首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous laboratory studies have demonstrated that hippuric acid, a ruminant urine constituent, can mitigate nitrous oxide (N2O) emissions from simulated urine patches. Hippuric acid has the potential to be a N2O mitigation tool because animal diets can be manipulated to adjust its concentration in the urine. This study was conducted to determine if the effect observed in previous laboratory studies would also occur in situ under field conditions. In our field study, plots were treated with unadulterated bovine urine (56 mM hippuric acid), the same bovine urine amended with either benzoic acid (34 mM), dicyandiamide (DCD) or varying rates of hippuric acid (up to 90 mM). Soil inorganic-N, N2O fluxes, and plant N responses were monitored over a 78 d period. Effects on microbial communities were monitored by determining the size and structure of nitrite oxidizer (nxrA) and nitrite reducer (nirS) bacterial populations using real-time PCR and denaturing gradient gel electrophoresis (DGGE), respectively. Decreases in N2O emissions, with increasing hippuric and benzoic acid concentrations, were only seen on Day two of the trial. With the exception of the DCD treatment (0.60% of N applied) the amended urine treatments did not significantly affect emissions of N2O as a percentage of N applied (1.28-1.65%). Soil inorganic-N and plant response were not affected by urinary amendment, except in the DCD treatment where nitrification inhibition occurred. Nitrite oxidizer community structures shifted and increased approximately 5.4-fold in size over 48 d in response to urine, although no specific response to elevated hippuric acid or benzoic acid was observed. No treatment effects were observed on community structure of the nitrite reducing bacteria but averaged over time the highest rate of hippuric acid significantly decreased nirS gene copy numbers g−1 soil. We concluded that under the conditions of this field study, increasing hippuric or benzoic acid concentrations in bovine urine had no effect on N2O mitigation in situ. We argue that the discrepancy with previous laboratory studies may be related to differences in soil pH, microbial communities and the presence of vegetation. Further research is needed to determine the potential for hippuric acid as a tool to mitigate N2O emissions, and its effect(s) on resident N cycling microorganisms.  相似文献   

2.
Artificial urine, an aqueous solution of various nitrogenous compounds and salts, is routinely used in soil incubation studies on nitrous oxide (N2O) emissions and related nitrogen (N) and pH dynamics. There is, however, no consensus on artificial urine composition, and a wide variety of compositions are used. The aim of this study was to test which artificial urine composition is adequate for simulating N2O fluxes, respiration, soil mineral N and pH dynamics of real cattle urine in both short- and long-term incubation studies. Urine solutions of differing compositions were applied to a sandy soil and incubated for 65 days, and results of measurements on N2O fluxes and soil mineral N were analyzed over the first 5 days as well as over the whole incubation period. Results from two real cattle urines with known nitrogenous composition (R1 and R2) were compared with three artificial urine types: (i) urea+glycine (AG), (ii) urea+hippuric acid (AH) and (iii) an artificial urine identical to the nitrogenous composition of real urine R1 (AR). During the first 5 days, only cumulative N2O emissions for AG deviated significantly (P=0.02) from the N2O emissions for real urines, with 0.4% of applied N emitted compared with 0.0% and 0.1% for R1 and R2, respectively. Respiration from R1 was significantly (P<0.001) higher than from R2 and all artificial urines. Over the whole incubation period, no significant differences could be detected for N2O emissions or respiration with urine type. From all artificial urine types, AH yielded N2O emissions closest to those from real urine. AG deviated most from real urine, both in short- and long-term incubations. Over the whole period, soil NH4+ was higher for all artificial urines (P<0.001) and pH-KCl was lower for AG and AR (P=0.004) than for the real urines. AH was not significantly different from real urine R2 with respect to all measured properties except soil NH4+. We conclude that only AG did not adequately simulate N2O emissions, and that glycine is therefore not an appropriate substitution for hippuric acid in artificial urine. For future studies using artificial urine we recommend therefore a mixture containing at least urea and hippuric acid as sources of N. As no artificial urine composition resembled real urine with respect to all measured variables, even when nitrogenous composition was identical (AR), we recommend the use of real urines whenever possible.  相似文献   

