首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
具有中空结构的纳米材料,由于其具备空腔、质轻等特殊性能,在器件制备、催化反应、存储材料、生物医用材料等方面具有独特的优势。在纳米尺度范围内,对材料进行尺寸和结构的精确控制,制备中空纳  相似文献   

2.
性能优异的纳米空心球空心球纳米材料是重要的纳米结构材料,其制备技术已日趋成熟并逐步实用化,在药物释放、气敏等领域具有很多重要的应用。然而,常规制备空心球纳米材料的技术,如模板法和奥斯瓦尔德熟化生长技术,需要相对复杂的操作工艺,通用性不好,有一定的局限性。中国科学院上海硅酸盐研究所的研究人员用一种简单通用的方法,研制出性能优异的纳米等级的空心球,在纳米功能材料研制方面取得重大突破。  相似文献   

3.
《技术与市场》2005,(10A):24-24
本项目是一种以纳米粉体为原料制备多孔纳米固体的方法,属于功能材料和结构材料交叉领域。本发明针对现有的纳米材料存在的诸多缺点,提出了利用可控汽化溶剂热压方法,以纳米粉体为原料组装多孔纳米固体的思路,以便在保留纳米粉体的大部分反应活性的同时.获得具有较高强度和反应活性的多孔纳米固体。  相似文献   

4.
《技术与市场》2002,(12):24-24
纳米材料的制备是纳米科学技术领域中的重要内容之一,已成为当今世界各国的研究热点。纳米光致发光粉是纳米材料中极为重要的一类发光材料,在国防和国民经济生活中具有极为广泛的应用领域。其中,绿光的荧光粉末的余辉可长达近8个小时这久,具有优良的储能效果。它可用作航天器  相似文献   

5.
在植物纤维原料中,木质素是仅次于纤维素的天然可再生资源,但由于结构复杂且不同类型木质素结构性能差异,其通常被认为是一种废料或低价值副产品。微纳米木质素是近年来兴起的新发展方向,可为木质素产品高值化利用提供一种新途径。木质素微纳米球是一种具有规整结构的微纳米木质素,其自组装制备方法主要有溶剂-反溶剂法、气溶胶的流式反应器法和界面细乳液聚合法。利用四氢呋喃、二氧六环和乙醇等溶剂对木质素或化学修饰木质素进行溶解,然后滴加反溶剂去离子水可获得木质素微纳米球,然而溶剂-反溶剂法获得的木质素微纳米球悬浮液在干燥过程中存在微纳米球团聚问题;气溶胶的流式反应器法能将木质素溶液直接雾化自组装成气溶胶;界面细乳液聚合法可使木质素分子在非共价自组装形成微纳米球基础上实现共价键结合。相比实心微纳米球,中空微纳米球拥有较高的比表面积。木质素微纳米球当前主要应用于药物载体、紫外防护和纳米填料等方面。采用木质素包载疏水药物,能提高药物在水溶液中的溶解性能,实现可控释放,延长作用时间,降低毒副作用;将木质素微纳米球用于光敏性农药的包载,能使其具有可控释放和抗光降解功效;将木质素微纳米球对酶进行包载,能使其具有较好的稳定性和催化活性。通过调控木质素自组装过程,可使其微纳米球具有相对亲水或疏水外表面,使微纳米球与相应亲水或疏水高分子聚合物共混时具有较强的分子间作用。此外,木质素微纳米球亦可用于吸附材料、聚集诱导发光纳米材料和锂离子电池电极材料等方面。目前,木质素微纳米球研究还处于起步阶段,其简单可行的可控构筑方法及其高值化应用领域需要进一步探索。界面细乳液聚合法能使木质素分子自组装过程中实现非共价键和共价键协同作用,且通过该方法可获得中空木质素微纳米球,为新型中空结构木质素微纳米球的开发提供了新方向;木质素具有自发荧光特性,且自组装制备微纳米球过程中木质素分子会产生J-聚集增强其荧光强度,为新型木质素基发光材料的开发提供了新思路。  相似文献   

6.
《技术与市场》2007,(3):9-9
一件衣服,用可以调控温度的“超级开关”材料制作,夏天吸汗降温,冬天防寒保暖。据悉,中国科学院化学研究所成功地通过调节“光”和“温度”,实现了纳米结构表面材料超疏水与超亲水之间的可逆转变,制备出了超疏水/超亲水“开关”材料,在功能纳米界面材料研究领域取得了重要进展。[第一段]  相似文献   

7.
《技术与市场》2002,(10):10-10
中国地质大学(武汉)研制成功纳米硫材料。这种硫纳米粉材料是世界上首次研制成功的纳米材料,硫纳米丝的研制属于原始创新,这项成果完全达到了国际领先水平。硫的用途广泛,我国每年约生产30万吨硫,经过精细加工后,应用于合成橡  相似文献   

