首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Because of good adaptability, high throughput and continuous feature, twin-screw extrusion has been shown to be a promising pretreatment method for biomass to open the cell wall at the microscopic scale. This greatly increases the specific surface area for enzyme adsorption regardless of crystallinity. The objective of this study was to investigate the effectiveness of alkali-assisted extrusion for improving corn stover digestability. The glucose and xylose sugar yields for combined process were 86.8% and 50.5%, respectively, at an alkali loading of 0.04 g/g dry biomass, a screw speed of 80 rpm, temperature of 140 °C and washed with water. The average residence time for extrusion is 27 min for 100 g corn stover. These yields were 3.9 and 13.3 times higher than their untreated counterparters. The crystallinity index was not related with hydrolysis yields. Congo red dye adsorption indicated that alkali-assisted extrusion produced significantly more pores at the meso and large scales compared to untreated material, which significantly improved the sugar yields.  相似文献   

2.
The effect of extrusion on characteristics of destarched corn fiber was investigated. Extrusion was conducted at a screw speed of 300 rpm, feed rate of 100 g/min, feed moisture content of 30%, melt temperature of 140 °C and die diameter of 3 mm. After extrusion, characteristics of raw and extruded destarched corn fiber were compared. Raw and extruded destarched corn fibers were enzymatically saccharified and fermented using Saccharomyces cerevisiae (ATCC 24858). Extrusion pretreatment resulted in low crystallinity index, significant decrease in degree of polymerization and microstructure disruption of destarched corn fiber for enzymatic saccharification. This provides a significant increase in xylose yield for fermentation. Significant increase in protein digestibility and free amino nitrogen were additional benefits of extrusion for yeast nutrient in fermentation. Therefore, extruded destarched corn fiber significantly increased (p < 0.05) ethanol yield (29.08 g/L) and higher conversion (88.79%) by improving the physiochemical and functional properties for saccharification and fermentation.  相似文献   

3.
Whole grain oat flour was extruded under different moisture contents (15%, 18%, 21%), barrel temperatures (100 °C, 130 °C), and screw speeds (160 rpm, 300 rpm, 450 rpm), and selected physicochemical properties, in vitro starch digestibility, and β-glucan extractability of the extrudates were analyzed. An increase in screw speed resulted in an increase in radial expansion index, water absorption index, and water solubility index. Screw speed significantly affected slowly and rapidly digestible starch. Moderate screw speed (300 rpm) led to higher slowly digestible starch with an accompanying decrease in rapidly digestible starch. Low moisture conditions (15%) resulted in the highest resistant starch and water-extractable β-glucan. Under the conditions used in this study, extrusion did not result in changes in water-extractable β-glucan molecular weight. Thus, extrusion might be beneficial in improving functionality and consumer acceptability by affecting physicochemical properties, in vitro starch digestibility, and β-glucan extractability of oat extrudates.  相似文献   

4.
In the present study, milled cotton stalks were subjected to alkali pretreatment with NaOH at 1-4% (w/v) concentrations at 121 °C for time ranging from 30 to 90 min. Ozone pretreatment was performed by passing 45 mg/L of ozone gas over 2 mm cotton stalks for 150 min at a flow rate of 0.37 L/min. The residual biomass from 4% alkali pretreatment for 60 min showed 46.6% lignin degradation accompanied by 83.2% increase in glucan content, compared with the untreated biomass. Hydrolysis of 4% alkali-treated and ozone-treated cotton stalks was conducted using enzyme combination of 20 filter paper cellulase units/gram dried substrate (FPU/g-ds), 45 IU/g-ds β-glucosidase and 15 IU/g-ds pectinase. Enzymatic hydrolysis of alkali-treated and ozone-treated biomass after 48 h resulted in 42.29 g/L glucose, 6.82 g/L xylose and 24.13 g/L glucose, 8.3 g/L xylose, respectively. About 99% of glucose was consumed in 24 h by Pichia kudriavzevii HOP-1 cells resulting in 19.82 g/L of ethanol from alkali-treated cotton stalks and 10.96 g/L of ethanol from ozone-treated cotton stalks. Simultaneous saccharification and fermentation of the alkali-treated cotton stalks after 12-h pre-hydrolysis resulted in ethanol concentration, ethanol yield on dry biomass basis and ethanol productivity of 19.48 g/L, 0.21 g/g and 0.41 g/L/h, respectively which holds promise for further scale-up studies. To the best of our knowledge, this is the first study employing SSF for ethanol production from cotton stalks.  相似文献   