3.
A laboratory investigation was performed to compare the fluxes of dinitrogen (N2), N2O and carbon dioxide (CO2) from no-till (NT) and conventional till (CT) soils under the same water, mineral nitrogen and temperature status. Intact soil cores (0-10 cm) were incubated for 2 weeks at 25 °C at either 75% or 60% water-filled pore space (WFPS) with 15N-labeled fertilizers (100 mg N kg−1 soil). Gas and soil samples were collected at 1-4 day intervals during the incubation period. The N2O and CO2 fluxes were measured by a gas chromatography (GC) system while total N2 and N2O losses and their 15N mole fractions in the soil mineral N pool were determined by a mass spectrometer. The daily accumulative fluxes of N2 and N2O were significantly affected by tillage, N source and soil moisture. We observed higher (P<0.05) fluxes of N2+N2O, N2O and CO2 from the NT soils than from the CT soils. Compared with the addition of nitrate (NO3), the addition of ammonium (NH4+) enhanced the emissions of these N and C gases in the CT and NT soils, but the effect of NH4+ on the N2 and/or N2O fluxes was evident only at 60% WFPS, indicating that nitrification and subsequent denitrification contributed largely to the gaseous N losses and N2O emission under the lower moisture condition. Total and fertilizer-induced emissions of N2 and/or N2O were higher (P<0.05) at 75% WFPS than with 60% WFPS, while CO2 fluxes were not influenced by the two moisture levels. These laboratory results indicate that there is greater potential for N2O loss from NT soils than CT soils. Avoiding wet soil conditions (>60% WFPS) and applying a NO3 form of N fertilizer would reduce potential N2O emissions from arable soils.  相似文献   

4.
Animal excreta-nitrogen (N) deposited onto pastoral soils during grazing has been identified as an important source of nitrous oxide (N2O). Understanding the extent and seasonal variation of N2O emissions from animal urine is important for the development of best management practices for reducing N2O losses. The aim of this study was to determine N2O emissions from cow urine after application onto a pastoral soil in different seasons between 2003 and 2005. A closed soil chamber technique was used to measure the N2O emissions from a poorly drained silt loam soil which received either 0 (control) or 1,000 kg N ha−1 (as real cow urine) per application. Application of cow urine to soil increased N2O fluxes above those from the control site for up to 6 weeks, but the duration for which N2O levels were elevated depended on the season. Nitrous oxide emissions were higher during the winter and spring measurement periods when the soil water-filled pore space (WFPS) was mostly above field capacity, and the emissions were lower during the summer and autumn measurement periods when the soil WFPS was below field capacity. The N2O emission factor for urine ranged from 0.02 to 1.52% of N applied. This seasonal effect suggests that a reduction in urine return to soil (e.g., through use of standoff pads or animal housing) under wet conditions in New Zealand can potentially reduce N2O emissions from pastoral soils.  相似文献   

