首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
导种环槽U型孔组合型轮式前胡排种器设计与试验   总被引:1,自引:0,他引:1  
为推进中草药前胡全程机械化生产,解决前胡种植环节无适用播种装置问题,设计一种导种环槽U型孔组合轮式排种器。阐述播种装置及排种器的结构和工作原理,依据前胡种子的外形特征及主要物理力学参数,分析得出排种器关键结构参数及工作参数,构建充种和排种过程中前胡种子颗粒群的力学模型。应用离散元软件EDEM对排种器的排种性能进行仿真优化试验,研究U型孔深度、U型孔宽度和导种环槽倾角对平均播种量和排种均匀性变异系数的影响,采用Box-Behnken响应面优化法进行三因素三水平正交仿真试验,得到U型孔深度为4.65 mm、U型孔宽度为13.63 mm、导种环槽倾角为47.01°时,平均播种量和排种均匀性变异系数分别为0.199 g/s和12.37%。以排种轮转速、种层初始充填高度为试验因素,以行内排种均匀性变异系数、总排量稳定性变异系数、各行排量一致性变异系数为试验指标,进行供种性能两因素五水平二次回归正交旋转组合台架试验。台架优化试验结果表明,排种轮转速为25.69 r/min、种层初始充填高度为46.70 mm时,行内排种均匀性变异系数、总排量稳定性变异系数、各行排量一致性变异系数分别为18.62%、...  相似文献   

2.
外槽轮式单段木薯种茎排种器设计与仿真试验   总被引:1,自引:0,他引:1  
为满足木薯种茎预切种式排种要求。基于预切种排种技术,利用外槽轮排种方式,设计一种外槽轮式单段木薯种茎排种器,分析排种器充种机理,明确影响充种性能的因素,设计排种器关键部件的结构参数,利用UG软件建立排种器和木薯种茎的虚拟模型。采用三因素三水平正交试验方法,以充种倾角、槽轮转速和前进速度为试验因素,排种段距合格率为试验指标,利用UG软件运动仿真模块,进行木薯种茎的排种仿真试验,确定最优参数组合为充种倾角为30°,槽轮转速为0.4 rad/s,前进速度为1 m/s,并对最优参数组合进行台架验证试验。试验结果表明,排种段距合格率平均值为90.9%,与仿真试验结果的相对误差为0.5%。最优组合方案可靠,满足木薯种茎的种植农艺要求。  相似文献   

3.
振动供种型孔轮式非圆种子精密排种器设计与试验   总被引:7,自引:0,他引:7  
为满足非圆种子低播量精密播种的种植要求,基于型孔轮式排种器提出了一种振动定向供种机构,分析了种子振动定向排序的机理,建立了种子在定向供种机构上的运动模型和充填型孔过程的动力学模型,完成了关键结构的参数设计。以V型槽安装倾角、振动方向角、振动频率、电压值(振幅)及排种轮转速为试验因素进行了二次回归旋转正交组合试验,并应用Design-Expert 8.0.6软件对试验数据进行多元回归分析和响应曲面分析,得到了因素与合格率间回归模型和因素对指标影响关系,确定了影响合格率的因素重要性次序为振动频率、振幅、振动方向角、安装倾角和排种轮转速。基于回归模型进行了参数优化并进行了试验验证,结果表明:当安装倾角4.02°、振动方向角31.29°、振动频率35.9 Hz、振幅4.03 V、转速5.55 r/min时,合格率为97.64%,漏充率为2.36%,试验中未出现多于3粒/穴的情况。采用二次回归旋转正交组合设计建立回归模型,试验结果与理论分析结论一致,满足了低播量精密播种的农艺要求,表明了振动供种组合型孔轮式排种器实现非圆种子精密排种的可行性。  相似文献   

4.
针对现有机械离心式集排器高速作业时供种能力不足,供种量难以实现精量可调等实际问题,设计一种具有“螺旋进种条”结构的油菜旋转盘式高速集排器。基于油菜种子机械物理特性及播量需求,开发螺旋供种装置,构建种子供种过程的力学模型并分析确定了其主要结构参数。采用三元二次回归正交组合试验建立供种速率、供种速率稳定变异系数、破损率与转速、叶片宽度、导程之间的数学模型,分析得到影响供种速率的因素主次顺序为导程、叶片宽度、转速,影响供种速率稳定性变异系数及破损率的因素主次顺序为转速、导程、叶片宽度;且较优参数组合为:转速81 r/min、叶片宽度4 mm、导程15 mm。在较优参数组合下的台架验证试验得到供种装置的供种速率为92.7 g/min,供种速率稳定性变异系数为0.32%,破损率为0.29%;供种速率为36.55~190.94 g/min时,供种速率稳定性变异系数均低于1.29%,破损率均低于0.5%。田间试验表明机组作业速度为10 km/h时,油菜播种均匀性变异系数为9.4%,种植密度为48~60株/m2,可实现高速播种,满足油菜种植农艺要求,可为旋转盘式集排器结构改进提供...  相似文献   

