首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two species of Pseudomonas chromosomally tagged with gfp, which had shown antagonistic activity against the tomato pathogen Ralstonia solanacearum in a previous study, were assessed for their impact in the rhizosphere of maize. Plant growth characteristics, numbers of indigenous heterotrophic bacteria, changes in the bacterial community structure according to the r/K strategy concept, and shifts in MIDI-FAME profiles of culturable bacterial fractions as well as total rhizosphere microbial communities were determined in relation to seed and soil treatment with the exogenous pseudomonads. The maize rhizosphere proved to be a suitable habitat for the introduced P. chlororaphis IDV1 and P. putida RA2, which showed good survival after introduction. However, both inoculants showed a small growth-reducing effect towards maize, which might have been caused by the high densities of inoculants used (i.e. competition for nutrients and action of metabolites produced) and/or changes in microbial community structure (both culturable bacterial fraction and the total microflora). Probably, an altered balance among the indigenous maize rhizosphere populations occurred. Thus, the culturable bacteria, as well as the total microflora in the rhizosphere, changed in response to the introduced pseudomonads, and their development was dependent on the growth stage of the plant. The FAME analyses showed that these microbial communities comprised different populations, and were separated according to, first, the method used (direct versus cultivation-based), second, sampling time, and, finally, inoculation level.  相似文献   

2.
Apple replant disease (ARD) is a complex syndrome that affects young trees in replanted orchard sites causing necrotic lesions on feeder roots, stunted tree growth and reduced cumulative yields. Use of ARD-tolerant rootstocks is an emerging control strategy. We studied the bacterial, fungal, and oomycetes populations in the rhizosphere of five rootstock cultivars (M.7, M.26, G.16, G.30 and CG.6210) planted into the old tree row or grass lanes of a previous orchard in Ithaca, NY, to better understand the role of rhizosphere microbial communities in the prevalence and control of ARD. The possible involvement of antagonistic Pseudomonas species, Pythium spp., Phytophthora spp. and rhizosphere cyanide concentrations in ARD were also examined. The rootstocks M.7, M.26 and G.16 were susceptible to ARD, while G.30 and CG.6210 were more tolerant. Tree growth on the rootstocks M.7, M.26 and G.16 was reduced by 10% when planted in the old tree rows, but this did not significantly reduce yields in the first fruiting year. The susceptible rootstocks, M.7 and M.26, supported higher densities of culturable rhizosphere fungi and bacteria than G.16, G.30 and CG.6210. Over 2 years, microbial densities were highest in July, lower in May and lowest in September. The composition of bacterial and fungal communities in the rhizosphere was highly variable and changed over seasons and years, as assessed by terminal restriction fragment length polymorphism (T-RFLP) analyses. Initial differences in fungal rhizosphere communities between the two planting positions converged 2 years after the trees were replanted. In contrast, the bacterial rhizosphere community composition still differed significantly between the two planting positions 3 years after the orchard was replanted. The bacterial and fungal rhizosphere community compositions of susceptible rootstocks, M.7 and M.26, differed from those of the tolerant rootstocks, G.30 and CG.6210; G.16, differed from all the other rootstocks. The observed effects of rootstocks, planting positions and time on microbial community composition were small relative to the high variability observed overall. Pythium spp. and Phytophthora spp. infestations were high and similar for all rootstocks and planting positions. Neither potentially antagonistic Pseudomonas nor rhizosphere cyanide concentrations appeared to be involved in the ARD-complex at the studied site. Avoiding replanting into the old tree rows coupled with use of tolerant rootstocks appear to be the best strategies for reducing ARD in replanted orchards. Changes in rhizosphere microbial communities are among the many factors that contribute to improved tree growth when these management strategies are used.  相似文献   

