共查询到20条相似文献,搜索用时 15 毫秒
1.
Shabeg S. Briar Steven J. Fonte Inmyoung Park Johan Six Howard Ferris 《Soil biology & biochemistry》2011,43(5):905-914
We hypothesized that nematode and microbial communities vary between soil aggregate fractions due to variations in physical and/or resource constraints associated with each fraction and that this, in turn, contributes to management impacts on whole soil food webs. Nematode and microbial communities were examined within three soil fractions: large macroaggregates (LM; >1000 μm), small macroaggregates (SM; 250-1000 μm) and inter-aggregate soil and space (IS; <250 μm) isolated from soils of four agricultural management systems: conventional tomato (CON), organic tomato (ORG), a minimum till grain-legume intercrop with continuous cover (CC) and an unmanaged riparian corridor (RC). Aggregate fractions appeared to influence nematode assemblages more than did management system. In general the IS and LM fractions contained higher densities of all nematode trophic groups than did SM. Management × fraction interactions for bacterivores and fungivores, however; suggested a non uniform trend across management systems. The IS fraction exhibited stronger trophic links, per the nematode structure index (SI), while the LM and SM fractions had more active fungal decomposition channels as indicated by the channel index (CI). Higher adult to juvenile ratios in the LM and IS than the SM fraction, and a positive correlation between nematode density in the IS fraction and the proportion of macroaggregates in the soil, indicated an association between soil structure and nematode distribution. Microbial communities varied across both aggregate fractions and management systems. Phospholipid fatty acid (PLFA) analysis suggested that the LM fraction contained greater microbial biomass, gram positive bacteria, and eukaryotes than the IS fraction, while SM contained intermediate PLFA associated with these groups. Total PLFA was greater under RC and ORG than under CC or CON. Total PLFA was positively correlated with % C in soil fractions while nematode abundance exhibited no such relationship. Our findings suggest that microbial communities are more limited by resource availability than by habitable pore space or predation, while nematode communities, although clearly resource-dependent, are better associated with habitable pore space for the soil fractions studied here. 相似文献
2.
B. S. Griffiths P. D. Hallett H. L. Kuan A. S. Gregory C. W. Watts A. P. Whitmore 《Biology and Fertility of Soils》2008,44(5):745-754
The effects of soil structure and microbial community composition on microbial resistance and resilience to stress were found
to be interrelated in a series of experiments. The initial ability of Pseudomonas fluorescens to decompose added plant residues immediately after a copper or heat stress (resistance) depended significantly on which
of 26 sterile soils it was inoculated into. Subsequent studies showed that both the resistance and subsequent recovery in
the ability of P. fluorescens to decompose added plant residues over 28 days after stress (resilience) varied significantly between a sandy and a clay-loam
soil. Sterile, sandy and clay-loam soil was then inoculated with a complex microbial community extracted from either of the
soils. The resulting microbial community structure depended on soil type rather than the source of inoculum, whilst the resistance
and resilience of decomposition was similarly governed by the soil and not the inoculum source. Resilience of the clay-loam
soil to heat stress did not depend on the water content of the soil at the time of stress, although the physical condition
of the soil when decomposition was measured did affect the outcome. We propose that soil functional resilience is governed
by the physico-chemical structure of the soil through its effect on microbial community composition and microbial physiology. 相似文献
3.
