首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 2 毫秒
1.
In the this study, we evaluated the effect of replacement of fish meal by a marine microalgae Spirulina platensis on growth, digestive enzyme activities, fatty acid composition and responses to ammonia and hypoxia stress in Pacific white shrimp Litopenaeus vannamei (2.6 ± 0.2 g). Experimental diets contained S. platensis at 0%, 25%, 50%, 75% and 100% replacement levels. After 8 weeks of feeding trial, growth parameters and proximate body composition were not significantly different among treatments (p > .05). Amylase and lipase activities did not show any significant differences between control group and other experimental diets (p > .05), while activities of trypsin and chymotrypsin were significantly higher in shrimp fed diet with 50% substitution of microalgae compared to control group. Fatty acid contents, particularly polyunsaturated fatty acids (PUFAs) including arachidonic acid (ARA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were significantly higher in control diet compared to other experimental diets. On the contrary, the majority of fatty acids including the contents of PUFAs in the whole body of L. vannamei fed with different levels of S. platensis were significantly higher compared to those of control group. After 48‐h exposure to ammonia, survival per cent was not statistically different between all groups (p > .05), but in hypoxia challenge, the survival per cent of control group was significantly less than that of treatments fed diets contained S. platensis (p < .05). Altogether, o ur results demonstrated the effectiveness of S. platensis as a reliable protein source for substitution of fish meal in shrimp aquaculture.  相似文献   

2.
Digestive alkaline proteinases from golden grey mullet (Liza aurata) were extracted and characterized. The crude alkaline protease showed optimum activity at pH 8.0 and 60°C, and it was highly stable over a wide range of pH from 4.0 to 10.0, retaining more than 80% activity after incubation for 1 h at 4°C. The alkaline proteases showed extreme stability toward nonionic and anionic surfactants after preincubation for 1 h at 25°C and relative stability toward oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various solid and liquid detergents. Further, proteases from golden grey mullet viscera were found to be effective in the deproteinization of shrimp wastes. The protein removal after 3 h at 45°C with an enzyme/substrate (E/S) ratio of 10 U/mg protein was about 76%. The golden grey mullet proteases were also shown to be efficient in the production of antioxidant protein hydrolysate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号