5.
Urine patches from cattle and sheep on pastures represent considerable, highly localized N applications. Subsequent nitrification and denitrification of the nitrogenous compounds may result in high nitrous oxide (N2O) emissions. Not much is known about the extent of these emissions, or about possible mitigation options. The aims of this study were to experimentally quantify the effects of urine composition, dung addition, compaction and soil moisture on N2O emissions from urine patches. For an incubation study at 16 °C, soil was collected from a typic Endoaquoll, and N2O production was monitored during a 103-day period. Emissions for the whole period averaged 0.3 and 0.9% of the applied urine-N for dry and moist soil, respectively. When compacted or when dung was added, emissions from moist soils increased to 4.9 and 7.9%, respectively. Both addition of dung and soil compaction resulted in a delay of the peak N2O emission of approximately 10-15 days. No significant effect of amount of urine-N on emission percentages was detected. Changing the volume of urine with equal amounts of urine-N resulted in highly significant effects, peaking with an emission of 2.3% at a water-filled pore space (WFPS) of 78%. When the soil was water-saturated, N2O production was delayed until evaporation had decreased moisture contents. We concluded that denitrification was the main N2O forming process in the incubation study. Emission factors for urine reported in the literature do not generally include the potentially considerable effects of compaction or combination with dung. We conclude that realistic emission factors should take into account such an effect, together with estimates for the occurrence of camping areas in pastures. From our results, the best mitigation strategies appear to be increasing the volume of urine through feed additives, and avoiding compaction and promoting more homogeneous application of N through a lower cattle stocking rate. Also, research efforts may be targeted at management practices to avoid camping areas in pastures.  相似文献   

6.
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O.  相似文献   

7.
Urine deposition by grazing livestock causes an immediate increase in nitrous oxide (N2O) emissions, but the responsible mechanisms are not well understood. A nitrogen-15 (15N) labelling study was conducted in an organic grass-clover sward to examine the initial effect of urine on the rates and N2O loss ratio of nitrification (i.e. moles of N2O-N produced per moles of nitrate produced) and denitrification (i.e. moles of N2O produced per moles of N2O+N2 produced). The effect of artificial urine (52.9 g N m−2) and ammonium solution (52.9 g N m−2) was examined in separate experiments at 45% and 35% water-filled pore space (WFPS), respectively, and in each experiment a water control was included. The N2O loss derived from nitrification or denitrification was determined in the field immediately after application of 15N-labelled solutions. During the next 24 h, gross nitrification rates were measured in the field, whereas the denitrification rates were measured in soil cores in the laboratory. Compared with the water control, urine application increased the N2O emission from 3.9 to 42.3 μg N2O-N m−2 h−1, whereas application of ammonium increased the emission from 0.9 to 6.1 μg N2O-N m−2 h−1. In the urine-affected soil, nitrification and denitrification contributed equally to the N2O emission, and the increased N2O loss resulted from a combination of higher rates and higher N2O loss ratios of the processes. In the present study, an enhanced nitrification rate seemed to be the most important factor explaining the high initial N2O emission from urine patches deposited on well-aerated soils.  相似文献   

8.
Soils represent the major source of the atmospheric greenhouse gas nitrous oxide (N2O) and there is a need to better constrain the total global flux and the relative contribution of the microbial source processes. The aim of our study was to evaluate isotopomer analysis of N2O (intramolecular distribution of 15N) as well as conventional nitrogen and oxygen isotope ratios (i) as a tool to identify N2O production processes in soils and (ii) to constrain the isotopic fingerprint of soil-derived N2O. We conducted a microcosm study with arable loess soil fertilized with 20 mg N kg−1 of 15NO3-labeled or non-labeled ammonium nitrate. Soils were incubated for 16 d at varying moisture (55%, 75% and 85% water-filled pore space (WFPS)) in order to establish different levels of nitrification and denitrification. Dual isotope and isotopomer ratios of emitted N2O were determined by mass spectrometric analysis of δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP=difference in δ15N between the central and peripheral N-positions of the asymmetric N2O molecule). Total rates and N2O emission of denitrification and nitrification were determined by 15N analysis of headspace gases and soil extracts of the 15NO3 treatment. N2O emission and denitrification increased with moisture whereas gross nitrification was almost constant. In the 55% WFPS treatment, more than half of the N2O flux was derived from nitrification, whereas denitrification was the dominant N2O source in the 75% WFPS and 85% WFPS treatments. Moisture conditions were reflected by the isotopic signatures since highly significant differences were observed for average δ15Nbulk, SP and δ18O. Experiment means of the 75% WFPS and 85% WFPS treatments gave negative δ15Nbulk (−18.0‰ and −34.8‰, respectively) and positive SP (8.6‰ and 15.3‰, respectively), which we explained by the fractionation during N2O production and partial reduction to N2. In the 55% WFPS treatment, mean SP was relatively low (1.9‰), which suggests that nitrification produced N2O with low or negative SP. The observed influence of process condition on isotopomer signatures suggests that the isotopomer approach might be suitable for identifying N2O source processes. However, more research is needed to determine the impact from process rates and microbial community structure. Isotopomer signatures were within the range reported from previous soil studies which supports the assumption that SP of soil-derived N2O is lower than SP of tropospheric N2O.  相似文献   