Catriona A. Macdonald Nadine Thomas Kevin R. Tate John Dando 《Soil biology & biochemistry》2009,41(8):1642-1651
Afforestation and deforestation are key land-use changes across the world, and are considered to be dominant factors controlling ecosystem functioning and biodiversity. However, the responses of soil microbial communities to these land-use changes are not well understood. Because changes in soil microbial abundance and community structure have consequences for nutrient cycling, C-sequestration and long-term sustainability, we investigated impacts of land-use change, age of stand and soil physico-chemical properties on fungal and bacterial communities and their metabolic activities. This study was carried out at four sites in two geographical locations that were afforested on long-established pastures with Pinus radiata D. Don (pine). Two of the sites were on volcanic soils and two on non-volcanic soils and stand age ranged from 5 to 20 y. Microbial communities were analysed by biochemical (phospho-lipid fatty acids; PLFA) and molecular (multiplex-terminal restriction fragment length polymorphism; M-TRFLP) approaches. Both site and stand age influenced microbial properties, with changes being least detectable in the 5-y-old stand. Land use was a key factor influencing soil metabolic activities as measured by physiological profiling using MicroResp. Pasture soils had higher microbial biomass (P < 0.001), and metabolic activities (P < 0.001), and basal respiration rates were up to 2.8-times higher than in the pine soils. Microbial abundance analysis by PLFA showed that the fungal to bacterial ratio was higher in the pine soils (P < 0.01). Community analysis suggested that soil bacterial communities were more responsive to site (principal component 1; P < 0.001) than to land use (principal component 5; P < 0.001). In contrast, the fungal community was more affected by land-use change (principal component 1; P < 0.001) than by site, although site still had some influence on fungal community structure (principal component 2; P < 0.001). Redundancy analysis also suggested that bacterial and fungal communities responded differently to various soil abiotic properties, land-use change and location of sites. Overall, our results indicate that the change in land use from pasture to P. radiata stands had a direct impact on soil fungal communities but an indirect effect, through its effects on soil abiotic properties, on bacterial communities. Most of the changes in bacterial communities could be explained by altered soil physico-chemical properties associated with afforestation of pastures. 相似文献
4.
通过田间采样并布置室内培育试验,研究了红壤水稻土微生物生物量N和总N的矿化动态及其相互关系。结果表明,红壤水稻土微生物生物量N矿化速率和矿化量随培养时间延长而降低,随水稻土肥力水平提高而增加。12周培养期内,红壤水稻土微生物生物量N的一半以上被矿化,其中约1/2的矿化量出现在前4周;不同熟化程度红壤水稻土的累积矿化N量为73.0~127.8mg/kg,平均矿化速率为6.09~10.7mg/(kg·wk)。用双指数方程和一级动力学方程可以很好地模拟红壤水稻土微生物生物量N和总N的矿化过程。微生物生物量N和总N的矿化过程均可分为快速和缓慢2个阶段,培养的前8周是快速矿化阶段。2个模拟方程参数的比较表明,微生物生物量N矿化量占总N矿化量的比例为10.8%~49.5%,其矿化潜力大,持续矿化时间长,对保证土壤N素的持续供应有积极作用。 相似文献
5.
In order to improve understanding of how long-term use of manure affects nitrogen cycling processes, the effects of multiple years of manure applications on abundance of protozoa and nematode community structure were assessed. Plots of a grass sward in the Fraser Valley of British Columbia were either left untreated or were treated with dairy manure slurry or fertilizer, each at 50 or 100 kg NH4-N ha−1, two to four times per year for six consecutive years. Nematode community structure and protozoan abundance were determined at 19 sample dates during the fourth (1997), fifth (1998) and sixth (1999) years of application. Protozoa, bacterivorous nematodes and fungivorous nematodes were consistently more abundant in soil treated with manure at both rates than in fertilized and untreated soil, indicating that microbial turnover and flux of nutrients through the soil food web was enhanced in manured soil relative to fertilized or untreated soil. The Maturity Index (MI) and the MI2-5 were both reduced by fertilization and manure, relative to the control. The MI for the manure treatment was lower than for the fertilizer treatment as a result of greater relative abundance of enrichment opportunist nematodes in manure-treated soil. Accordingly, the MI2-5 did not differ between the manure and fertilizer treatments, suggesting that with the exception of enrichment opportunists fertilizer and manure have similar effects on structural complexity of the soil food web.Populations of micro-fauna were also assessed through 1998 and 1999 in subplots that had been treated with manure or fertilizer for four years and stopped receiving manure or fertilizer in 1998, and in subplots given manure in 1998 that had previously either been fertilized or left untreated. Protozoa and bacterivorous and fungivorous nematodes remained more abundant through 1998 and 1999 in previously manure-treated plots than in previously fertilized plots, indicating that the cumulative effects of manure application on enhancement of microbial production can be detected through at least two growing seasons after applications cease. Application of manure for one year to previously non-treated or fertilized soil raised the abundance of protozoa and bacterivorous and fungivorous nematodes to levels comparable to continuously manured soil. 相似文献
6.