5.
针对现有机械离心式集排器高速作业时供种能力不足,供种量难以实现精量可调等实际问题,设计一种具有“螺旋进种条”结构的油菜旋转盘式高速集排器。基于油菜种子机械物理特性及播量需求,开发螺旋供种装置,构建种子供种过程的力学模型并分析确定了其主要结构参数。采用三元二次回归正交组合试验建立供种速率、供种速率稳定变异系数、破损率与转速、叶片宽度、导程之间的数学模型,分析得到影响供种速率的因素主次顺序为导程、叶片宽度、转速,影响供种速率稳定性变异系数及破损率的因素主次顺序为转速、导程、叶片宽度;且较优参数组合为:转速81r/min、叶片宽度4mm、导程15mm。在较优参数组合下的台架验证试验得到供种装置的供种速率为92.7g/min,供种速率稳定性变异系数为0.32%,破损率为0.29%;供种速率为36.55~190.94g/min时,供种速率稳定性变异系数均低于1.29%,破损率均低于0.5%。田间试验表明机组作业速度为10km/h时,油菜播种均匀性变异系数为9.4%,种植密度为48~60株/m2,可实现高速播种,满足油菜种植农艺要求,可为旋转盘式集排器结构改进提供参考。  相似文献   

6.
谷子排种器是谷子播种机的核心部件,其性能直接影响播种机的播种性能。为此,针对我国北方寒地谷子条播种植特点,设计了一款槽轮式谷子排种器,为得到排种器的最佳播种参数,根据国家标准进行了试验研究。以排种量和排种均匀度变异系数作为目标函数,采用单因素试验确定排种器作业段长度、排种轴转速和播种带作业速度最优数值,采用三因素五水平二次回归正交旋转中心组合设计方法,得到最优的排种作业参数组合。结果表明:当排种器作业段长度为10mm、排种轴转速为50r/min、播种带作业速度为4.0km/h时,排种器满足排种量要求且排种均匀度变异系数最优。  相似文献   

7.
宽苗带勾型窝眼轮式小麦精量排种器设计与试验   总被引:6,自引:0,他引:6  
为解决宽苗带小麦精密播种排种器排种均匀性差的难题,结合小麦精量排种技术提出一种勾型窝眼轮式宽苗带小麦精量排种器,使种子行内分布均匀,行间种子不散乱。对关键参数进行了设计和理论分析,通过EDEM离散元软件完成了种层厚度调节板水平距离、窝眼布置形式、窝眼个数、窝眼倾角、种箱底板倾角对充种性能影响的单因素试验。在此基础上以勾型窝眼轮转速、种层厚度调节板垂直高度和窝眼长度为试验因素进行了多元二次回归旋转正交组合试验并应用Design-Expert 8. 0. 6软件对试验数据进行分析,得到回归模型和因素对指标影响关系,确定了影响单粒率重要性大小依次为窝眼长度、种层厚度调节板垂直高度和排种轮转速,排种轮转速与窝眼长度间交互作用不可忽视;影响合格率重要性由大到小依次为种层厚度调节板垂直高度、排种轮转速和窝眼长度。基于回归模型进行多目标参数优化,结果表明:排种轮转速为23. 05 r/min、窝眼长度为7. 00 mm、种层厚度调节板垂直高度为25. 00 mm时,合格率为98. 59%。对该优化参数组合下的排种器进行充种性能和排种性能台架试验,结果表明:充种合格率为98. 01%,试验验证结果与仿真优化结果相吻合,验证了仿真优化结果的可靠性,此时排种器4行间充种合格率变异系数仅为1. 20%,宽苗带各行间变异系数较小;排种合格率为90. 03%,行间排种合格率变异系数为1. 50%,行内均匀性变异系数达到16. 54%,排种性能明显优于常用外槽轮排种器。  相似文献   