9.
To assess the impacts of yak excreta patches on greenhouse gas (GHG) fluxes in the alpine meadow of the Qinghai-Tibetan plateau, methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) fluxes were measured for the first time from experimental excreta patches placed on the meadow during the summer grazing seasons in 2005 and 2006. Dung patches were CH4 sources (average 586 μg m−2 h−1 in 2005 and 199 μg m−2 h−1 in 2006) during the investigation period of two years, while urine patches (average −31 μg m−2 h−1 in 2005 and −33 μg m−2 h−1 in 2006) and control plots (average −28 μg m−2 h−1 in 2005 and −30 μg m−2 h−1 in 2006) consumed CH4. The cumulative CO2 emission for dung patches was about 36-50% higher than control plots during the experimental period in 2005 and 2006. The cumulative N2O emissions for both urine and dung patches were 2.1-3.7 and 1.8-3.5 times greater than control plots in 2005 and 2006, respectively. Soil water-filled pore space (WFPS) explained 35% and 36% of CH4 flux variation for urine patches and control plots, respectively. Soil temperature explained 40-75% of temporal variation of CO2 emissions for all treatments. Temporal N2O flux variation in urine patches (34%), dung patches (48%), and control (56%) plots was mainly driven by the simultaneous effect of soil temperature and WFPS. Although yak excreta patches significantly affected GHG fluxes, their contributions to the whole grazing alpine meadow in terms of CO2 equivalents are limited under the moderate grazing intensity (1.45 yak ha−1). However, the contributions of excreta patches to N2O emissions are not negligible when estimating N2O emissions in the grazing meadow. In this study, the N2O emission factor of yak excreta patches varied with year (about 0.9-1.0%, and 0.1-0.2% in 2005 and 2006, respectively), which was lower than IPCC default value of 2%.  相似文献   

10.
We studied the effects of soil management and changes of land use on soils of three adjacent plots of cropland, pasture and oak (Quercus robur) forest. The pasture and the forest were established in part of the cropland, respectively, 20 and 40 yr before the study began. Soil organic matter (SOM) dynamics, water-filled pore space (WFPS), soil temperature, inorganic N and microbial C, as well as fluxes of CO2, CH4 and N2O were measured in the plots over 25 months. The transformation of the cropland to mowed pasture slightly increased the soil organic and microbial C contents, whereas afforestation significantly increased these variables. The cropland and pasture soils showed low CH4 uptake rates (<1 kg C ha−1 yr−1) and, coinciding with WFPS values >70%, episodes of CH4 emission, which could be favoured by soil compaction. In the forest site, possibly because of the changes in soil structure and microbial activity, the soil always acted as a sink for CH4 (4.7 kg C ha−1 yr−1). The N2O releases at the cropland and pasture sites (2.7 and 4.8 kg N2O-N ha−1 yr−1) were, respectively, 3 and 6 times higher than at the forest site (0.8 kg N2O-N ha−1 yr−1). The highest N2O emissions in the cultivated soils were related to fertilisation and slurry application, and always occurred when the WFPS >60%. These results show that the changes in soil properties as a consequence of the transformation of cropfield to intensive grassland do not imply substantial changes in SOM or in the dynamics of CH4 and N2O. On the contrary, afforestation resulted in increases in SOM content and CH4 uptake, as well as decreases in N2O emissions.  相似文献   