不同碳氮比有机肥对有机农业土壤微生物生物量的影响 总被引:16,自引:0,他引:16
有机肥能提高土壤微生物活性, 改善土壤品质。碳氮比是影响有机肥肥效的重要因素。本试验以无肥处理为对照(CK), 设置4个有机肥碳氮比处理(20︰1、15︰1、10︰1、5︰1), 在温室中进行茄子盆栽试验, 定期采集土壤样品, 用熏蒸提取法测定土壤微生物生物量碳(SMBC)、氮(SMBN), 研究等氮条件下不同碳氮比有机肥料对土壤生物活性的影响。试验结果表明, 不同碳氮比的有机肥均能提高土壤的SMBC和SMBN含量, 具体表现为SMBC: 20︰1>10︰1≈15︰1>5︰1>CK, SMBN: 15︰1>10︰1>20︰1>5︰1>CK。SMBC/SMBN的比率反映土壤氮素生物活性, 其值越低, 生物活性越大, 氮素损失越少, 本试验SMBC/SMBN表现为: 15︰1<10︰1<20︰1≈5︰1相似文献
7.
为探索沼液抑制根结线虫的效果,本研究通过盆栽试验,以番茄为试供作物,对比了种植前沼液淹没土壤(BSS)、种植期间浇灌沼液(BS)和加热(HE)3种方法对根结线虫的防控效果。结果表明,与不采取任何措施的对照(CK)处理相比, BSS处理抑制根结线虫效果最为明显,防效高达97.1%,根结指数分别比HE和BS处理降低96.9%和92.9%。HE处理尽管在处理土壤后显著降低了根结线虫数量,但在最后破坏性取样时(结束试验)出现反弹,根结线虫数量甚至高于CK处理。对于土壤线虫群落,CK处理中以植食性线虫为主(81.8%);两个沼液处理中食细菌线虫占优势(平均78.3%),且其中的杂食捕食性线虫在土壤前处理后消失,在试验结束时又重新出现,但所占比例依然非常低。沼液淹水方式的高效防控效果揭示了利用沼液防控根结线虫的关键期在于线虫入侵到植物根部之前的幼虫期。然而,在盆栽系统中,沼液淹水的方式也对作物生长表现出了一定的抑制趋势。高量沼液施用防控病害的同时引发的植物毒害作用以及环境污染风险,需要进一步开展田间研究。 相似文献
8.
The composition of microbial communities and the level of enzymatic activity in the soil are both important indicators of soil quality, but the mechanisms by which a soil bacterial community is generated and maintained are not yet fully understood. Two soil samples were collected from the same location, but each had been subjected to a different long-term fertilization treatment and was characterized by different microbial diversity, biomass and physicochemical properties. These samples were γ-sterilized and swap inoculated. Non-sterilized soil samples along with sterilized and inoculated soil samples were incubated for eight months before their nutrient content, microbial biomass, enzymatic activity and bacterial composition were analyzed. Total phosphorus, and potassium concentrations along with the overall organic matter content of the non-sterilized soil were all equal to those of the same soil that had been sterilized and self/swap inoculated. Additionally, the microbial biomass carbon concentration was not affected by the specific inoculum and varied only by soil type. The activities of catalase, invertase, urease, protease, acid phosphatase and phytase were smaller in the sterilized soils that had been inoculated with organisms from chemical fertilizer amended soil (NPK) when compared to sterilized soil inoculated with organisms from manure and chemical fertilizer amended soil (NPKM) and non-sterilized soil samples. Bacterial 16S rRNA examined by 454-pyrosequencing revealed that the composition of bacterial community reconstructed by immigrant microbial inoculum in the soil was mainly influenced by its physicochemical properties, although the microbial inoculum contained different abundances of bacterial taxa. For example, the pH of the soil was the dominant factor in reconstructing a new bacterial community. Taken together, these results demonstrated that both soil microbial composition and functionality were primarily determined by soil properties rather than the microbial inoculum, which contributed to our understanding of how soil microbial communities are generated and maintained. 相似文献
9.