8.
针对芝麻种子球形度低、流动性差导致排种过程充种稳定性差,难以实现精量播种的实际问题,基于芝麻的机械物理特性和播种农艺要求,设计了一种采用倾斜齿勺式型孔充种、气送辅助导种的芝麻精量集排器,确定了其主要结构参数,构建了充种、携种和投种环节中芝麻种子颗粒群的力学模型。应用EDEM开展了排种器排种性能仿真试验,采用三因素三水平正交试验与Box-Behnken响应面分析了型孔高度、型孔右壁倾角和齿勺倾角对排种性能的影响,结果表明,型孔高度为1.92 mm、型孔右壁倾角为8.4°、齿勺倾角为28.6°时,各行排量一致性变异系数和平均排种量分别为1.69%、3.7 g/min。以排种轴转速、种层充填高度为试验因素,以各行排量一致性变异系数、总排量稳定性变异系数为试验指标,进行排种性能二因素三水平试验,试验结果表明:排种轴转速15 r/min、种层充填高度10 mm时,各行排量一致性变异系数、总排量稳定性变异系数分别为1.62%、0.40%,排种性能较优。田间试验表明,机组作业速度为2.9 km/h时,芝麻平均种植密度为36株/m2,播种均匀性变异系数低于4%,满足芝麻田间播种要...  相似文献   

9.
正排种器是播种机械的重要部件,对排种器的要求一般有如下几点:排种均匀、播量稳定可靠、不损伤种子、通用性好、播量调整范围大、调整方便等。常用排种器可分为条播及穴播两大类。条播排种器有外槽轮式、磨盘式、内槽轮式、勺式、拨轮式、花盘式、气力式及离心式等。1.外槽轮式排种器外槽轮式排种器应用广泛,国产条播机上大多采用此排种器。它的组成包括排种盒、排种轴、排种舌、外槽轮及阻塞套等。排种轴通过轴销带着槽轮转动,种子被  相似文献   

10.
北方春油菜多数以条播为主,但此播种方法浪费种子,不能达到油菜的播种要求。为此,以北方油菜种子杂303号油菜种子为试验材料,通过对油菜种子物理特性的研究,设计了窝眼轮式排种器,并对排种器进行静态试验,研究了转速、种子盒内种子容积对排量和破损率的影响。试验表明:窝眼轮转速和种子盒内种子容积对排量和破损率影响显著;窝眼轮转速为35.73r/min时,窝眼轮的排种量随种子盒内种子容积的增加而增大,种子的破损率随种子盒内种子容积的增加而增大;当种子盒内种子的容积占种子盒容积的2/3时,窝眼轮的排种量随窝眼轮转速的增大而减少,种子的破损率随窝眼轮转速的增大而增大。该排种器播种精度高,可满足春油菜的播种要求。  相似文献   

11.
针对宁前胡采挖过程中挖掘阻力大的问题,以鲨鱼背鳍为研究对象,并结合农艺要求,设计了一款宁前胡仿生挖掘铲;根据摩尔-库仑理论中土体应力分析,当选用鲨鱼背鳍结构作为仿生铲的凸起结构时,土壤更易达到破裂状态;通过三维扫描仪扫描鲨鱼标本,获取鲨鱼背鳍三维模型,根据背鳍三维模型确定仿生铲的凸起结构,并通过NX12.0创建仿生挖掘铲三维模型;利用三维扫描仪获得宁前胡根茎外形轮廓特征,创建宁前胡根茎的离散元模型,并选用Hertz-Mindlin with JKR建立宁前胡根茎-土壤离散元复合模型;通过离散元仿真对比试验,得出X、Y、Z方向颗粒位移和挖掘阻力的平均值,分析挖掘铲的减阻机理,仿生铲比平面铲在采挖过程中阻力减小14.37%;通过开展土槽试验,对比根茎挖掘效果,与仿真试验中得出的宁前胡根茎在仿生挖掘铲挖掘后,根茎在X、Y、Z方向上有更好的位移表现,仿生铲和平面铲的挖掘阻力平均值分别为1 342.28、1 622.73 N,仿生铲比平面铲在采挖过程中阻力减小17.28%,与仿真试验得出的减阻率十分接近,满足宁前胡采挖过程中的减阻要求。  相似文献   