5.
Commercially available corn starches containing 0, 25, 50 and 70% amylose were extruded with 10, 20 and 30% soy protein isolate (SPI) or wheat gluten (WG) at 22% moisture content (dry basis) in a C.W. Brabender single screw laboratory extruder using a 140°C barrel temperature and a 140 rpm screw speed. True, solid and bulk densities; percent total, closed and open pores; and shear strengths of the extrudates were determined. The microstructures of the extrudates were studied by scanning electron microscopy (SEM). The total pores of the extrudates were affected significantly (p < F=0.0001) by type of protein (SPI or WG) and starch amylose. The open or closed pores, were affected by protein type only. The interaction between amylose and protein contents was highly significant <(p < F=0.0001). In general, the total pores and bulk densities were higher for WG-starch extrudates compared to SPI-starch extrudates. These values decreased as amylose content increased from 0 to 25% and then increased thereafter. The open pores, on the other hand, increased with increasing protein content from 10 to 20% and then decreased. Extrudates containing WG had higher shear strengths than those containing SPI.  相似文献   

6.
The harvested biomass of switchgrass (Panicum virgatum L.) is generally much lower than its potential; this may be due to several factors including not recovering all the biomass at harvest, weed competition, pests, disease and spatial variation of soil features. The objective of this research was to quantify the yield spatial variation of switchgrass and relate it to soil parameters, in a field of about 5 ha, in 2004 and 2005. Several thematic maps of soil parameters and biomass yield were produced using GIS and geostatistical methods. Soil parameters changed consistently within very short distances and biomass yield varied from 3 to more than 20 Mg ha−1. This remarkable variation indicates that the potential for increasing switchgrass productivity is a real prospect. Furthermore, spatial variation of yield showed similar patterns in the 2 years (r = 0.38**), and therefore a major influence of site characteristics on switchgrass yield can be assumed to occur. Significant correlations were found between biomass yield and soil N, P, moisture and pH as well as between soil parameters. Some soil parameters such as sand content showed patchy spatial distribution. Conversely, a reliable spatial dependence could not be identified for other parameters such as P. Further research is needed.  相似文献   

7.
Whole wheat is well known by consumers as a health-providing ingredient. Nevertheless, in extruded products it leads to textures that are less favorable to consumer preference compared to its refined flour. An understanding of the effect of extrusion on whole wheat properties is therefore necessary to improve its texture. Whole wheat flour was extruded under varying conditions of water content (18 or 22%), screw speed (400 or 800 rpm) and barrel temperature (140 or 180 °C) and its physicochemical properties were measured. Changing the extrusion conditions significantly modified the volumetric expansion index (between 9.1 and 20.6) and longitudinal expansion (between 0.93 and 2.98) of the samples. Interestingly, changing the extrusion conditions did not significantly modify the sectional expansion. Increasing barrel temperature, water content or screw speed decreased the shear viscosity of the melt. This can be explained by plasticizing effects and modification of starch properties. The change in shear viscosity at the die can mostly explain the effect of process conditions on volumetric expansion of the extruded whole wheat. The stress at rupture of the extruded samples was varied between 0.49 and 1.86 MPa depending on process conditions. It was the lowest at high water content and low screw speed.  相似文献   

8.
利用双螺杆挤压膨化机对绿茶茶渣进行挤压膨化加工,采用响应面设计方法建立物料含水量、喂料速度、螺杆转速以及套筒温度与绿茶茶渣中粗纤维含量之间的回归模型。结果表明,各参数对绿茶茶渣中粗纤维含量影响由大到小依次为:螺杆转速>套筒温度>喂料速度>物料含水量,获得低粗纤维含量的最佳挤压膨化参数为物料含水量70%,喂料速度90r/min,螺杆转速90r/min,套筒温度50℃。在此条件下,茶渣中粗纤维含量为15%,与膨化前原料相比,粗纤维含量下降了3%。  相似文献   