G. Lear M.J. Harbottle C.J. van der Gast C.J. Knowles G. Sills 《Soil biology & biochemistry》2004,36(11):1751-1760
There is growing interest in the potential of applying an electric field to soil to move and stimulate the degradation of contaminants, but we know little of the impact of this approach on exposed microbial communities. The effect of electrokinetics (3.14 A m−2) on soil bacterial and fungal communities was studied using soil cartridge microcosms (13 cm×5.4 cm×5.9 cm). After 27 days of electrokinetics, a zone of low pH (<4) was detected close to the anode. Soil exposed to electrokinetics and immediately adjacent to the anode demonstrated an increase in carbon substrate utilisation potential (≤290%) and microbial respiration rates. The diversity and structure of the bacterial community showed little response to electrokinetics, with the exception of soil close to the anode. Here, an increase in the percentage of Gram-positive species isolated was identified, most notably of Bacillus megaterium. Overall, the only detectable response of the microbial community was observed in soil immediately adjacent to the anode. The results of this study provide evidence that the application of electrokinetics has no serious negative effect on ‘soil microbial health’, thus endorsing its validity as a viable soil remediation technology. 相似文献
10.
Seasonal variations of soil microbial biomass and activity in warm- and cool-season turfgrass systems 总被引:1,自引:0,他引:1
Plant growth can be an important factor regulating seasonal variations of soil microbial biomass and activity. We investigated soil microbial biomass, microbial respiration, net N mineralization, and soil enzyme activity in turfgrass systems of three cool-season species (tall fescue, Festuca arundinacea Schreb., Kentucky bluegrass, Poa pratensis L., and creeping bentgrass, Agrostis palustris L.) and three warm-season species (centipedegrass, Eremochloa ophiuroides (Munro.) Hack, zoysiagrass, Zoysia japonica Steud, and bermudagrass, Cynodon dactylon (L.) Pers.). Microbial biomass and respiration were higher in warm- than the cool-season turfgrass systems, but net N mineralization was generally lower in warm-season turfgrass systems. Soil microbial biomass C and N varied seasonally, being lower in September and higher in May and December, independent of turfgrass physiological types. Seasonal variations in microbial respiration, net N mineralization, and cellulase activity were also similar between warm- and cool-season turfgrass systems. The lower microbial biomass and activity in September were associated with lower soil available N, possibly caused by turfgrass competition for this resource. Microbial biomass and activity (i.e., microbial respiration and net N mineralization determined in a laboratory incubation experiment) increased in soil samples collected during late fall and winter when turfgrasses grew slowly and their competition for soil N was weak. These results suggest that N availability rather than climate is the primary determinant of seasonal dynamics of soil microbial biomass and activity in turfgrass systems, located in the humid and warm region. 相似文献
11.
添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响 总被引:17,自引:5,他引:17
通过室内培育试验,研究了添加生物质炭对江西红壤水稻土有机碳矿化和微生物生物量碳、氮含量的影响。结果表明:红壤有机碳矿化速率在培育第2天达最大值后迅速降低,培养7天后下降缓慢并趋于平稳;添加生物质炭降低了土壤有机碳的矿化速率和累积矿化量,培养结束时,不加生物质炭的对照处理中有机碳的累积矿化量分别比添加0.5%和1.0%生物质炭的处理高10.0%和10.8%。此外,生物质炭的加入显著提高了土壤微生物生物量,添加0.5%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高111.5%~250.6%和11.6%~97.6%,添加1.0%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高58.9%~243.6%和55.9%~110.4%。相同处理中,干旱的水分条件下(40%田间持水量)微生物生物量要高于湿润的水分条件(70%田间持水量)。同时,添加0.5%和1.0%的生物质炭使土壤代谢熵分别降低2.4%和26.8%,微生物商减少了43.7%和31.7%。 相似文献
12.