12.
针对玉米在高速(12~16 km/h)播种时籽粒脱离种盘初速度大,与带式导种装置种腔内壁碰撞弹跳,发生碰撞异位,导致籽粒进入种腔精准度低等问题,以具有纳种机构的带式玉米高速导种装置为研究对象,建立籽粒夹取、转运和排放动力学模型,提出在拨指表面添加人字形纹路的改进方法,明确影响纳种稳定性与籽粒进入种腔精准度的主要因素。利用高速摄像与图像目标追踪技术进行单因素对比试验及多因素优化试验。单因素试验结果表明,播种速度较快时,有人字形纹路拨指轮纳种合格指数和种腔间隔变异系数均明显优于无人字形纹路拨指轮。为获得拨指轮改进后的纳种机构最佳性能参数,以轮心距、拨指轮转速及拨指长度为试验因素,以纳种合格指数与种腔间隔变异系数为评价指标,进行三因素五水平二次正交旋转组合试验,采用多目标优化方法,确定当轮心距为36.8 mm,拨指轮转速为584.97 r/min,拨指长度为10.8 mm时,纳种合格指数为98.23%,种腔间隔变异系数为0.24%。对优化结果进行验证试验,验证结果与优化结果基本一致。在相同条件下进行台架对比试验,结果表明,有带式玉米高速导种装置的作业性能远优于不安装带式玉米高速导种装置的作业...  相似文献   

13.
针对水稻和油菜飞播普遍采用漫撒播方式而造成的落种散乱无序等问题,设计了一种可同时适应水稻和油菜条播农艺要求的无人机播种装置。以成条飞播排种系统的兼用化、轻量化、电驱化和模块化为设计目标,采用电驱、工作长度可调的外槽轮组件作为排种器,以舵机带动连杆驱动的自动折叠导种管为投种部件,通过台架试验、场地泥盒飞播试验和田间试验3种方式,确定结构参数和工作参数并验证作业效果。试验结果表明,排种系统在排种电机额定转速及扭矩范围内,能够满足5 m/s以内飞行速度下,油菜播量6~7.5 kg/hm2、杂交稻播量15~45 kg/hm2及常规稻播量60~105 kg/hm2的农艺要求,且各行一致性变异系数、总排量一致性变异系数等性能参数优于行业标准要求,在作业高度1 m、作业速度4 m/s时,泥盒中油菜和水稻种子平均条带宽度分别为6.7、3.8 cm,播后30 d田间幼苗成条效果明显。  相似文献   

14.
轮勺式半夏精密排种器设计与试验   总被引:1,自引:0,他引:1  
针对半夏种子形状不规则、表皮易破损造成播种中充种困难、易伤种等问题,在测定半夏种子物料特性的基础上,设计一种轮勺式半夏精密排种器,分析了半夏种子在充种区和清种区的受力情况,阐述了轮勺式精密排种器的工作原理。通过离散元单因素仿真试验,对排种器的种勺数量、取种轮转速、种层高度以及种勺型孔半径进行分析,并以取种轮转速、种层高度和种勺型孔半径为试验因素,以合格指数、重充指数、漏充指数为试验指标,进行了二次回归正交旋转组合台架试验,建立3个指标的回归模型,并利用回归模型进行排种器的设计参数优化。试验结果表明:影响合格指数的主次顺序为取种轮转速、种层高度、种勺型孔半径;当种勺型孔半径为7.5mm,取种轮转速为17.0~19.0r/min、种层高度为123.0~133.0mm,合格指数大于95.5%、漏充指数小于1.0%、重充指数小于3.5%,满足中药材半夏种植要求。  相似文献   

15.
针对丘陵山区前胡种植使用除草机时存在草土不分离导致杂草复生、碎石飞射伤人的问题,设计了一款抛推组合式草土分离除草机。对称螺旋结构的除草轮将土推向两侧,避免碎石飞射伤人。刀齿将杂草抛向后方实现草土分离,防止杂草复生。螺旋结构除草轮采用中轴对称左右旋向相反布置,使得碎石沿轴向两边飞离,有效防止碎石飞射伤到后方机手。通过理论分析确定除草轮的齿形、齿数,分别进行除草轮在杂草-土壤、碎石-土壤模型中的运动分析。使用EDEM和ANSYS耦合仿真,验证其工作性能和物理性能。通过田间试验,验证除草轮能够实现草土分离,得出机具的最佳工作参数为:除草轮转速13 r/s、前进速度400 mm/s、除草深度35 mm,平均除净率为86.7%。  相似文献   

