (RMSE) = 19.363 g/day]. The best equation to predict CH4 energy as a proportion of gross energy intake (CH4‐E/GEI, J/100 J) was obtained using DMI per body weight (DMIBW, kg/100 kg), content (g/100 g DM) of ether extract (EE) and crude protein (CP), and DM digestibility (DMD, g/100 g); CH4‐E/GEI = ?0.782 (±0.2526) DMIBW ? 0.436 (±0.0548) EE ? 0.073 (±0.0218) CP + 0.049 (±0.0097) DMD + 8.654 (±0.6517) (R2 = 0.39; RMSE = 1.3479 J/100 J GEI). It was indicated that CH4 emissions from beef cattle in Southeast Asia are predictable using present developed models including simple indices.  相似文献   

19.
One hundred beef carcasses were selected to represent the mix of cattle slaughtered across the United States. Selection criteria included breed type (60% British/continental European, 20% Bos indicus, and 20% dairy carcasses), sex class (beef and Bos indicus: 67% steers, 33% heifers; dairy: 100% steers), USDA quality grade (4% Prime, 53% Choice, and 43% Select), USDA yield grade (10% YG 1, 43% YG 2, 40% YG 3, and 7% YG 4), and carcass weight (steers: 272.2 to 385.6 kg, heifers: 226.8 to 340.2 kg). One side of each carcass was fabricated into boneless subprimals and minor cuts following Institutional Meat Purchase Specifications. After fabrication, subprimals were trimmed progressively of fat in .64-cm increments beginning with a maximum of 2.54 cm and ending with .64 cm. Linear regression models were developed for each individual cut, including fabrication byproduct items (bone, fat trim) to estimate the percentage yield of those cuts reported by USDA Market News. Strip loin, top sirloin butt, and gooseneck rounds from heifers tended to have a higher percentage yield at the same USDA yield grade than the same cuts from steers, possibly resulting from increased fat deposition on heifers. Percentage of fat trimmed from dairy steers was 2 to 3% lower than that from other sex-class/carcass types; however, due to increased percentage of bone and less muscle, dairy steers were lower-yielding. Fat trimmed from carcasses ranged from 7.9 to 15.6% as the maximum trim level decreased from 2.54 to .64 cm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号