3.
Bacterial wilt caused by Ralstonia solanacearum is one of the most serious tobacco diseases worldwide. Brevibacillus brevis (L-25) and Streptomyces rochei (L-9) with strong inhibitory effects on R. solanacearum in vitro were isolated from the rhizosphere of a healthy tobacco plant in a severely wilt-diseased field. Pot and field experiments were conducted to evaluate the biocontrol effect of the isolated antagonists alone and in combination with organic fertilizer. In pot experiment, the control efficacy was 92.3–100 % in the treatments applied with L-25 and L-9 alone or together with organic fertilizers. When bioorganic fertilizer containing L-9 and L-25 was applied to the soil in field condition, the control efficacies were 95.4 and 30.0 in the Anhui and Guizhou field plots, respectively. The counts of bacteria and actinomycetes in rhizosphere soil were significantly increased (p?≤?0.05) under all antagonist applications compared with CK (PR). In contrast, fungal and R. solanacearum densities in the rhizosphere soil applied with antagonists were much lower than the CK (PR) rhizosphere. Combined application of the two antagonists had better effect than single antagonist treatments. The antagonists were more effective when they were combined with organic fertilizer as compared with the antagonistic strains only. These results allow us to conclude that a combination of the biocontrol agents, L-25 and L-9, together with organic fertilizers can effectively control bacterial wilt by affecting soil microbial structure.  相似文献   

4.
The contents and the compositions of the pyrrolizidine alkaloid (PA) complex of ragwort (Senecio jacobaea L.) were examined as potential drivers of fungal community structure in the rhizosphere. S. jacobaea plants within the coastal sand dune reserve of Meijendel (the Netherlands) were assayed for concentration and composition of PAs in roots. Rhizosphere soil was collected from pre-flowering plants, which differed up to 8-fold in PA production, and represented both jacobine and senecionine/seneciphylline chemotypes. Bulk soil samples from the same site were also collected for comparative examination. A culture-independent approach, involving direct DNA isolation, PCR of fungal 18S rRNA genes, and denaturing gradient gel electrophoresis (DGGE), was applied to compare the fungal communities of plants with different PA contents, as well as differences between bulk and rhizosphere samples. Cluster analysis of PCR-DGGE profiles revealed no clear evidence for PA-induced selection of specific fungal communities. However, canonical variance analysis showed that fungal communities associated with high-PA jacobine chemotypes could be discriminated from low PA samples and from the senecionine/seneciphylline chemotypes. The diversity of DGGE banding patterns, both in terms of band number and evenness, showed a trend toward lower diversity in the rhizosphere of high-PA plants as compared to low-PA plants and bulk soil. These results indicate that PA chemotypes of S. jacobaea differ in their influence on soil-borne fungal communities, with jacobine-containing plants exerting a greater selection in the rhizosphere than plants containing senecionine/seneciphylline.  相似文献   

5.
In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize monoculture; arable land and arable land converted into grassland. Burkholderia isolates obtained on PCAT medium were grouped in 47 clusters using 16S ribosomal RNA gene based PCR-DGGE combined with BOX genomic fingerprinting (DGGE-BOX). The distribution of the isolates in the DGGE-BOX clusters was used to calculate the Shannon diversity index per treatment. Interestingly, we observed that the Burkholderia diversity was affected by changes in the agricultural management, since the highest diversity was observed in permanent grassland and in continuous arable land. In addition, the diversity tended to be higher in the rhizosphere than in the corresponding bulk soil. The use of species abundance models indicated that rhizosphere communities had more even distributions than communities collected from the bulk soil. Identification of isolates revealed that only 2% of these belonged to the B. cepacia complex and that the majority was assigned to either (1) new Burkholderia species or (2) Burkholderia species that had originally been isolated from soil. Isolates classified as B. hospita, B. caledonica and Burkholderia sp. ‘LMG 22934’ and ‘LMG 22936’ were found mainly in the arable land, while isolates belonging to Burkholderia sp. ‘LMG 22929’ and B. phytofirmans were associated with the grassland area. Another potentially new Burkholderia species, ‘LMG 22932’, was found in both areas, in close association with the maize rhizosphere.  相似文献   