8.
【目的】研究酶解木质素(EHL)在四氢呋喃(THF)中的质量浓度对制备纳米木质素中空粒子(LHNPs)结构的影响以及载盐酸阿霉素(DOX)粒子(DOX@LHNPs)结构对药物控释行为的影响,为LHNPs在不同领域的选择性包载利用提供参考。【方法】将不同质量EHL溶解在THF中,制备不同质量浓度木质素溶液,向溶液中滴加去离子水使两亲性木质素自组装成结构不同的纳米木质素中空粒子。在制备过程中加入一定质量DOX,EHL自组装成纳米粒子的同时会将DOX包裹在LHNPs腔体内,形成载药纳米粒子。借助透射电镜(TEM)、扫描电镜(SEM)、激光粒度仪(DLS)、比表面与孔隙度分析仪等手段表征材料的微观结构和粒径尺寸。利用紫外-可见光分光光度计(UV-vis)、X射线衍射仪(XRD)、红外光谱仪(FTIR)等仪器表征测试LHNPs对DOX的包载和控释。【结果】DLS测试结果表明,EHL初始质量浓度从0.3 mg·m L~(-1)增加到3 mg·m L~(-1),颗粒直径从552.6 nm减小到266.8 nm,PDI基本保持稳定;制备的纳米木质素粒子尺寸分布均匀,可在水中稳定保存10天以上。利用TEM、SEM结合比表面与孔隙度分析可知,纳米木质素粒子呈中空球形结构,表面开孔;随着EHL初始质量浓度增加,粒子的直径、表面积和孔隙体积均有所减小。UV-vis、XRD、FTIR表征测试表明,LHNPs能够包载DOX。酸性(pH=5.5)条件下,自由DOX和载药粒子释放DOX的速度均大于中性(pH=7.4)条件下的药物释放速度。较大的比表面积和孔隙率可提高纳米中空粒子对DOX的包载能力,壳层更厚的粒子对DOX拥有更稳定的控释能力。【结论】酶解木质素可自组装成尺寸稳定且表面具有单孔的纳米级中空球形粒子。控制酶解木质素初始质量浓度,可调节中空粒子的直径和壳层壁厚。对于DOX@LHNPs,比表面积和孔隙率越大,其载药量越大,但结构更规整、壳层壁更厚的纳米中空载药粒子对DOX的释放更稳定。  相似文献   

9.
聚合物纳米复合材料是一种新世纪的高技术材料,由于其超常的性能,世界许多著名的聚合物材料公司都已经开发应用,其中尼龙纳米复合材料是最重要的一种。本成果利用独创的专利技术,生产尼龙基纳米复合材料,简称纳米尼龙。此技术所生产的纳米尼龙具有很高的气体阻隔性、高耐热性、高强度、高模量、耐磨、阻燃和低的膨胀系数等众多的特性,  相似文献   

10.
杨刚 《技术与市场》2009,(7):134-134
纳米材料是指结构单元(结晶体)至少在一维方向上受纳米尺度调制的各种固体材料,其尺寸大于原子簇而小于通常的微粉,处在原子簇和宏观物体交界的过渡区域。纳米材料具有相同成分的粗晶材料所不  相似文献   

11.
纳米纤维素作为纤维素基纳米材料的代表,不但保留了天然纤维素的性质,同时赋予纳米粒子以高强度、高结晶性、高比表面积、高抗张强度等特性,能够明显改善材料的光、电、磁等性能,在复合材料、精细化工、医药载体、药物缓释等领域具有广阔的应用前景。进一步对纳米纤维素的结构进行调控,在纳米尺度操控纤维素超分子聚集体,进行结构设计并组装出稳定的功能性纤维素基纳米材料,即可以纤维素为原料构建具有优异性能的生物质材料,这也正是目前生物质材料和纤维素科学领域的研究热点。概括了目前纳米纤维素的主要制备方法:机械法、化学法和生物法,并对各种制备方法的优缺点进行了讨论,同时综述了纳米纤维素的应用状况,指出了纳米纤维素的制备及应用方面需要解决的主要问题及今后的发展方向。  相似文献   

12.
专利号:200810234383.3纳米TiO2是一种高效节能的光催化功能材料,因其无毒、光催化活性高、稳定性高、氧化能力强等优点而被广泛应用于废水处理、贵金属回收、空气净化等领域。微波加热技术目前已用于陶瓷的烧结、纳米材料的制备及催化剂的制备等方面,TiO2属于低损耗物质,在室温和低温时几乎不吸收微波,只有达到一定  相似文献   

13.
聚合物基纳米复合材料的制备方法及其性能评述   总被引:2,自引:0,他引:2  
吴捷  杨楠  吴大青 《森林工程》2009,25(6):40-42
简单介绍聚合物基纳米复合材料的的分类,着重介绍聚合物纳米复合材料的制备方法、结构、性能和研究现状,并对纳米材料的发展进行展望。  相似文献   

14.
木纤维是以森林为主体的可再生、可重复利用的生物质材料,利用木纤维开发的纤维增强材料具有与环境友好、和谐等诸多优点,受到人们的广泛重视,但由于对木纤维的纳米结构缺乏足够的了解,其独特的尺寸效应、局域场效应、量子效应以及表面效应没有完全发挥。研究了基于有限元理论的生物质材料木纤维的纳米结构建模机理,应用数值技术和有限分割的方法构建了木纤维可视化力学模型。  相似文献   