9.
Using broken rice and rice bran as raw material, texturized rice (TR) was prepared by Improved Extrusion Cooking Technology (IECT) in which gelatinization is formed by means of low temperature and high pressure. The expansion of extrudate was hardly changed so that TR showed similar texture properties and shape with polished rices. The effect of rice bran addition (0% and 4%) and IECT conditions, including feed moisture content (26.6-33.4%), screw speed (20.1-32.6 rpm) and shearing compression metering zone temperature (SCMT, 69.8-120.2 °C) on the physicochemical, texture and nutritional characteristics of TR, were investigated by response surface methodology using Central Composite Design. When the bran addition was 4%, feed moisture content was 30%, screw speed was 26.6 rpm, SCMT was 95 °C, prepared TR contained 16.61 ± 0.02% of total dietary fiber, 9.40 ± 0.04% of protein, 3.68 ± 0.03% of fat, 2.42 ± 0.02 μg/g of thiamin, 0.52 ± 0.01 μg/g of riboflavin and 16.07 ± 0.12 mg/100 g of γ-oryzanol (dry matter content). The content increase of TDF for TR was 15.81% and the content increases of nutrients for thiamin, riboflavin, and γ-oryzanol were 1.39 μg/g, 0.24 μg/g, and 8.99 mg/g dry matter content, respectively, compared with those of polished rice.  相似文献   

10.
The chopped sweet sorghum stalk was thin-layer-dried for long-term storage and ethanol production. The drying kinetics and the effects of drying temperature on the qualities of sweet sorghum stalk were investigated in this work. The results showed that the drying process could be simulated well by Wang and Singh's model. The diffusivity constant (D0) and active energy (Ea) were estimated as 4.4 × 10−5 m2/s and 21.4 kJ/(mol K) for drying the chopped fresh stalk. According to the sugar composition, browning degree, and fermentability of the dried stalk obtained at various temperatures, the approximate drying temperature could be suggested as 50-60 °C for application. In this range, the moisture of the chopped fresh stalk could drop below the safe moisture for storage in 7-5.5 h with 12.1-9.7% total sugar loss during the drying process.  相似文献   

11.
Autocatalytic hydrothermal process conditions were used to study Ulex europæus (Gorse) as a source of xylan compounds. The aim was to study the possibilities for using this unutilised biomass material to produce xylans. Ulex is an evergreen shrub that grows in the northwest of Spain and has no economic value. Therefore, Ulex is considered a promising candidate as a biomass source. Ulex showed a total xylose content of 12%, thus qualifying it as a suitable material to extract xylan-derived compounds. Autohydrolysis was applied to extract xylans from Ulex. To find the best conditions for xylan extraction, samples of Ulex were subjected to different temperatures and time conditions. Results indicate that autohydrolysis is a suitable method to selectively extract xylans at temperatures between 160 and 190 °C for 5-30 min, reaching a maximum xylan recovery of almost 63% of the initial xylan at 180 °C for 30 min, with only small effects on cellulose and lignin contents.  相似文献   

12.
The steam pre-treatment with low severity preserves valuable biomass components, and further delignification with alkaline peroxide could improve hydrolysis. A combination of low severity steam pretreatment and alkaline peroxide post-treatment of Lespedeza stalks was investigated. The post-treatment of steam-pretreated Lespedeza stalks with alkaline peroxide significantly increased the cellulose content and changed the structure of the cellulose-rich fractions. A glucose yield of 503.5 mg g−1 raw material from enzyme hydrolysis was obtained when the steam-pretreated material (184 °C for 4 min) was post-treated with 2% hydrogen peroxide at 60 °C for 24 h with a substrate concentration of 3.3%. Its hydrolysis yield is 88.8%, which is higher than that of samples processed by steam pretreatment alone (63.7%). The samples obtained by post-treatment with alkaline peroxide were found to have a smoother surface and looser structure in scanning electron microscopy images. The isolated lignin preparations had a yield range from 10.9 to 14.7 (% dry matter). The lignin was characterized by thermogravimetric analysis/differential thermal analysis, Fourier transform infrared spectroscopy, and gel permeation chromatography. Alkaline peroxide treatment increased the thermal stability of lignin, and decreased the amounts of all functional groups. Depolymerization and repolymerization occurred during the alkaline peroxide treatment.  相似文献   

