首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial urine, an aqueous solution of various nitrogenous compounds and salts, is routinely used in soil incubation studies on nitrous oxide (N2O) emissions and related nitrogen (N) and pH dynamics. There is, however, no consensus on artificial urine composition, and a wide variety of compositions are used. The aim of this study was to test which artificial urine composition is adequate for simulating N2O fluxes, respiration, soil mineral N and pH dynamics of real cattle urine in both short- and long-term incubation studies. Urine solutions of differing compositions were applied to a sandy soil and incubated for 65 days, and results of measurements on N2O fluxes and soil mineral N were analyzed over the first 5 days as well as over the whole incubation period. Results from two real cattle urines with known nitrogenous composition (R1 and R2) were compared with three artificial urine types: (i) urea+glycine (AG), (ii) urea+hippuric acid (AH) and (iii) an artificial urine identical to the nitrogenous composition of real urine R1 (AR). During the first 5 days, only cumulative N2O emissions for AG deviated significantly (P=0.02) from the N2O emissions for real urines, with 0.4% of applied N emitted compared with 0.0% and 0.1% for R1 and R2, respectively. Respiration from R1 was significantly (P<0.001) higher than from R2 and all artificial urines. Over the whole incubation period, no significant differences could be detected for N2O emissions or respiration with urine type. From all artificial urine types, AH yielded N2O emissions closest to those from real urine. AG deviated most from real urine, both in short- and long-term incubations. Over the whole period, soil NH4+ was higher for all artificial urines (P<0.001) and pH-KCl was lower for AG and AR (P=0.004) than for the real urines. AH was not significantly different from real urine R2 with respect to all measured properties except soil NH4+. We conclude that only AG did not adequately simulate N2O emissions, and that glycine is therefore not an appropriate substitution for hippuric acid in artificial urine. For future studies using artificial urine we recommend therefore a mixture containing at least urea and hippuric acid as sources of N. As no artificial urine composition resembled real urine with respect to all measured variables, even when nitrogenous composition was identical (AR), we recommend the use of real urines whenever possible.  相似文献   

2.
Urine patches in grazed pastures are a major source of nitrous oxide (N2O) emission. It is well-documented that the relative concentration of the various nitrogenous urine constituents varies significantly with diet. The effect of these variations on N2O emissions from urine patches, however, has never been reported. The aim of this study was to test whether variations in urine composition, consistent with different diets, lead to significant differences in N2O emission. Four varieties of artificial urine, all with similar total N concentrations, but varying in the relative contribution of the nitrogenous constituents, were applied to undisturbed cores from a sandy pasture soil. N2O fluxes were monitored for 65 days at two moisture treatments; 92% WFPS for the entire incubation, and 70% WFPS up to day 41 and 92% afterwards. Extra replicates were included for destructive analysis on mineral N concentrations and pH. Urine composition was a significant (P<0.001) factor determining N2O emissions. An increase in the relative hippuric acid concentration from 3 to 9% of total N resulted in a significant decline in average N2O fluxes, from 16.4 to 8.7 μg N2O-N h−1 kg−1 soil (averaged over all treatments). Cumulative emission decreased from 8.4 to 4.4% of the applied urine-N (P<0.01). Soil mineral N showed a modest but significant decrease with an increase of hippuric acid content. pH did not show any significant relationship with urine composition. Increasing the urea concentration with 12% of applied urinary N did not significantly affect N2O emissions. Moisture content significantly affected N2O emissions (P<0.001), but no interaction between moisture and urine composition was found. As the inhibitory effect of hippuric acid could not be linked directly to mineral N concentrations in the soil, we hypothesize that the breakdown product benzoic acid either inhibits denitrification or decreases the N2O/N2 ratio. We conclude that hippuric acid concentration in urine is an important factor influencing N2O emission, with a potential for reducing emissions with 50%. We suggest alternative rationing leading to higher hippuric acid concentrations in urine as a possible strategy to mitigate N2O emission from grazed pastures.  相似文献   

3.
蔡延江  丁维新  项剑 《土壤通报》2012,(4):1013-1018
免耕在促进农业可持续发展和有效分馏大气碳的同时还可影响土壤N2O排放,但迄今为止关于免耕对农田土壤N2O排放影响的研究结果却不尽一致,正效应间或负效应都存在。本文综述了免耕条件下土壤理化性状和生物性状的变化及其对N2O排放的影响,并指出实施免耕后土壤反硝化强度变化程度的不同是导致免耕对N2O排放影响效应不同的主要原因,最后提出了一些有待研究的问题。  相似文献   