Prolonged intensive arable cropping of semiarid grassland soils in the South African Highveld resulted in a significant loss of C, N and associated living and dead microbial biomass. To regenerate their soils, farmers converted degraded arable sites back into secondary pastures. The objective of this study was to clarify the contribution of microorganisms to the sequestration of C and N in soil during this regeneration phase. Composite samples were taken from the topsoils of former arable land, namely Plinthustalfs, which had been converted to pastures 1-31 years ago. Amino sugars were determined as markers for microbial residues in the bulk soil and in selected particle-size fractions. The results showed that when C and N contents increased during the secondary pasture usage, the amino sugar concentration in the bulk soil (0-5 cm) recovered at similar magnitude and reached a new steady-state level after approximately 90 years, which corresponded only to 90% of the amino sugar level in the primary grassland. The amino sugar concentration in the clay-sized fraction recovered to a higher end level than in the bulk soil, and also at a faster annual rate. This confirms that especially the finer particles contained a high amount of amino sugars and were responsible, thus, for the restoration of microbially derived C and N. The incomplete recovery of amino sugars in bulk soil can only in parts be attributed to a slightly coarser texture of secondary grassland that had lost silt through wind erosion. The soils particularly had also lost the ability to restore microbial residues below 5 cm soil depth. Overall, the ratios of glucosamine to muramic acid also increased with increasing duration of pasture usage, suggesting that fungi dominated the microbial sequestration of C and N whereas the re-accumulation of bacterial cell wall residues was less pronounced. However, the glucosamine-to-muramic acid ratios finally even exceeded those of the primary grassland, indicating that there remained some irreversible changes of the soil microbial community by former intensive crop management. 相似文献
13.
G. P. Sparling P. B. S. Hart J. A. August D. M. Leslie 《Biology and Fertility of Soils》1994,17(2):91-100
Total, extractable, and microbial C, N, and P, soil respiration, and the water stability of soil aggregates in the F-H layer and top 20 cm of soil of a New Zealand yellow-brown earth (Typic Dystrochrept) were compared under long-term indigenous native forest (Nothofagus truncata), exotic forest (Pinus radiata), unfertilized and fertilized grass/clover pastures, and gorse scrub (Ulex europaeus). Microbial biomass C ranged from 1100 kg ha-1 (exotic forest) to 1310kg ha-1 (gorse scrub), and comprised 1–2% of the organic C. Microbial N and P comprised 138–282 and 69–119 kg ha-1 respectively, with the highest values found under pasture. Microbial N and P comprised 1.8–7.0 and 4.9–18% of total N and P in the topsoils, and 1.8–4.4 and 23–32%, respectively, in the F-H material. Organic C and N were higher under gorse scrub than other vegetation. Total and extractable P were highest under fertilized pasture. Annual fluxes through the soil microbial biomass were estimated to be 36–85 kg N ha-1 and 18–36 kg P ha-1, sufficiently large to make a substantial contribution to plant requirements. Differences in macro-aggregate stability were generally small. The current status of this soil several years after the establishment of exotic forestry, pastoral farming, or subsequent reversion to scrubland is that, compared to levels under native forest, there has been no decline in soil and microbial C, N, and P contents or macro-aggregate stability. 相似文献
14.
Sand dunes are a typical landscape in the coast of western Taiwan, where Casuarina forests were established decades ago to stabilize sand dunes and protect the inland vegetation. Study of microbial biomass in such an ecosystem may give insights into the role of microbes in soil fertility and nutrient cycling. We established our study sites in two topographic units based on elevation and drainage types: upland and lowland. The study lasted for 2 years, and soil samples were collected every 3 months. Microbial biomass C (Cmic) and N (Nmic) were high in a shallow humic layer that rested on top of the soil (1222–1319 mg kg−1 for Cmic and 245–276 mg kg−1 for Nmic) and declined sharply to only one-tenth of the above values in the underlying surface soil (0–10 cm depth). Microbial biomass Cmic and Nmic in humic and surface soil were not significantly different between upland and lowland sites. In the upland soils, the mean Cmic was highest in autumn for both the humic and surface soil, and lowest in spring and summer for the humic layer and summer for the surface soil layer. In the lowland soils, the Cmic was highest in winter for both humic and surface soil, and lowest in spring and autumn for the humic layer and spring and summer for surface soil. Strong fluctuations of Cmic and Nmic were associated with the soil moisture prior to sampling, which appeared to control the size of microbial biomass in this environment. Temperature had little effect on the dynamics of soil microbial biomass in the sand dune forest ecosystem. 相似文献
15.