11.
Soil N2O emissions can affect global environments because N2O is a potent greenhouse gas and ozone depletion substance. In the context of global warming, there is increasing concern over the emissions of N2O from turfgrass systems. It is possible that management practices could be tailored to reduce emissions, but this would require a better understanding of factors controlling N2O production. In the present study we evaluated the spatial variability of soil N2O production and its correlation with soil physical, chemical and microbial properties. The impacts of grass clipping addition on soil N2O production were also examined. Soil samples were collected from a chronosequence of three golf courses (10, 30, and 100-year-old) and incubated for 60 days at either 60% or 90% water filled-pore space (WFPS) with or without the addition of grass clippings or wheat straw. Both soil N2O flux and soil inorganic N were measured periodically throughout the incubation. For unamended soils, cumulative soil N2O production during the incubation ranged from 75 to 972 ng N g−1 soil at 60% WFPS and from 76 to 8842 ng N g−1 soil at 90% WFPS. Among all the soil physical, chemical and microbial properties examined, soil N2O production showed the largest spatial variability with the coefficient of variation ~110% and 207% for 60% and 90% WFPS, respectively. At 60% WFPS, soil N2O production was positively correlated with soil clay fraction (Pearson's r = 0.91, P < 0.01) and soil NH4+–N (Pearson's r = 0.82, P < 0.01). At 90% WFPS, however, soil N2O production appeared to be positively related to total soil C and N, but negatively related to soil pH. Addition of grass clippings and wheat straw did not consistently affect soil N2O production across moisture treatments. Soil N2O production at 60% WFPS was enhanced by the addition of grass clippings and unaffected by wheat straw (P < 0.05). In contrast, soil N2O production at 90% WFPS was inhibited by the addition of wheat straw and little influenced by glass clippings (P < 0.05), except for soil samples with >2.5% organic C. Net N mineralization in soil samples with >2.5% organic C was similar between the two moisture regimes, suggesting that O2 availability was greater than expected from 90% WFPS. Nonetheless, small and moderate changes in the percentage of clay fraction, soil organic matter content, and soil pH were found to be associated with large variations in soil N2O production. Our study suggested that managing soil acidity via liming could substantially control soil N2O production in turfgrass systems.  相似文献   

12.
To better understand the role of resource heterogeneity in decomposition and nitrous oxide (N2O) flux we systematically altered the degree of plant litter aggregation in soil, from uniformly distributed to highly aggregated. In laboratory incubations, we distributed 4.5 g of dried clover shoots (Trifolium pratense L.) in two particle sizes (1 or >5 mm) into 1, 3, or 9 patches versus uniformly distributed. Soil moisture content was also varied to manipulate soil oxygen (O2) concentrations. In moist soil (50% water-filled pore space, WFPS), litter aggregation delayed the peak litter decomposition rate by 3-5 days compared to uniformly distributed litter regardless of the litter particle size. In contrast, under near-saturated soil conditions (80% WFPS) litter aggregation suppressed decomposition throughout the 26-day incubation period. This significant interaction between litter aggregation and soil moisture treatments suggests that diffusion of soil resources (likely O2) plays an important role in the influence of litter aggregation on decomposition. Specifically, O2 diffusion may more adequately meet O2 consumption rates when litter is distributed than when aggregated. In contrast to the temporary influence of aggregation on litter decomposition, N2O fluxes under 50% WFPS conditions were consistently greater and on average 7.9, 7.2, and 4.7-fold greater than fine aggregated litter (1, 3, and 9 patches, respectively) than when uniformly distributed. Coarse litter aggregation also stimulated N2O emissions, but not as much as fine litter. Under field conditions with growing maize (Zea mays L.), litter aggregation also stimulated N2O emissions. The results suggest that litter aggregation plays a role in N2O flux from agricultural soils and it might be manipulated to provide an additional N2O mitigation strategy.  相似文献   