4.
气候变化是当今全球面临的重大挑战, 人类社会生产生活引起的温室气体排放是全球气候变暖的主要原因。大气中CO2、CH4 和N2O 是最重要的温室气体, 对温室效应的贡献率占了近80%。据估计, 大气中每年有5%~20%的CO2、15%~30%的CH4、80%~90%的N2O 来源于土壤, 而农田土壤是温室气体的重要排放源。本文重点阐述了农田土壤温室气体产生、排放或吸收机理及其影响因素, 指出土地利用方式和农业生产力水平等人为控制因素通过影响土壤和作物生长条件来影响农田土壤温室气体产生与排放或吸收。所以, 我们可以从人类活动对农田生态系统的影响着手, 通过改善农业生产方式和作物生长条件来探索温室气体减排措施, 达到固碳/氮增汇的目的。对国内外关于农田温室气体排放的源/汇强度及其综合温室效应评估的最新研究进展进行了综述, 指出正确估算与评价农田土壤温室气体的源/汇强度及其对大气中主要温室气体浓度变化的贡献, 有助于为温室气体减排以及减少气候变化预测的不确定性提供理论依据。  相似文献   

5.
Earthworm activity may have an effect on nitrous oxide (N2O) emissions from crop residue. However, the importance of this effect and its main controlling variables are largely unknown. The main objective of this study was to determine under which conditions and to what extent earthworm activity impacts N2O emissions from grass residue. For this purpose we initiated a 90-day (experiment I) and a 50-day (experiment II) laboratory mesocosm experiment using a Typic Fluvaquent pasture soil with silt loam texture. In all treatments, residue was applied, and emissions of N2O and carbon dioxide (CO2) were measured. In experiment I the residue was applied on top of the soil surface and we tested (a) the effects of the anecic earthworm species Aporrectodea longa (Ude) vs. the epigeic species Lumbricus rubellus (Hoffmeister) and (b) interactions between earthworm activity and bulk density (1.06 vs. 1.61 g cm−3). In experiment II we tested the effect of L. rubellus after residue was artificially incorporated in the soil. In experiment I, N2O emissions in the presence of earthworms significantly increased from 55.7 to 789.1 μg N2O-N kg−1 soil (L. rubellus; p<0.001) or to 227.2 μg N2O-N kg−1 soil (A. longa; p<0.05). This effect was not dependent on bulk density. However, if the residue was incorporated into the soil (experiment II) the earthworm effect disappeared and emissions were higher (1064.2 μg N2O-N kg−1 soil). At the end of the experiment and after removal of earthworms, a drying/wetting and freezing/thawing cycle resulted in significantly higher emissions of N2O and CO2 from soil with prior presence of L. rubellus. Soil with prior presence of L. rubellus also had higher potential denitrification. We conclude that the main effect of earthworm activity on N2O emissions is through mixing residue into the soil, switching residue decomposition from an aerobic and low denitrification pathway to one with significant denitrification and N2O production. Furthermore, A. longa activity resulted in more stable soil organic matter than L. rubellus.  相似文献   

6.
氧化亚氮(N2O)是重要的温室气体之一。本文从施肥、灌溉、耕作、种植作物及土地用途改变等方面论述了农业活动对土壤排放氧化亚氮的影响,并总结了减排措施。  相似文献   

7.
Urine deposition by grazing livestock causes an immediate increase in nitrous oxide (N2O) emissions, but the responsible mechanisms are not well understood. A nitrogen-15 (15N) labelling study was conducted in an organic grass-clover sward to examine the initial effect of urine on the rates and N2O loss ratio of nitrification (i.e. moles of N2O-N produced per moles of nitrate produced) and denitrification (i.e. moles of N2O produced per moles of N2O+N2 produced). The effect of artificial urine (52.9 g N m−2) and ammonium solution (52.9 g N m−2) was examined in separate experiments at 45% and 35% water-filled pore space (WFPS), respectively, and in each experiment a water control was included. The N2O loss derived from nitrification or denitrification was determined in the field immediately after application of 15N-labelled solutions. During the next 24 h, gross nitrification rates were measured in the field, whereas the denitrification rates were measured in soil cores in the laboratory. Compared with the water control, urine application increased the N2O emission from 3.9 to 42.3 μg N2O-N m−2 h−1, whereas application of ammonium increased the emission from 0.9 to 6.1 μg N2O-N m−2 h−1. In the urine-affected soil, nitrification and denitrification contributed equally to the N2O emission, and the increased N2O loss resulted from a combination of higher rates and higher N2O loss ratios of the processes. In the present study, an enhanced nitrification rate seemed to be the most important factor explaining the high initial N2O emission from urine patches deposited on well-aerated soils.  相似文献   