Analysis of nematode communities is a potential biological proxy to monitor soil health. Traditionally, nematodes are extracted from 200 g of soil and then identified based on morphology. However, the optimal soil sample size to accurately characterise nematode communities using molecular methods is unknown. Using a combined relative real-time PCR and T-RFLP approach we analysed nematode communities extracted from triplicate samples ranging from 1 to 200 g soil. Our data indicated that for molecular based analyses, soil sample sizes <200 g of soil do not accurately represent the abundance of nematodes and <100 g samples are less likely to reflect the true community composition. Thus characterisation of nematode communities from low sample sizes may not be robust. 相似文献
16.
Water and N availability are the major limiting factors of primary production in desert ecosystems, and the response of soil
biota to these two factors is of great importance. We examined the immediate response of soil nematodes and the microbial
biomass to a single pulse of water amendment in N-treated plots in the Israeli Negev desert. Plots were treated with 0, 50
and 100 kg NH4NO3 ha–1 in December 1992, and at the end of the summer period (August 1993) the plots were exposed to a 15 mm water. Soil samples
from the 0–10 cm layer were collected daily and analysed soil moisture, total soluble N, nematode populations and microbial
biomass. Soil moisture increased to 8.5%, then gradually decreased to 2% during the 11 days of the study. Microbial biomass,
soil respiration and metabolic quotient values did not exhibit any significant correlation with soil N levels. Free-living
nematode population levels in the different plots were found to increase from a mean level of 45 500 to a mean level of 92 300
individuals m–2. N treatment was found to affect the patterns of free-living nematode population dynamics. The results of this study demonstrated
the importance of moisture availability levels and the ability to mobilize previous N inputs into available N which, occurring
in pulses, can affect the microbial ecophysiological status, nematode population dynamics and the interrelationship between
these two important components in the desert soil milieu.
Received: 5 November 1998 相似文献
17.
Five soils from temperate sites (Germany; 2 arable and 3 grassland) were incubated aerobically at 5, 10, 15, 20, 25, 35, and 40 °C for 8 days. Soils were analysed for soil microbial biomass C, biomass N, AMP, ADP, and ATP to determine whether the increase in the ATP-to-microbial biomass C ratio with increasing temperature was either due to an increase in the adenylate energy charge (AEC) or de novo synthesis of ATP, or both. Around 80% of the variance in microbial biomass C and biomass N was explained by differences in soil properties, only 7% by the temperature treatments. Averaging the data of all 5 soils for each incubation temperature, the microbial biomass C content decreased with increasing temperature from 15 to 40 °C continuously by 2.5 μg g−1 soil °C−1 after 8-days' incubation. However, this decrease was not accompanied by a similar decrease in microbial biomass N. The average microbial biomass C/N ratio was 6.8. Between 54 and 76% of the variance in AMP, ADP, ATP and the sum of adenylates was explained by differences in soil properties and between 14 (ADP) and 27% (ATP) by the temperature treatments. However, temperature effects on AMP and ADP were variable and inconsistent. In contrast, ATP and consequently also the sum of adenylates increased continuously from 5 to 30 °C followed by a decline to 40 °C. The AEC showed similarly a small, but significant increase with increasing temperature from 0.73 to 0.85 at 30 °C. Consequently, the majority of the variance, i.e. roughly 60% in AEC values, but also in ATP-to-microbial biomass C ratios was explained by the incubation temperature. The mean ATP-to-microbial biomass C ratio increased from 4.7 μmol g−1 at 5 °C to a 2.5 fold maximum of 12.0 μmol g−1 at 35 °C. This increase was linear with a rate of 0.26 μmol ATP g−1 microbial biomass C °C−1. The energy for the extra ATP produced during temperature increase is probably derived from an accelerated turnover of endocellular C reserves in the microbial biomass. 相似文献
18.
Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil 总被引:2,自引:0,他引:2
Birgit Vedder Christian Kampichler Gert Bachmann Alexander Bruckner Ellen Kandeler 《Biology and Fertility of Soils》1996,22(1-2):22-30
In a field study using soil mesocosms in an acid spruce forest soil we investigated the effects of mesofauna and macrofauna on microbial biomass, dissolved organic matter, and N cycling. Intact soil monoliths were taken from the ground, defaunated by deep-freezing, and wrapped in nets of various mesh-sizes to control re-immigration of different faunal size-classes. The monoliths were then replanted in the field. Three treatments of mesocosms were prepared: (1) with only microbiota, (2) microbiota and mesofauna, and (3) microbiota, mesofauna, and macrofauna (= complex fauna). After 8 months of exposure the mesocosms and the unmanipulated control plots (treatment 4) were destructively sampled. We estimated microbial biomass by substrate-induced respiration and the chloroform fumigation-extraction method. N cycling was measured by monitoring microbial N mineralization, the NH
inf4
sup+
content, and selected amino acids and the activities of protease, urease, and deaminase. The results from the L/F layer showed that the pool of the microbial biomass was not changed by the activity of the mesofauna. However, the mesofauna and macrofauna together enhanced SIR. An increase in microbial N mineralization was only observed in treatment 3 (microbiota + complex fauna). Protease activity and NH
inf4
sup+
content increased in treatments 2 (microbiota + mesofauna) and 3 (microbiota + complex fauna). The complex fauna induced a soil pH increase in treatment 3 as opposed to treatment 1 and the control. This increase was presumably due to excretory NH
inf4
sup+
. Principal component analysis revealed that the complex fauna in treatment 3 caused a significantly higher N turnover per unit of microbial biomass. 相似文献
19.
Summary Soil moisture, temperature, microbial substrate-induced respiration and basal respiration were monitored in two plots in an agricultural field from April 30 to September 25, 1987, and in a further two plots from May 26 to August 27, 1988. An attempt to relate biological variables to microclimatic variables was made through the use of correlation analysis. The microbial substrate-induced and basal respiration were both strongly positively correlated with the soil moisture content, and to a lesser extent positively related to soil temperature, especially when partial correlation was used to control for variation in soil moisture. Short-term changes in substrate-induced and basal respiration were correlated with changes in soil moisture but were largely independent of soil temperature. The ratio of basal to substrate-induced respiration (indicating the respiration: biomass ratio and therefore ecosystem stability or persistence) was negatively associated with the soil moisture content and in some instances with soil temperature when partial correlation analysis (correcting for soil moisture variation) was used. This suggests that the climatic conditions which contributed to the lowest ecosystem stability were low temperature, low moisture conditions. 相似文献
20.
The significance of microbial biomass sulphur in soil 总被引:2,自引:0,他引:2
The soil microbial biomass S fraction of total organic S in soil is considered to be relatively labile and the most active S pool for S turnover in soil. Its significance has been demonstrated in studies of S deficiency in agronomic situations and in those of S pollution from high atmospheric inputs. The utility of the CHCl3 fumigation-extraction technique for the measurement of microbial S has been proved for a range of soils and conditions. The various methodologies currently available are discussed, including the need for determination of the conversion (K
s) factor. Microbial S values, summarized from the available literature, ranged from 3 to 300 g S g-1 dry weight soil. They were generally greater in grassland than in arable systems, though the greatest values were obtained in the few examples from forest and peatland soil systems. Microbial S values showed direct relationships with both microbial C and with total soil organic S. Again, there were significant differences between arable and grassland systems. The effect of factors such as organic and inorganic inputs as well as soil physical conditions on microbial S are described. Microbial S turnover rates were estimated from seasonal, 35S-labelling and modelling studies. These rates varied between an approximately annual turnover rate in undisturbed soils up to 80 year-1 following the addition of readily available substrates. Prospective future research areas are also outlined. 相似文献