13.
Soil moisture and nitrogen (N) are two important factors influencing N2O emissions and the growth of microorganisms. Here, we carried out a microcosm experiment to evaluate effects of soil moisture level and N fertilizer type on N2O emissions and abundances and composition of associated microbial communities in the two typical arable soils. The abundances and community composition of functional microbes involved in nitrification and denitrification were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP), respectively. Results showed that N2O production was higher at 90% water-filled pore (WFPS) than at 50% WFPS. The N2O emissions in the two soils amended with ammonium were higher than those amended with nitrate, especially at relatively high moisture level. In both soils, increased soil moisture stimulated the growth of ammonia-oxidizing bacteria (AOB) and nitrite reducer (nirK). Ammonium fertilizer treatment increased the population size of AOB and nirK genes in the alluvial soil, while reduced the abundances of ammonia-oxidizing archaea (AOA) and denitrifiers (nirK and nosZ) in the red soil. Nitrate addition had a negative effect on AOA abundance in the red soil. Total N2O emissions were positively correlated to AOB abundance, but not to other functional genes in the two soils. Changed soil moisture significantly affected AOA rather than AOB community composition in both soils. The way and extent of N fertilizers impacted on nitrifier and denitrifier community composition varied with N form and soil type. These results indicate that N2O emissions and the succession of nitrifying and denitrifying communities are selectively affected by soil moisture and N fertilizer form in the two contrasting types of soil.  相似文献   

14.
Mixed responses of soil nitrous oxide (N2O) fluxes to reduced tillage/no-till are widely reported across soil types and regions. In a field experiment on a Danish sandy loam soil we compared N2O emissions during winter barley growth following five years of direct drilling (DD), reduced tillage (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (−Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT, respectively, relative to N2O emissions from CT plots (P < 0.05). We observed that in residue removal scenarios N2O emissions were similar for all tillage treatments, but in residue retention scenarios N2O emissions were significantly higher in CT than in either DD or RT (P < 0.05). Irrespective of residue management, N2O emissions from DD and RT plots never exceeded emissions from CT plots. Retention of residue was estimated to reduce emissions from DD plots by 39% and in RT plots by 9%, but to increase N2O emissions from the CT plots by 35%. Relative soil gas diffusivity (Rdiff), soil NO3-N, soil temperature, tillage and residue were important driving factors for N2O emission (P < 0.05). A multiple linear regression model using Rdiff to represent the water factor explained N2O emissions better than a water-filled pore space (WFPS) based model, suggesting a need for review of the current use of WFPS in N2O prediction models. We conclude that on light textured soils, no-till has the potential for reducing N2O emissions when crop residues are returned to the soil.  相似文献   

15.
Large temporal variability of N2O emissions complicates calculation of emission factors (EFs) needed for N2O inventories. To contribute towards improving these inventories, a process-based, 3-dimensional mathematical model, ecosys, was used to model N2O emissions from a canola crop. The objective of this study was to test the hypothesis in ecosys that large temporal variability of N2O is due to transition among alternative reduction reactions in nitrification/denitrification caused by small changes in soil water-filled pore space (WFPS) following a threshold response, which controls diffusivity (Dg) and solubility of O2. We simulated emissions at field scale, using a 20 × 20 matrix of 36 m × 36 m grid cells rendered in ArcGIS from a digital elevation model of the fertilized agricultural field. Modelled results were compared to measured N2O fluxes using the flux-gradient technique from a micrometeorological tower equipped with a tunable diode laser, to assess temporal N2O variability. Grid cell simulations were performed using original, earlier and later planting and fertilizer dates, to show the influence of changing precipitation and temperature on EFs. Fertilizer application (112 kg N ha?1), precipitation and temperature were the main factors responsible for N2O emissions. Ecosys represented the temporal variation of N2O emissions measured at the tower by modelling significant emissions at WFPS > 60% which reduced the oxygen diffusivity, causing a rising need for alternative electron acceptors, thus greater N2O production via nitrification/denitrification. Small changes in WFPS above a threshold value caused comparatively large changes in N2O flux not directly predictable from soil temperature and WFPS. In ecosys, little N2O production occurred at WFPS < 60% because the oxygen diffusivity was large enough to meet microbial demand. Coefficients of diurnal temporal variation in N2O fluxes were high, ranging from 25–51% (modelled) and 24–63% (measured), during emission periods (0–0.8 mg N2O–N m2 h?1). This variation was shown to rise strongly with temperature during nitrification of N fertilizer so that EFs were affected by timing of fertilizer application. EFs almost quadrupled when fertilizer applications were delayed (average: 1.67% (fertilizer-induced emissions), causing nitrification to occur in warmer soils (18 °C), compared to earlier applications (average: 0.45%) when nitrification occurred in cooler soils (12 °C). Large temporal variation caused biases in seasonal emissions if calculated from infrequent (daily and weekly) measurements. These results show the importance of the use of models that include climate impact on N2O, with appropriate time-steps that capture its temporal variation.  相似文献   