8.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   

9.
Based on the N2O and CO2 emission data concomitantly measured from agricultural upland fields around the world, we developed an empirical model as follows: cumulative N2O emission = aexp[b*(ECO2/Scn + Fn)] (R2adj = 0.85∼0.87), where ECO2 is the rate of heterotrophic respiration from soils, Scn is the soil C/N ratio, and Fn is the chemical fertilizer N rate. The model parameters derived from the data from the soils without receiving chemical fertilizers were significantly different from the ones from the fertilized soils. This model indicates that CO2 emission and soil C/N ratio can be used as scaling parameters to produce regional or global inventories of N2O emission from agricultural soils.  相似文献   

10.
Agricultural soils contribute significantly to atmospheric nitrous oxide (N2O). A considerable part of the annual N2O emission may occur during the cold season, possibly supported by high product ratios in denitrification (N2O/(N2+N2O)) and nitrification (N2O-N/(NO3-N+NO2-N)) at low temperatures and/or in response to freeze-thaw perturbation. Water-soluble organic materials released from frost-sensitive catch crops and green manure may further increase winter emissions. We conducted short-term laboratory incubations under standardized moisture and oxygen (O2) conditions, using nitrogen (N) tracers (15N) to determine process rates and sources of emitted N2O after freeze-thaw treatment of soil or after addition of freeze-thaw extract from clover. Soil respiration and N2O production was stimulated by freeze-thaw or addition of plant extract. The N2O emission response was inversely related to O2 concentration, indicating denitrification as the quantitatively prevailing process. Denitrification product ratios in the two studied soils (pH 4.5 and 7.0) remained largely unaltered by freeze-thaw or freeze-thaw-released plant material, refuting the hypothesis that high winter emissions are due to frost damage of N2O reductase activity. Nitrification rates estimated by nitrate (NO3) pool enrichment were 1.5-1.8 μg NO3-N g−1 dw soil d−1 in freeze-thaw-treated soil when incubated at O2 concentrations above 2.3 vol% and one order of magnitude lower at 0.8 vol% O2. Thus, the experiments captured a situation with severely O2-limited nitrification. As expected, the O2 stress at 0.8 vol% resulted in a high nitrification product ratio (0.3 g g−1). Despite this high product ratio, only 4.4% of the measured N2O accumulation originated from nitrification, reaffirming that denitrification was the main N2O source at the various tested O2 concentrations in freeze-thaw-affected soil. N2O emission response to both freeze-thaw and plant extract addition appeared strongly linked to stimulation of carbon (C) respiration, suggesting that freeze-thaw-induced release of decomposable organic C was the major driving force for N2O emissions in our soils, both by fuelling denitrifiers and by depleting O2. The soluble C (applied as plant extract) necessary to induce a CO2 and N2O production rate comparable with that of freeze-thaw was 20-30 μg C g−1 soil dw. This is in the range of estimates for over-winter soluble C loss from catch crops and green manure plots reported in the literature. Thus, freeze-thaw-released organic C from plants may play a significant role in freeze-thaw-related N2O emissions.  相似文献   

11.
Nitrous oxide research has generally focused directly on measuring fluxes of N2O from the soil surface. The fate of N2O in the subsoil has often been placed in the ‘too hard’ basket. However, determining the production, fate and movement of N2O in the subsoil is vital in fully understanding the sources of surface fluxes and in compiling accurate inventories for N2O emissions. The aim of this study was to generate and introduce into soil columns 15N labelled N2O, and to try and determine the consumption of the 15N2O and production of ambient N2O. Columns, 100 cm long by 15 cm diameter, were repacked with sieved soil (sampled from 0 to 5 cm depth) and instrumented with silicone rubber gas sampling ports. Nitrous oxide enriched with 15N was generated using a thermal decomposition process at 300 °C and then transferred to 2 l flasks. After equilibrating with SF6 tracer gas the 15N2O was introduced into the soil columns via passive diffusion. Gas samples from the soil profile and headspace flux were taken over a 12-day period. A watering event was simulated to perturb the 15N2O gas composition in the soil profile. Using the measured 15N enriched fluxes and the rate of decline in 15N in the N2O reservoir, from which the N2O diffused into the soil, we calculated an N2O sink (consumption plus absorption by water) equal to 0.48 ng N2O g−1 soil h−1. The decrease in the 15N enrichment between successive soil depths indicated N2O production in the soil profile and we calculated a net N2O production rate of 0.88 ng N2O g−1 soil h−1. This pilot study demonstrated the potential for simultaneously measuring both N2O consumption and production rates, using the 15N enrichment of the N2O measured. Further potential refinements of the methodology are discussed.  相似文献   