13.
Response surface methodology (RSM) was used to optimize the conditions for the production of endo β-1,4 glucanase, a component of cellulase by Aspergillus nidulans MTCC344 under solid state fermentation, using bagasse as the chief substrate. A four-factor-five-level central composite design was employed for experimental design and analysis of the results. Maximum cellulase activity (CMCase was 28.96 U g−1) can be attained at the optimum conditions, 16.8 mm bagasse bed height, 60% moisture content, pH 4.25 and temperature 40 °C in the solid state fermenter. These data were rather close to the experimental results obtained (CMCase was 28.84 U g−1). A. nidulans MTCC344 was able to hydrolyze pretreated bagasse completely after 8 days of incubation with significant endo β-1,4 glucanase activities. The results of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) of bagasse showed structural changes through pretreatment, in favor of enzymatic hydrolysis. Bagasse with alkali pretreatment using sodium hydroxide is a source of lignocelluloses able to improve the yield of endo β-1,4 glucanase by the strain of A. nidulans. The endo β-1,4 glucanase produced during the bioconversion of cellulose to glucose by A. nidulans MTCC344 is strongly dependent on the pretreatment given before hydrolysis.  相似文献   

14.
A sequential process with the combination of ethanol and alkali aqueous solutions was utilized to extract lignin from bamboo (Neosinocalamus affinis), a potential lignocellulosic material. In this case, the successive treatments of dewaxed bamboo with 70% ethanol at 80 °C, 0.2 and 0.5 M NaOH, 70% ethanol containing 0.6 M NaOH, and 1.0, 2.0, and 3.0 M NaOH at 50 °C, resulted in a total yield of acid-insoluble lignin fractions of 10.06%, corresponding to release of 62.25% original lignin from the cell walls. The lignin fractions obtained were then characterized by GPC, FT-IR, NMR spectroscopy, and sugar analysis. As compared to the alkali lignin fractions, the ethanol-soluble lignin fraction had a relatively higher molecular weight (2670 g/mol) and the content of carbohydrates primarily consisted of glucose 2.01% and xylose 1.90%. This suggested that the carbohydrate chains linked to lignin may increase the hydrodynamic volume of lignin and therefore increase the apparent molecular weight of the ethanol-soluble lignin. HSQC spectra analysis revealed that the alkali lignin fractions consisted mainly of β-O-4′ linkages combined with small amounts of β-β′, β-5′, β-1′ linkages, and p-hydroxycinnamyl alcohol end groups. Furthermore, minor amounts of esterified p-coumaric and ferulic acids were also detected in the lignins isolated.  相似文献   

15.
A standardized extrusion cooking process was developed for production of a high protein weaning food based on peanuts, maize and soybeans. Major factors evaluated included the effects of blend formulation, extrusion temperature and feed moisture content on ease of extrusion and product quality characteristics. Results showed bulk density and hardness increased while expansion index decreased with increase in feed moisture content. At a fixed range of feed moisture content, product bulk density and firmness decreased while expansion index increased with increasing extrusion temperature. For ease of extrusion and best product quality in terms of sensory attributes and cooking properties, the following extrusion parameters were established for a blend formulation of 75% maize, 10% peanut and 15% soybean: feed particle size of 300–400 m extruded using a screw speed of 500 rpm, with a feed rate of 4.6 kg/min, feed moisture content of 16–18%, and extrusion temperature of 100 ,°C–105,°C. Pair-wise comparison of the sensory attributes of porridges prepared from milled samples of the weaning foods showed significant differences between extruded products and existing traditional counterparts, with very high scores for all sensory attributes of the extruded products, especially extruded raw (non-roasted) blend samples. In the Home-Use-Test, at least 92% of respondents in two out of the three major ecological zones of Ghana placed overall sensory and functional characteristics of extruded raw blend samples as highly acceptable. About 7% of respondents scored sensory and functional quality attributes as acceptable.  相似文献   

16.
Mixtures of defatted soy flour and sweet potatoes wereextruded at 0:100, 25:75, 50:50, 75:25 and 100:0ratios in an Insta-Pro 600 single screw extruderoperated at 180, 200, 220 rpm.Oil (3–5%) was added into the mix before extrusion.A 5×32 fractional factorial central compositeresponse surface design was adopted forinvestigating the variables: feed composition, % oil,and screw rotation speed (RPM). Percent oil andscrew speed were randomly investigated at threelevels, while feed composition was randomlyinvestigated at five levels. Effect of extrusioncooking on functional properties: bulk density,expansion ratio, water absorption and solubilityindices and trypsin inhibitor were assessed.Results showed that feed composition and screw speedhad strong influences on the process. The effect ofadding oil, into defatted soybean significantly(p<0.05) affected only trypsin inhibitor content.High extrusion temperature (>130 °C), andaccompanying high shear, were the result of thenon-pasting nature of the extrudate. Therefore theproducts may have limited uses.  相似文献   