6.
The diversity of endobacteria associated with ectomycorrhizas of Suillus variegatus and Tomentellopsis submollis, in two Corsican pine (Pinus nigra) stands was analysed by cultivation-dependent and cultivation-independent molecular methods. Denaturing gradient gel electrophoresis (DGGE) analysis revealed the cultivable endobacterial communities associated with S. variegatus were similar within the same stand. The most abundant cultivable bacterial species belonged to the genera Pseudomonas and Burkholderia. Cultivation-independent molecular analysis indicated that the structure of the endobacterial communities in ectomycorrhizas was consistent across all samples regardless of ECM fungal species or the pine stand from which the samples were collected. However, comparison between rDNA- and rRNA-derived DGGE gels showed that metabolically active endobacterial species were not always detected in rDNA-based profiles. Clone libraries constructed from rRNA molecules indicated that Pseudomonas and Burkholderia spp. were metabolically active bacteria. As some of the most abundant cultivable bacteria, including Bacillus/Paenibacillus spp., were not detected in cultivation-independent DGGE profiles, a combination of cultivation-dependent and -independent approaches provided a more complete assessment of the diversity of endobacteria associated with ectomycorrhizas.  相似文献   

7.
In Switzerland, similar types of rhizosphere pseudomonads producing the biocontrol compound 2,4-diacetylphloroglucinol (Phl) have been found in soils suppressive to Thielaviopsis basicola-mediated black root rot of tobacco as well as in conducive soils. However, most findings were based on the analysis of a limited number of Pseudomonas isolates, obtained from a single experiment and only from T. basicola-inoculated plants. Here, an approach based on denaturing gradient gel electrophoresis (DGGE) of dominant phlD alleles from tobacco rhizosphere provided different phlD migration patterns. Sequencing of phlD-DGGE bands revealed a novel phylogenetic cluster of phlD sequences found in both suppressive and conducive soils in addition to previously-documented phlD alleles. phlD-DGGE bands and alleles differed little from one plant to the next but more extensively from one sampling to the next during the three-year study. Three of the 13 bands and 12 of the 31 alleles were only found in suppressive soil, whereas five bands and 13 alleles were found exclusively in conducive soil. The population structure of phlD+ pseudomonads depended more on the individual soil considered and its suppressiveness status than on inoculation of tobacco with T. basicola. In conclusion, phlD-DGGE revealed additional phlD diversity compared with earlier analyses of individual Pseudomonas isolates, and showed differences in phlD+Pseudomonas population structure in relation to disease suppressiveness.  相似文献   

8.
Plant growth-promoting rhizobacteria (PGPR) have been widely recognized as an important agent,especially as a biofertilizer,in agricultural systems.The objectives of this study were to select efective PGPR for Chinese kale (Brassica oleracea var.alboglabra) cultivation and to investigate the efect of their inoculation on indigenous microbial community structure.The Bacillus sp.SUT1 and Pseudomonas sp.SUT19 were selected for determining the efficiency in promoting Chinese kale growth in both pot and field experiments.In the field experiment,PGPR amended with compost gave the highest yields among all treatments.The Chinese kale growth promotion may be directly afected by PGPR inoculation.The changes of microbial community structure in the rhizosphere of Chinese kale following PGPR inoculation were examined by denaturing gradient gel electrophoresis (DGGE) and principal coordinate analysis.The DGGE fingerprints of 16S rDNA amplified from total community DNA in the rhizosphere confirmed that our isolates were established in the rhizosphere throughout this study.The microbial community structures were slightly diferent among all the treatments,and the major changes depended on stages of plant growth.DNA sequencing of excised DGGE bands showed that the dominant species in microbial community structure in the rhizosphere were not mainly interfered by PGPR,but strongly influenced by plant development.The microbial diversity as revealed by diversity indices was not diferent between the PGPR-inoculated and uninoculated treatments.In addition,the rhizosphere soil had more influence on eubacterial diversity,whereas it did not afect archaebacterial and fungal diversities.  相似文献   