12.
Here we provide evidence that the form of carbon compound and O2 concentration exert an inter-related regulation on the production and reduction of N2O in soil. 6.7 mM d-glucose, 6.7 mM D-mannitol, 8 mM L-glutamic acid or 10 mM butyrate (all equivalent to 0.48 g C l−1) were applied to slurries of a sandy loam soil. At the start of the experiment headspace O2 concentrations were established at ∼2%, 10% and 21% O2 v/v for each C treatment, and 2 mM K15NO3 (25 atom % excess 15N) was applied, enabling quantification of 15N-N2 production, 15N-(N2O-to-N2) ratios and DNRA. The form of C compound was most important in the initially oxic (21% O2 v/v) soils, where addition of butyrate and glutamic acid resulted in greater N2O production (0.61 and 0.3 μg N2O-N g−1 soil for butyrate and glutamic acid, respectively) than the addition of carbohydrates (glucose and mannitol). Although, there was no significant effect of C compound at low initial O2 concentrations (∼2% O2 v/v), production of 15N-N2 was greatest where headspace O2 concentrations were initially, or fallen to, ∼2% O2 v/v, with greatest reduction of N2O and lowering 15N-(N2O-to-N2) ratios (∼0-0.27). This may reflect that the effect of C is indirect through stimulation of heterotrophic respiration, lowering O2 concentrations, providing sub-oxic conditions for dissimilatory nitrate reduction pathways. Addition of carbohydrates (glucose and mannitol) also resulted in greatest recovery of 15N in NH4+ from applied 15N-NO3, indicative of the occurrence of DNRA, even in the slurries with initial 10% and 21% O2 v/v concentrations. Our 15N approach has provided the first direct evidence for enhancement of N2O reduction in the presence of carbohydrates and the dual regulation of C compound and O2 concentration on N2O production and reduction, which has implications for management of N2O emissions through changing C inputs (exudates, rhizodeposition, residues) with plant species of differing C traits, or through plant breeding.  相似文献   

13.
冻融对土壤氮素转化和N2O排放的影响研究进展   总被引:4,自引:0,他引:4  
在中、高纬度及高海拔地区,土壤冻融现象常有发生。冻融作用通过影响土壤理化性质和生物学性状进而影响土壤氮素转化过程及N2O的产生和释放,但迄今关于冻融对土壤氮素转化过程影响的研究结果还不尽一致,正效应或负效应均存在,土壤冻融期间N2O排放对全年N2O排放总量的贡献程度也存在着较大差异。本文重点论述了土壤冻结或冻融循环过程对土壤氮矿化、固持、硝化和反硝化等主要氮素转化过程的影响机制,同时分析了可引起冻融期间N2O排放强度变化的四种可能机理(禁锢-释放、环境-底物诱导、N2O还原酶抑制和化学反硝化增强)。指出在全球变暖背景下研究土壤冻融格局改变影响土壤氮素转化过程及N2O排放的必要性,并简要提出了若干理论问题及研究方向。  相似文献   