16.
Freezing and thawing influence many physical, chemical and biological processes in soils, including the production of trace gases. We studied the effects of freezing and thawing on three soils, one sandy, one silty and one loamy, on the emissions of N2O and CO2. We also studied the effect of varying the water content, expressed as the percentage of the water‐filled pore space (WFPS). Emissions of N2O during thawing decreased in the order 64% > 55% > 42% WFPS, which suggests that the retardation of the denitrification was more pronounced than the acceleration of the nitrification with increasing oxygen concentration in the soil. However, emissions of N2O at 76% WFPS were less than at 55% WFPS, which might be caused by an increased ratio of N2/N2O in the very moist conditions. The emission of CO2 was related to the soil water, with the smallest emissions at 76% WFPS and largest at 42% WFPS. The emissions of CO2 during thawing exceeded the initial CO2 emissions before the soils were frozen, which suggests that the supply of nutrients was increased by freezing. Differences in soil texture had no marked effect on the N2O emissions during thawing. The duration of freezing, however, did affect the emissions from all three soils. Freezing the soil for less than 1 day had negligible effects, but freezing for longer caused concomitant increases in emissions. Evidently the duration of freezing and soil water content have important effects on the emission of N2O, whereas the effects of texture in the range we studied were small.  相似文献   

17.
Eleven types of agricultural soils were collected from Chinese uplands and paddy fields to compare their N2O and NO production by nitrification under identical laboratory conditions. Before starting the assays, all air-dried soils were preincubated for 4 weeks at 25 °C and 40% WFPS (water-filled pore space). The nitrification activities of soils were determined by adding (NH4)2SO4 (200 mg N kg−1 soil) and incubating for 3 weeks at 25 °C and 60% WFPS. The net nitrification rates obtained fitted one of two types of models, depending on the soil pH: a zero-order reaction model for acidic soils and one neutral soil (Group 0); or a first-order reaction model for one neutral soil and alkaline soils (Group 1). The results suggest that pH is the most important factor in determining the kinetics of soil nitrification from ammonium. In the Group 1 soils, initial emissions (i.e. during the first week) of N2O and NO were 82.6 and 83.6%, respectively, of the total emissions during 3 weeks of incubation; in the Group 0 soils, initial emissions of N2O and NO were 54.7 and 59.9%, respectively, of the total emissions. The net nitrification rate in the first week and second-third weeks were highly correlated with the initial and subsequent emissions (i.e. during the second and third weeks), respectively, of N2O and NO. The average percentages of emitted (N2O+NO)-N relative to net nitrification N in initial and subsequent periods were 2.76 and 0.59 for Group 0, and 1.47 and 0.44 for the Group 1, respectively. The initial and subsequent emission ratios of NO/N2O from Group 0 (acidic) soils were 3.77 and 2.52 times, respectively, higher than those from Group 1 soils (P<0.05).  相似文献   