9.
A cultivation-based approach was used to determine the in vitro antagonistic potential of soil bacteria towards Rhizoctonia solani AG3 and Fusarium oxysporum f. sp. lini (Foln3). Four composite soil samples were collected from four agricultural sites with previous documentation of disease suppression, located in France (FR), the Netherlands (NL), Sweden (SE) and the United Kingdom (UK). Similarly, two sites from Germany (Berlin, G-BR; and Braunschweig, G-BS) without documentation of disease suppression were sampled. Total bacterial counts were determined by plating serial dilutions from the composite soil samples onto R2A, AGS and King's B media. A total of 1,788 isolates (approximately 100 isolates per medium and site) was screened for antifungal activity, and in vitro antagonists (327 isolates) were found amongst the dominant culturable bacteria isolated from all six soils. The overall proportion of antagonists and the number of isolates with inhibitory activity against F. oxysporum were highest in three of the suppressive soils (FR, NL and SE). Characterization of antagonistic bacteria revealed a high phenotypic and genotypic diversity. Siderophore and protease activity were the most prominent phenotypic traits amongst the antagonists. The composition and diversity of antagonists in each soil was site-specific. Nevertheless, none of the antimicrobial traits of bacteria potentially contributing to soil suppressiveness analyzed in this study could be regarded as specific to a given site.  相似文献   

10.
Nucleic acid-based techniques allow the exploration of microbial communities in the environments such as the rhizosphere. Azospirillumbrasilense, a plant growth promoting rhizobacterium (PGPR), causes morphological changes in the plant root system. These changes in root physiology may indirectly affect the microbial diversity of the rhizosphere. In this study, the changes in the rhizobacterial structure following A. brasilense inoculation of maize (Zea mays) plants was examined by PCR-denaturating gradient gel electrophoresis (DGGE) and automated ribosomal intergenic spacer analysis (ARISA), using two universal primers sets for the 16S rRNA gene, and an intergenic 16S-23S rDNA primer set, respectively. Similar results were obtained when using either ARISA or DGGE performed with these different primer sets, and analyzed by different statistical methods: no prominent effect of A. brasilense inoculation was observed on the bacterial communities of plant roots grown in two different soils and in different growth systems. In contrast, plant age caused significant shifts in the bacterial populations.  相似文献   

11.
Randomized lysimeters in an oil-contaminated field contained the following treatments: (1) Galega orientalis seeds inoculated with Rhizobium galegae HAMBI 540, (2) bioaugmentation with Pseudomonas putida PaW85, and (3) R. galegae -inoculated G. orientalis seeds plus bioaugmentation with P. putida PaW85. The bacterial abundance and diversity were analysed in composite samples after one growing season. A total of 208 m-toluate tolerating bacteria were isolated and screened with m-toluate tolerance and utilization tests, and the catechol test. Seventy-nine isolates were characterized with (GTG)5-PCR genomic fingerprinting and 16S rRNA gene PCR-RFLP ribotyping. Only 10% of the isolated strains were able to degrade m-toluate. Most of the m-toluate utilizing bacteria were catechol positive indicating the existence of a TOL plasmid. Rhizosphere effect of G. orientalis was manifested in oil-contaminated soil. G. orientalis and Pseudomonas bioaugmentation increased the amount of bacteria in oil-contaminated soil. G. orientalis especially together with Pseudomonas bioaugmentation increased the numbers of m-toluate utilizing and catechol positive bacteria in the soil samples indicating an increase in degradation potential. The rhizosphere of G. orientalis increased also the diversity of bacteria. More ribotypes were found in soils treated with G. orientalis and P. putida PaW85 compared to the untreated soil, but the diversity of the m-toluate utilizing bacteria did not significantly increase.  相似文献   