14.
Eleven types of agricultural soils were collected from Chinese uplands and paddy fields to compare their N2O and NO production by nitrification under identical laboratory conditions. Before starting the assays, all air-dried soils were preincubated for 4 weeks at 25 °C and 40% WFPS (water-filled pore space). The nitrification activities of soils were determined by adding (NH4)2SO4 (200 mg N kg−1 soil) and incubating for 3 weeks at 25 °C and 60% WFPS. The net nitrification rates obtained fitted one of two types of models, depending on the soil pH: a zero-order reaction model for acidic soils and one neutral soil (Group 0); or a first-order reaction model for one neutral soil and alkaline soils (Group 1). The results suggest that pH is the most important factor in determining the kinetics of soil nitrification from ammonium. In the Group 1 soils, initial emissions (i.e. during the first week) of N2O and NO were 82.6 and 83.6%, respectively, of the total emissions during 3 weeks of incubation; in the Group 0 soils, initial emissions of N2O and NO were 54.7 and 59.9%, respectively, of the total emissions. The net nitrification rate in the first week and second-third weeks were highly correlated with the initial and subsequent emissions (i.e. during the second and third weeks), respectively, of N2O and NO. The average percentages of emitted (N2O+NO)-N relative to net nitrification N in initial and subsequent periods were 2.76 and 0.59 for Group 0, and 1.47 and 0.44 for the Group 1, respectively. The initial and subsequent emission ratios of NO/N2O from Group 0 (acidic) soils were 3.77 and 2.52 times, respectively, higher than those from Group 1 soils (P<0.05).  相似文献   

15.
We examined net greenhouse gas exchange at the soil surface in deciduous forests on soils with high organic contents. Fluxes of CO2, CH4 and N2O were measured using dark static chambers for two consecutive years in three different forest types; (i) a drained and medium productivity site dominated by birch, (ii) a drained and highly productive site dominated by alder and (iii) an undrained and highly productive site dominated by alder. Although the drained sites had shallow mean groundwater tables (15 and 18 cm, respectively) their average annual rates of forest floor CO2 release were almost twice as high compared to the undrained site (1.9±0.4 and 1.7±0.3, compared to 1.0±0.2 kg CO2 m−2 yr−1). The average annual CH4 emission was almost 10 times larger at the undrained site (7.6±3.1 compared to 0.9±0.5 g CH4 m−2 yr−1 for the two drained sites). The average annual N2O emissions at the undrained site (0.1±0.05 g N2O m−2 yr−1) were lower than at the drained sites, and the emissions were almost five times higher at the drained alder site than at the drained birch site (0.9±0.35 compared to 0.2±0.11 g N2O m−2 yr−1). The temporal variation in forest floor CO2 release could be explained to a large extent by differences in groundwater table and air temperature, but little of the variation in the CH4 and N2O fluxes could be explained by these variables. The measured soil variables were only significant to explain for the within-site spatial variation in CH4 and N2O fluxes at the undrained swamp, and dark forest floor CO2 release was not explained by these variables at any site. The between-site spatial variation was attributed to variations in drainage, groundwater level position, productivity and tree species for all three gases. The results indicate that N2O emissions are of greater importance for the net greenhouse gas exchange at deciduous drained forest sites than at coniferous drained forest sites.  相似文献   

16.
We evaluated a new method to measure in situ denitrification under field conditions in a number of water-saturated subsoils that had a broad range of biogeochemical properties. A test solution containing 15NO3 and/or C2H2 was introduced to the subsoil and the subsequent production of dissolved denitrification products was measured to quantify denitrification activity. The method showed a clear production of denitrification products over time. Results were compared to laboratory-based measurements from the same soil incubated as anaerobic slurries with added 15NO3. Rates of denitrification with the in situ and the laboratory methods ranged from 1-2800 and 1-1700 μg N kg−1 d−1, respectively. Generally the methods gave good agreement and we consider both to be valid. However, there were some significant deviations, which we attribute to spatial heterogeneity and laboratory effects. Because the laboratory method is so much easier to perform, we suggest it should be the preferred method for large-scale studies of denitrification from the soil types we investigated. However, the two methods showed poor agreement in determining the proportion of N2O in the total denitrification output. This was because this proportion is subject to delicate and complex control. We conclude that neither method was suitable for quantifying N2O emission from the denitrification measurements.  相似文献   