18.
Animal manures from intensive livestock operations can be pelleted to improve handlings and recyclings of embodied nutrients. The aim of this study was to evaluate the influence of pelleted poultry manure on N2O and NO fluxes from an Andisol field. In autumn 2006 and summer 2007, poultry manure (PM), pelleted poultry manure (PP), and chemical fertilizer (CF) were applied at a rate of 120 kg N ha−1 in each cultivation period to Komatsuna (Brassica rapa var. peruviridis). Nitrous oxide and NO fluxes were measured using an automated monitoring system. A soil incubation experiment was also conducted to determine the influence of intact and ground pelleted manure on N2O, NO, and CO2 production with a water-filled pore space (WFPS) of 30 or 50%. In the field measurements, N2O emission rates from the organic fertilizer treatments were larger than that from the CF treatment, possibly because organic C stimulated denitrification. The highest N2O flux was observed from the PP treatment after a rainfall following fertilization, and the cumulative emission rate (2.72 ± 0.22 kg N ha−1 y−1) was 3.9 and 7.1 times that from the PM and CF treatments, respectively. In contrast, NO emission rates were highest from the CF treatment. The NO/N2O flux ratio indicated that nitrification was the dominant process for NO and N2O production from the CF treatment. Cumulative N2O emission rates from all treatments were generally higher during the wetter cultivation period (autumn 2006) than during the drier cultivation period (summer 2007). In contrast, NO emission rates were higher in the drier than in the wetter cultivation period. The incubation experiment results showed a synergistic effect of soil moisture and the pelleted manure form on N2O emission rates. The intact pelleted manure with the 50% WFPS treatment produced the highest N2O and CO2 fluxes and resulted in the lowest soil NO3 content after the incubation. These results indicate that anaerobic conditions inside the pellets, caused by rainfall and heterotrophic microbial activities, led to denitrification, resulting in high N2O fluxes. Controlling the timing of N application by avoiding wet conditions might be one mitigation option to reduce N2O emission rates from the PP treatment in this study field.  相似文献   

19.
Hippuric acid (HA) in cattle urine acts as a natural inhibitor of soil N2O emissions. As HA concentration varies with diet, we determined critical HA levels. We also tested the hypothesis that the inhibition occurs because the HA breakdown product benzoic acid (BA) inhibits denitrification rates. During a 64-day incubation, we quantified emissions from artificial urine varying in HA, BA and glycine (Gly) concentrations, added to a sandy pasture soil. Increasing HA concentration from 0.4 to 5.6 mmol kg−1 soil significantly decreased the average N2O flux by 54%. At 3.9 mmol kg−1 soil, denitrification levels were 50% reduced for BA as compared to Gly. We conclude that HA inhibits both denitrification and N2O emission, at least partly through a BA mechanism.  相似文献   

20.
Nitrous oxide (N2O) contributes to greenhouse effect; however, little information on the consequences of different moisture levels on N2O/(N2O+N2) ratio is available. The aim of this work was to analyze the influence of different soil moisture values and thus of redox conditions on absolute and relative emissions of N2O and N2 at intact soil cores from a Vertic Argiudoll. For this reason, the effect of water-filled porosity space (WFPS) values of soil cores of 40, 80,100, and 120% (the last one with a 2-cm surface water layer) was investigated. The greatest N2O emission occurred at 80% WFPS treatment where conditions were not reductive enough to allow the complete reduction to N2. The N2O/(N2O+N2) ratio was lowest (0–0.051) under 120% WFPS and increased with decreasing soil moisture content. N2O/(N2O+N2) ratio values significantly correlated with soil Eh; redox conditions seemed to control the proportion of N gases emitted as N2O. N2O emissions did not correlate satisfactorily with N2O/(N2O+N2) ratio values, whereas they were significantly explained by the amount of total N2O+N2 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号