16.
轮勺式大蒜单粒取种装置设计与试验   总被引:2,自引:0,他引:2  
针对因大蒜颗粒大、形状不规则和表面粗糙而造成漏播及重播率高的问题,设计了一种轮勺式大蒜单粒取种装置,该装置主要由取种勺、取种轮、驱动电机、支架、种箱等组成。对取种区、输种区和排种区的大蒜分别进行了受力分析,阐述了轮勺式大蒜单粒取种装置的原理,通过离散元仿真软件对取种勺及取种轮的结构形状进行了对比优化,确定了取种勺及取种轮的最优结构,采用数理统计的方法确定了取种勺的尺寸区间。以取种勺的半径、长度和取种轮转速为试验因素,以漏充率和合格率为响应指标进行了正交回归试验,建立了漏充率和合格率的回归模型,对回归模型进行了参数优化。最优参数组合为取种勺半径16. 30 mm、取种勺长度38. 50 mm、取种轮转速10. 0 r/min,在最优参数组合下进行了台架试验,得漏充率5. 50%,合格率91. 10%,与回归模型预测结果基本一致。  相似文献   

17.
结合油莎豆物料特性和黄淮海区域油莎豆种植农艺要求,针对油莎豆种子表面凹凸不平、形状不规则导致的流动性差、充种性能不佳和每穴3粒种子投种时轴向分散等问题,设计了一种油莎豆V形凹槽窝眼排种轮低位集穴排种器。通过对窝眼排种轮直径、型孔以及其表面增设的V形凹槽进行设计,提高了精量分离充种性能;在窝眼排种轮下方加设低位投种集穴装置,既可降低投种高度,又可将分散下落的种子向中间聚集,提高了成穴效果。利用EDEM软件对排种器进行了运动特性仿真,分析了不同结构参数对充种效果的影响,确定了窝眼排种轮的结构参数;以窝眼排种轮转速、种层高度和型孔宽度为试验因素,以合格指数、漏播指数和重播指数为试验指标,进行了二次回归正交旋转组合仿真试验。仿真试验结果表明:影响合格指数的主次顺序为窝眼排种轮转速、型孔宽度、种层高度;当窝眼排种轮转速为22.10r/min、型孔宽度为14.23mm、种层高度为52.59mm时,合格指数为92.11%、漏播指数为2.24%、重播指数为5.65%。最后进行了台架试验,对仿真结果进行了验证,得出油莎豆低位集穴排种器的充种和集穴性能较好,满足油莎豆精密播种要求。  相似文献   

18.
针对小麦精量播种需求以及现有排种器脉动性高、均匀性差的问题,设计了一种4排交错勾齿式小麦精量排种器,利用勾齿式型孔单粒囊种,并通过勾齿交错布置使下落的种子流形成交错有序的种子面,减少种子间的碰撞重叠,提高种子的有序性。通过对充种过程中小麦种子姿态分析,确定了型孔的关键结构参数和曲线轮廓。运用离散元法EDEM,分析了排种轮转速和充种区域夹角对充种性能的影响规律。仿真结果表明,排种轮转速对充种时处于有利姿态的种子数量有显著影响,充种区夹角的增大有利于提高充种率,但充种区夹角过大会造成成功充入种子掉落出型孔,降低充种性能。在此基础上,以排种合格率、单粒率、空穴率为指标进行了正交旋转组合试验,获得了最优工作参数组合。在排种轮转速、充种区高度以及毛刷/排种轮转速比分别为18r/min、73mm、2.5条件下,与现有凸齿式小麦排种器进行对比试验,交错勾齿式小麦排种器的排量变异系数比凸齿式排种器降低0.66个百分点,落种过程中排出的种子交错有序下落,具有更好的排种均匀性。  相似文献   

19.
针对黑龙江省大豆播种采用边缘型孔式排种器或窝眼式排种器,玉米则多采用勺轮、指架、气吸平面多孔盘情况,结合传统排种器在充种、清种过程中伤种情况严重的问题,设计了一个能够满足黑龙江省的玉米单条、大豆双条作物播种农艺要求的排种器。以排种器的作业速度、风压为影响因素,采用Box-Behnken中心组合试验设计方法,建立了排种合格指数、漏播指数的数学模型,分析此排种器对排种质量的影响规律。试验表明:当排种器风压为6. 61k Pa、作业速度为6. 82km/h时,排种作业性能最优,其合格指数为94. 41%,漏播指数为3. 67%。该排种器工作不伤种,排种性能综合指标超过90%,工作性能稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号