17.
The relationships between the fluxes of nitrous oxide (N2O) and carbon dioxide (CO2), and their concentrations in the soil air, three different measures of potential denitrification, soil moisture, soil temperature and precipitation were investigated in soils from beneath ryegrass (Lolium multiflorum Lam.), red clover (Trifolium pratense L.) and mixture of ryegrass-red clover stands on a gleic cambisol. Investigations were carried out in order to test the hypothesis that the measure(s) of potential denitrification are good predictor(s) of N2O fluxes and thus may be used in empirical models of N2O emission. Potential denitrification characteristics used in this study involved (i) short-term denitrifying enzyme activity (DEA), (ii) long-term denitrification potential (DP), both determined in soils amended with nitrate and glucose, and (iii) denitrification rate (DR) measured using intact soil cores. Flux measurements were made using cylindrical chambers (internal diameter 31 cm, volume 0.015 m3). The fluxes of N2O and CO2 and many other characteristics showed large spatial and temporal variability. Emissions of N2O from the grass plots were closely related to N2O concentrations in the soil atmosphere at 22.5 cm depth. Most soil properties did not correlate with N2O fluxes. It was concluded that DP was not a good predictor for N2O flux. DEA did not show significant relationship with N2O flux, but it is suggested that if determined in representative, large soil samples, DEA could be a predictor of N2O fluxes; this assumption needs, however, verification. The only potential denitrification characteristic which was significantly related to N2O emission both in grass and clover treatments was DR, which was determined in soil cores.  相似文献   

18.
Both NO and N2O are produced in soil microbial processes and have importance in atmospheric physics and chemistry. In recent years several studies have shown that N2O emissions from organic soils can be high at low temperatures. However, the effects of low temperature on NO emissions from soil are unknown. We studied in laboratory conditions, using undisturbed soil cores, the emissions of NO and N2O from organic soils at various temperatures, with an emphasis on processes and emissions during soil freezing and thawing periods. We found no soil freezing- or thawing-related emission maxima for NO, while the N2O emissions were higher both during soil freezing and thawing periods. The results suggest that different factors are involved in the regulation of NO and N2O emissions at low temperatures.  相似文献   

19.
In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1-2 years after the climate change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which outweighed the positive effect of warming when analyzed across the study period. Emissions of N2O were generally low (<10 μg N m−2 h−1). As single experimental factors, elevated CO2, temperature and summer drought (D) had no major effect on the N2O fluxes, but the combination of CO2 and warming (TCO2) stimulated N2O emission, whereas the N2O emission ceased when CO2 was combined with drought (DCO2). We suggest that these N2O responses are related to increased rhizodeposition under elevated CO2 combined with increased and reduced nitrogen turnover rates caused by warming and drought, respectively. The N2O flux in the multifactor treatment TDCO2 was not different from the ambient control treatment. Overall, our study suggests that in the future, CH4 uptake may increase slightly, while N2O emission will remain unchanged in temperate ecosystems on well-aerated soils. However, we propose that continued exposure to altered climate could potentially change the greenhouse gas flux pattern in the investigated heathland.  相似文献   

20.
The present study determined the influence of initial moisture conditions on the production and consumption of nitrous oxide (N2O) during denitrification and on the isotopic fingerprint of soil-emitted N2O. Sieved arable soil was pre-incubated at two different moisture contents: pre-wet at 75% and pre-dry at 20% water-filled pore space. After wetting to 90% water-filled pore space the soils were amended with glucose (400 kg C ha−1) and KNO3 (80 kg N ha−1) and incubated for 10 days under a He/O2-atmosphere. Antecedent moisture conditions affected denitrification. N2 + N2O fluxes and the N2O-to-N2 ratio were higher in soils which were pre-incubated under dry conditions, probably because mobilization of organic C during the pre-treatment enhanced denitrification. Gaseous N fluxes showed similar time patterns of production and reduction of N2O in both treatments, where N2O fluxes were initially increasing and maximised 3-4 days after fertilizer application, and N2 fluxes were delayed by 1-2 days. Time courses of δ15Nbulk-N2O and δ18O-N2O exhibited in both treatments increasing trends until maximum N2 fluxes occurred, reflecting isotope fractionation during intense NO3 reduction. Later this trend slowed down in the pre-dry treatment, while δ18O-N2O was constant and δ15Nbulk-N2O decreased in the pre-wet treatment. We explain these time patterns by non-homogenous distribution of NO3 and denitrification activity, resulting from application of NO3 and glucose to the surface of the soil. We assume that several process zones were thus created, which affected differently the isotopic signature of N2O and the N2O and N2 fluxes during the different stages of the process. We modelled the δ15Nbulk-N2O using process rates and associated fractionation factors for the pre-treated soils, which confirmed our hypothesis. The site preference (SP) initially decreased while N2O reduction was absent, which we could not explain by the N-flux pattern. During the subsequent increase in N2 flux, SP and δ18O-N2O increased concurrently, confirming that this isotope pattern is indicative for N2O reduction to N2. The possible effect of the antecedent moisture conditions of the soil on N2O emissions was shown to be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号