12.
Plant growth promoting rhizobacteria (PGPRs) are used for biocontrol of bacterial wilt caused by Ralstonia solanacearum. They are commonly isolated from the rhizosphere of healthy plants and are scarce in the rhizosphere of diseased plants. We hypothesized that a pathogen-prevalent environment, such as the rhizosphere of infected plants, would be a good or better source for isolating PGPRs than the rhizosphere of healthy plants. In order for these PGPRs to survive successfully in a pathogen-prevalent environment, they must have particularly well-developed survival strategies under the stresses exerted by pathogen activities, which would be of value for their use as biocontrol agents. To test this hypothesis, R. solanacearum-antagonistic bacteria were screened from the rhizospheres of diseased and healthy tomato plants. In total, 110 rhizobacteria were isolated, 18 of which showed antagonism to R. solanacearum in vitro. Among the 18 antagonistic strains, 11 (out of 60) were from the rhizosphere of diseased plants, with inhibition diameter zones ranging from 11.2 to 15.2 mm, whereas 7 (out of 50) were from the rhizosphere of healthy plants, with inhibition diameter zones ranging from 11.5 to 30.5 mm. Strains WR4, WR21, and WR42 from diseased plants rhizosphere, and HR61, HR62, and HR92 from healthy plants rhizosphere, were chosen to investigate their biocontrol efficacies (BCEs) in greenhouse condition. Results showed that WR-isolates performed better in reducing disease incidence (DI) than those HR-isolates. Population densities of R. solanacearum in the rhizosphere soil and crown section of tomato plants were lower in WR-isolate treatments than those in HR-isolate treatments. The best biocontrol effect was achieved by inoculating the strain WR21, followed by WR4, WR42, HR92, HR62, and HR61. Root colonization test showed WR21 had the highest root-colonizing capacity compared with 5 other antagonists. BCEs were positively (r = 0.747) correlated with root-colonizing capacities, but were negatively (r = −0.797) correlated with inhibition zones. In conclusion, the rhizosphere of diseased tomato plants is a good reservoir of biocontrol bacteria.  相似文献   

13.
The phytostimulatory PGPR Azospirillum lipoferum CRT1 was inoculated to maize seeds and the impact on the genetic structure of the rhizobacterial community in the field was determined during maize growth by Automated Ribosomal Intergenic Spacer Analysis (ARISA) of rhizosphere DNA extracts. ARISA fingerprints could differ from one plant to the next as well as from one sampling to the next. Inoculation with strain CRT1 enhanced plant-to-plant variability of the ARISA fingerprints and caused a statistically significant shift in the composition of the indigenous rhizobacterial community at the first two samplings. This is the first study on the ecological impact of Azospirillum inoculation on resident bacteria done in the field and showing that this impact can last at least one month.  相似文献   

14.
The available information on Pseudomonas biocontrol inoculants on the non-target fungal and nematode community is scant. The current paper addresses this issue and investigates the effects of biocontrol agents Pseudomonas aeruginosa IE-6 and IE-6S+ (previously shown to suppress several soil-borne plant pathogens) on soil microfungi and plant-parasitic nematodes as well as on the root-knot development and growth of tomato (Lycopersicon esculentum). Furadan, a granular nematicide was included as a treatment for comparative purposes. Treatments were applied to soil at the start of each 52-day-long tomato growth cycle, and their effects on the composition and diversity of rhizosphere and endophytic microfungi and plant-parasitic nematodes were examined at the end of first and fourth growth cycle. Several diversity indices were employed to assess community diversity. A total of 16 genera comprising 23 microfungal species were isolated from the tomato rhizosphere. The most abundant fungal species belonged to the genera Aspergillus, Fusarium, and Penicillium. With a few exceptions, fungi were neither exclusively inhibited nor specifically promoted by the application of treatments at any of the growth cycles studied. However, Paecilomyces lilacinus, an egg and female parasite of root-knot nematode, though exclusively absent in the controls was isolated from the treatments. Both general diversity and equitability of rhizosphere microfungi were greater at first compared to the fourth growth cycle while species richness remained uninfluenced across the growth cycles and treatments. However, Furadan and IE-6S+ treatments considerably abated general diversity and equitability. Of the microfungal species isolated from the rhizosphere seven were also recovered from surface-sterilized root tissue of tomato suggesting that all the endophytes are primarily rhizosphere organisms. Diversity of endophytic fungi was consistently lower compared with that of the rhizosphere. Both general diversity and equitability declined in all three treatments relative to controls in the root tissue but species richness remained unaltered. Diversity and equitability of plant-parasitic nematodes in soil were reduced by all three treatments over the controls at fourth growth cycle whilst species richness did not change at either growth cycle. The biocontrol agents significantly reduced root-knot development and enhanced shoot growth of tomato over the controls. The possible implications of fungal composition and abundance because of biocontrol by Pseudomonas application are discussed.  相似文献   