15.
该项目的研究,在国内率先形成了纳米功能纤维及纳米功能纺织品的工业化生产,满足了市场对功能纤维和功能纺织品的需求,从制造功能纤维入手生产功能纺织品,大大地提高了功能效果的耐久性。使用纳米技术制备功能纤维,可不影响纤维的纺丝性能,添加量少即有优异的功能性,且不影响纤维的其他性能,减少了添加剂对纺丝设备的磨损。我们现已筛选、制备了适用于纤维应用的纳米功能材料,研究了纳米粉体添加至纤维中的最佳工艺,制造出纳米抗菌干法腈纶以及抗菌、抗紫外线和远红外腈纶、涤纶功能母粒及纤维;研究了纳米材料用于纺织品整理的配方和工艺。  相似文献   

16.
在印刷领域,纳米材料的应用主要以纳米粉体为主,应用范围有纳米油墨涂料、纳米纸、纳米网纹辊、纳米零件等。一、纳米粉体在纸张制造中的应用在印刷领域中,与油墨涂料一样,纳米粉体材料在纸张上的应用也已呈现出良好的效果。我们知道,纸张是印刷和包装中最常用的材料,其品质的优劣是印刷品质量的最佳体  相似文献   

17.
纳米纤维素是一种来源于植(动)物或微生物的天然绿色纳米材料,拥有高表面化学活性、独特的网络结构、优异的力学强度和高比表面积等优良特性。通过层层自组装、原位化学聚合和电化学沉积等方式,纳米纤维素可与金属氧化物、导电聚合物和二维纳米材料等多种纳米粒子高效复合,形成不同微观尺寸和结构特性的纳米纤维素基多孔膜材料和导电复合材料,在金属离子电池、超级电容器等储能器件用隔膜和电极材料领域具有广阔的应用前景。根据材料来源、制备方法和纤维形态的差异,纳米纤维素可分为纤维素纳米晶体、纤维素纳米纤丝、细菌合成纳米纤维和静电纺丝纳米纤维4大类,目前用于储能材料的主要是前3类。这些纳米纤维素常与水混合成胶体状态,失水后借助氢键自组装(织)形成力学性能和热稳定性优异的薄膜,在电解质溶液中具有良好的保湿能力,易于离子和电子传输,是储能器件隔膜材料的理想选择。纳米纤维素丰富的活性基团、独特的网络结构和易于成膜的特性,可作为骨架材料与其他导电活性成分(主要包括碳纳米材料、金属氧化物和导电聚合物)复合制备储能用电极材料。纳米纤维素也可以直接炭化用于电极材料,其储能性能与石墨化程度密切相关,常通过掺杂改性、多元复合等方式提高储能效率和性能。现阶段纳米纤维素基电极材料有主要碳纤维材料、二维纳米材料、导电高分子材料和多元复合材料,尽管具有无可比拟的性能优势和乐观的应用前景,但纳米纤维素与电极活性材料之间的复合方式、界面相容性以及微观形貌调控等研究尚处于起步阶段,如何最大限度发挥纳米纤维素的尺寸效应和网络结构,构建具有更加精细的纳米体系及高转化效率的储能器件是下一步需要攻克的主要难题。本文在简要介绍纳米纤维素分类和性能的基础上,详细阐述其在储能器件隔膜材料和新型电极材料领域的研究现状,并进一步对纳米纤维素在该领域的发展趋势进行展望。  相似文献   

18.
木材苯酚碳素纤维材料的研究   总被引:1,自引:0,他引:1  
介绍了以木材液化和现代纳米纺丝技术为基础的木材苯酚液化产物制备碳素纤维材料的构思、技术路线和存在的问题,为解决木材纳米、微米材料的制备开拓了新思路。  相似文献   

19.
介绍了以纳米纤维素(NCC)为骨架材料、聚乙二醇(PEG)为相变储能功能基,采用化学接枝的方法制备一种NCC/PEG固-固相变材料.并分别用IR、DSC以及TGA等技术手段对其储能性能进行表征.结果表明,以纳米纤维素为骨架材料制备的固-固相变材料具有更高的相变焓,所得的相变材料具有更好的储能效率,其相变焓最大可达 103.8 J/g.  相似文献   

20.
环境响应型纳米载体材料是一种可对外界环境如温度、pH、酶等做出改变的生物响应材料,由于可控的孔道结构以及负载率高的优点,使其成为生物、环境、医药等领域的研究热点。具有缓控释性能的纳米载体材料可以使防腐剂达到定时、定位的释放效果,已经应用于农药制剂的控释方面,以延长防腐剂持效时间,减少环境污染的同时降低防腐剂使用量。木材易受木腐菌的侵蚀从而缩短使用寿命。针对含铬和砷等成分的木材化学防腐剂的滥用会造成环境污染的问题,综述了环境响应型纳米载体材料的种类和制备方法,并对具有缓控释特性的纳米载体材料在木材保护领域的应用进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号