17.
Photoperiod-sensitive sorghum, as a competitive biomass for ethanol production, was investigated to develop an integrated process for improving ethanol yield. Response surface methodology was employed to study the relationship between pretreatment variables (including temperature, sulfuric acid concentration, and reaction time) and cellulose recovery, as well as efficiency of enzymatic hydrolysis (EEH) in the solid part. Recovery yield decreased and EEH increased as the pretreatment temperature, acidic concentration, and reaction time increased. A model was successfully developed to predict total glucose yield with a maximum value of 82.2%. Conditions of co-fermentation were also optimized, and the optimal ethanol yield was obtained with constant-temperature simultaneous saccharification and fermentation at 38 °C. Acetate buffer at a concentration of 50 mM was found helpful for increasing efficiency of enzymatic hydrolysis, as well as ethanol yield. The maximum ethanol yield was 0.21 g ethanol per dry mass at the conditions of 38 °C, 0.05 g yeast/L, and 50 mM acetate buffer. A complete cellulose balance was provided for the whole process.  相似文献   

18.
A Box-Behnken experimental design and response surface methodology were employed to optimize the pretreatment parameters of a formic/acetic acid delignification treatment of Miscanthus × giganteus for enzymatic hydrolysis. The effects of three independent variables, namely cooking time (1, 2 and 3 h), formic acid/acetic acid/water ratio (20/60/20, 30/50/20 and 40/40/20) and temperature (80, 90 and 107 °C) on pulp yield, residual Klason lignin content, concentration of degradation products (furfural and hydroxymethylfurfural) in the black liquor, and enzymatic digestibility of the pulps were investigated. The major parameter influencing was the temperature for pulp yield, delignification degree, furfural production and enzymatic digestibility. According to the response surface analysis the optimum conditions predicted for a maximum enzymatic digestibility of the glucan (75.3%) would be obtained using a cooking time of 3 h, at 107 °C and with a formic acid/acetic acid/water ratio of 40/40/20%. Glucan digestibility was highly dependent on the delignification degree.  相似文献   

19.
Ethanol production by Saccharomyces cerevisiae UFPEDA1238 was performed in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Temperature (32 °C, 37 °C), agitation (80; 100 rpm), enzymatic load (20 FPU/g cellulose and 10%, v/v β-glucosidase or 10 FPU/g cellulose and 5% β-glucosidase) and composition of culture medium were evaluated. Ethanol concentration, enzymatic convertibility of cellulose and volumetric productivity were higher than 25 g/L, 72% and 0.70 g/L h, respectively, after 30 h, when the culture medium 1 and 20 FPU/g cellulose/10%, v/v β-glucosidase or the culture medium 2 and 10 FPU/g cellulose/5% β-glucosidase were used in SSF at 37 °C and 80 rpm. In the SSF with culture medium 2 (supplemented with ammonium, phosphate, potassium and magnesium), 150 L ethanol/t bagasse was achieved, with minimum enzyme loading (10 FPU/g cellulose and 5%, v/v β-glucosidase) for 8%, w/v of solids, which is often an important requirement to provide cost-efficient second generation ethanol processes.  相似文献   

20.
Moisture sorption isotherms of raw bamboo shoot were determined by static gravimetric technique based on isopiestic transfer of water vapor at 20, 30 and 35 °C. Inorganic saturated salt solutions in the range of 11.2-97.2% were used to create the required controlled humidity environment in a closed chamber. In the study, the sorption isotherms obtained were of sigmoid shape and of BET II type classification. Out of three sorption models i.e., BET, Caurie and GAB, fitted to the experimental data, Caurie model was found superior in interpreting the moisture sorption characteristics of bamboo shoot at three temperatures. The monolayer moisture content Mm as estimated by the best fitted Caurie's model for the sorption processes were 6.012%, 5.801%, 5.014%, and 5.987%, 5.816%, 4.998% (dry basis) at 20, 30, and 35 °C, respectively. The isosteric heats of sorption for both the adsorption and desorption process of bamboo shoots were found to increase with decrease in moisture content suggesting endothermic reaction at lower moisture content and it approached the value of heat of vaporization of free water at higher moisture content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号