15.
Take-all of wheat caused by Gaeumannomyces graminis var. tritici was less when soils in glasshouse pots were fertilized with NH4+-N than with NO3?-N. The form of N did not alter countable populations of microorganisms in the rhizosphere or rhizoplane, but altered the numbers of bacteria and streptomycetes that inhibited the pathogen's growth in vitro. The pH of the medium used to isolate these microorganisms, whether similar or dissimilar to the pH of the rhizosphere, had some influence both upon countable populations and upon the proportions of antagonists. Highest counts of the rhizoplane microflora were on agar media with a pH similar to that of the soil. Most antagonists were isolated from a soil that is physically and chemically conducive to parasitism of wheat roots by Gaeumannomyces, but which contains a microflora suppressive toward the parasitic colonization of the roots. Isolates of the general bacterial flora, of Pseudomonas spp. and of streptomycetes, but not of Bacillus spp. inhibited the in vitro growth of G. graminis.  相似文献   

16.
 In long-term field experiments on sandy loam and loamy sand soils, the influence of conservation and conventional tillage on soil and rhizosphere microorganisms was studied. Conservation tillage stimulated rhizosphere bacteria on winter wheat, winter barley, winter rye and maize in different soil layers. Particularly the populations of Agrobacterium spp. and Pseudomonas spp. were increased. On the sandy loam, N2 fixation and nodulation of pea plants were significantly increased. No influence of different soil tillage was determined on the colonization of the rhizosphere by mycorrhiza and saprophytic fungi. Stubble residues infected with Gaeumanomyces graminis were infectious for a longer time on the soil surface than after incorporation into the soil. Received: 10 March 1998  相似文献   

17.
菌肥对青稞根际土壤理化性质以及微生物群落的影响   总被引:6,自引:0,他引:6  
应用化学分析、聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE)技术和DNA测序技术,研究了西藏棕色砂壤土中微生物肥料不同施用量和施用期对青稞根际土壤理化性质和细菌群落多样性的影响。结果表明,施用谷特菌肥能显著提高土壤全氮、全磷、全钾、有机质、碱解氮、有效磷和速效钾的水平,如播前施用菌肥浓度750 ml hm-2的处理较不施用菌肥的处理上述指标分别提高13.32%、28.42%、16.20%、9.81%、21.36%、39.35%和30.48%,拔节期施用菌肥浓度2 250 ml hm-2的处理较不施用菌肥的处理分别提高7.25%、29.35%、18.04%、12.86%、15.90%、43.27%和53.99%。DGGE分析表明,相同施用方式中不同施用量土样中微生物的DGGE图谱相似。非加权组平均法(UPGMA)聚类分析将DGGE图谱分为2大类群。Shannon-Wiener指数表明,施用菌肥的土壤细菌多样性先增加后逐渐降低,播前以喷施谷特菌浓度750 ml hm-2时的细菌多样性最高;拔节期则以喷施谷特菌浓度2 250 ml hm-2处理的细菌多样性最高,且两种施用方式土壤养分的释放与Shannon指数的变化规律均为播前﹥拔节期。测序结果表明,不同施肥浓度土样微生物种群分布较为广泛,其中Actinobacteria纲细菌种类略多,少数菌种为未经培养菌种(Uncultured bacterium)。典型对应分析(CCA)表明,DGGE图谱条带分布与土壤理化性质密切相关,碱解氮、全磷和全氮是影响微生物群落的主要环境因子。研究结果表明,施用谷特菌肥可明显改善青稞根际土壤理化性状,提高土壤细菌多样性。  相似文献   

18.
Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with PSMs. The effect of inoculation with phosphate-solubilizing fungal (PSF) isolates Aspergillus niger P39 and Penicillium oxalicum P66 on the bacterial communities in the rhizospheres of maize (Zea mays L. ‘Haiyu 6') and soybean (Glycine max Merr. ‘Heinong 35') was examined using culture-dependent methods as well as a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Compared with the control, the number of culturable microbes for soybean was significantly greater with P39, whereas for maize, the same was significantly greater with P66. In addition, a greater number of microbes were found in the rhizosphere of maize compared with soybean. The fingerprint of DGGE for 16S rDNA indicated that inoculation with PSF also increased bacterial communities, with the P66 treatment having higher numbers of DGGE bands and a higher Shannon-Weaver diversity index compared with P39; the composition of the microbial community was also more complex with the P66 treatment. Overall, complex interactions between plant species and exotic PSMs affected the structure of the bacterial community in the rhizosphere, but plant species were more important in determining the bacterial community structure than the introduction of exotic microorganisms.  相似文献   

19.
Bacterial wilt caused by Ralstonia solanacearum is one of the most serious tobacco diseases worldwide, and no effective control measures are available to date. Three Bacillus isolates (Bacillus amyloliquefaciens SQR-7 and SQR-101 and Bacillus methylotrophicus SQR-29) were obtained from the rhizosphere soil of tobacco. These bacilli exhibited strong inhibition against R. solanacearum and produced indole acetic acid and siderophores. The three antagonistic strains were used to fortify organic fertilizers to produce bioorganic fertilizers (BOFs named for each isolate) for the control of tobacco bacterial wilt. The application of BOFs delayed wilt development and effectively decreased the disease incidence under both greenhouse and field conditions. The tobacco bacterial wilt control efficacy was 44.3%, 70.5%, and 85.1% using BOF101, BOF29, and BOF7 in the greenhouse. Although the control efficacies in the field were lower, the application of BOF7 still achieved 58.0% and 56.2% control efficacies in two years field experiments. The application of bioorganic fertilizer significantly (p < 0.001) repressed the pathogen R. solanacearum in soil in both pot and field experiments, though the abundance of R. solanacearum increased as during the growth period of the tobacco plants. In general, the populations of the antagonistic bacterial strains declined after soil application and as the tobacco plants grew; however, the density of SQR-7 and SQR-29 in the rhizosphere soil remained at a high level (≥106 cfu/g) in the later growth stages. Additionally, the application of bioorganic fertilizers promoted tobacco growth and increased the leaf yield.  相似文献   

20.
Culture-dependent DGGE (CD DGGE) fingerprinting of the 16S rRNA gene was used to characterize mixed bacterial communities recovered on agar plates. Using R2A Agar as a growth medium, CD DGGE analysis resulted in clear banding patterns of sufficient complexity (16-32 major bands) and reproducibility to investigate differences in bacterial communities in a silt loam soil. Replicate CD DGGE profiles from plates inoculated with less-dilute samples (10−3) had a higher band count and were more similar (72-77%) than profiles from more-dilute samples (51-61%). Different culture media and incubation conditions resulted in distinct community fingerprints and increased the cumulative number of unique bands detected. When CD DGGE fingerprints were compared to profiles constructed from 16S rRNA genes obtained from culture-independent clone libraries (CB DGGE profiles) 34% of the bands were unique to the culture-dependent profiles, 32% were unique to the culture-independent profiles and 34% were found in both communities. These data demonstrate that culture-independent DGGE profiles are supplemented by the distinct bands detected in culture-dependent profiles. CD DGGE can be a useful technique to follow the dynamics of distinct culturable fractions of the soil bacterial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号