首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为探讨保水剂和微生物菌肥配施后旱作燕麦土壤微生物生物量碳、氮含量及酶活性的影响,在内蒙古黄土高原旱作农田设置不施用保水剂和微生物菌肥(CK)、保水剂和微生物菌肥配施(A)、单施微生物菌肥(B)和单施保水剂(C)4个处理,分析燕麦全生育期内0—10,10—20,20—40 cm土壤微生物生物量碳、氮含量及酶活性时空动态变化和产量变化。结果表明:(1)全生育期,土壤微生物量碳含量呈"双峰"曲线变化,峰值均出现在孕穗期和灌浆期;氮含量呈先降低后升高再降低趋势,苗期含量最高;过氧化氢酶、蔗糖酶、脲酶活性均呈"单峰"曲线变化,过氧化氢酶、土壤蔗糖酶峰值在孕穗期,土壤脲酶则在抽穗期。(2)除CK外,土壤微生物量碳、氮含量及过氧化氢酶、蔗糖酶和脲酶活性表现为0—10 cm10—20 cm20—40 cm,其中配施(A)对0—10,10—20 cm影响均显著(p0.05),单施(B、C)仅对10—20 cm土层影响显著(p0.05)。(3)10—20 cm土层,配施(A)与其他3个处理间差异均显著(p0.05),提高微生物量碳含量4.82%~40.28%、微生物生物量氮含量8.44%~68.66%、过氧化氢酶活性13.32%~60.16%、蔗糖酶活性10.45%~39.14%、脲酶活性12.40%~55.62%。(4)配施(A)能同时显著(p0.05)提高燕麦籽粒产量和生物产量,提高幅度分别为8.40%~20.12%和10.80%~25.09%。因此,保水剂和微生物菌肥配施在黄土高原旱作区具有较好改善土壤微生物活性效果,提高旱作燕麦产量。  相似文献   

2.
土壤酶驱动土壤生态系统养分的循环和控制生态系统的功能。本研究以生长年限为10、20年和30年的柑橘林0~20 cm和20~40 cm土层土壤为研究对象,主要探讨了土壤脲酶、转化酶和过氧化氢酶活性随着柑橘林龄的延长和土壤深度的增加的变化规律。结果表明,随着柑橘林龄的延长,0~20 cm土层土壤过氧化氢酶活性10年和20年样地之间无显著性差异,但都显著大于30年的样地;而0~20 cm土层土壤转化酶和脲酶活性逐渐提高,20年时达到最大值,其后又降低。随着土壤深度的增加,过氧化氢酶、转化酶和脲酶活性在3个林龄的柑橘林中都呈现显著的下降趋势。相关性分析的结果表明,土壤转化酶活性、脲酶活性都与土壤有机碳和微生物量碳氮之间都具有显著的正相关性,而过氧化酶氢活性与土壤理化特性及其微生物量之间都无显著的相关性。主成分分析结果进一步显示,土壤转化酶活性、脲酶活性、有机碳和微生物生物量碳氮均在第一主成分中具有较大的载荷,对第一主成分的贡献最大。以上结果表明脲酶和转化酶活性能够做为柑橘土壤质量变化的敏感指标。  相似文献   

3.
不同施肥处理对黄泥土微生物生物量碳氮和酶活性的影响   总被引:19,自引:4,他引:15  
路磊  李忠佩  车玉萍 《土壤》2006,38(3):309-314
通过室内培育实验,研究了不同施肥处理对黄泥土微生物生物量C、N和脲酶、酸性磷酸酶、蔗糖酶活性的影响。培养过程中,单施化肥处理土壤微生物生物量C、N均呈下降趋势,施用有机肥处理的土壤微生物量C前期升高至一定水平后或保持稳定、或呈下降趋势,而微生物生物量N总体均呈下降趋势;不同施肥处理的脲酶活性呈前期上升后期下降趋势,而酸性磷酸酶和蔗糖酶则单施化肥处理呈上升趋势、配施有机肥处理呈下降趋势。与对照处理相比,单施化肥处理显著降低土壤微生物生物量C、N,高量施用化肥处理还显著降低土壤脲酶活性,但对酸性磷酸酶和蔗糖酶活性的影响并不明显。秸秆施用可显著提高土壤微生物生物量C、N和酶活性,特别是高量施用秸秆的效果更明显。施用猪粪由于同时带入了大量的活性养分,对土壤微生物生物量C、 N和酶活性的影响尚难评价。在高度集约农业利用下,继续保持较高的化肥施用量并不利于土壤生物质量的维护和提高,而秸秆直接还田才是保持土壤健康状态的有效措施。  相似文献   

4.
不同相伴阴离子对镉污染红壤的微生物活性影响   总被引:4,自引:1,他引:4  
滕应  黄昌勇  姚槐应  龙健 《土壤学报》2003,40(5):738-744
通过外加醋酸镉和氯化镉的室内培养试验研究了相伴阴离子对镉污染红壤微生物活性的影响。结果表明 ,在相同镉浓度下相伴OAc- 对镉污染红壤的微生物生物量碳、基础呼吸和代谢商以及脲酶和酸性磷酸酶活性的抑制作用大于相伴Cl- ,统计分析显示 ,镉相伴OAc- 与Cl- 除对红黄泥的代谢商未达明显影响外 ,对供试红壤的其它微生物活性指标均达到显著差异 (p <0 0 5 )。用醋酸镉处理的土壤有效态镉含量明显高于氯化镉处理。钾盐试验结果表明 ,相伴OAc- 与Cl- 对土壤微生物活性没有产生明显抑制作用 ,OAc- 甚至还存在一定的刺激效应。可见 ,相伴OAc- 对镉污染红壤的微生物毒害作用大于相伴Cl- ,其直接原因可能是用醋酸镉处理的生物有效性镉明显高于氯化镉处理所致。  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant widespread environmental pollutants. Bioremediation, accomplished by the introduction of PAH-degrading microorganisms (bioaugmentation) and/or by applying additional nutrients (biostimulation) into a contaminated system is a valuable alternative to traditional chemical and physical treatments for the decontamination of PAH-contaminated soils. We investigated on a laboratory scale the fate of phenanthrene (Phe), selected to represent PAHs, when added to a fresh, agricultural soil with no history of PAH contamination. The relative effect of compost (C), applied at two different doses (C1=0.27%, and C2=0.83%, corresponding to 10 and 30 t ha−1, respectively), and the efficiency of a Phe-degrading bacterial culture inoculated into the soil (S) and soil-compost (S-C1 and S-C2) systems were investigated. Changes in various functionally related properties such as microbial biomass, basal respiration, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties were also monitored. The soil showed an intrinsic capability for degrading Phe, and this was enhanced and stimulated by the lower compost dose (a decrease of the extractable Phe from 70% to about 50% of that initially added, and higher kinetic Phe disappearance constants). A simultaneous, rapid increase of soil respiration and microbial biomass, and higher phosphatase and arylsulphatase activities were measured, suggesting that microbial growth and activity had increased. The inoculation with Phe-degrading bacterial cells strongly accelerated the Phe degradation. After 15 d of incubation, the residual Phe decreased to 10% in S and S-C1 and to zero in S-C2, respectively. No apparent effects were observed for the higher compost dose. Several of the soil properties showed differentiated responses to the presence of the Phe, the compost and/or the exogenous culture. As a general response, soil systems with and without the inoculated cells showed similar trends for several of the measured enzymatic properties (e.g. phosphatase, arylsulphatase, β-glucosidase and urease activities), indicating that the intrinsic soil enzymatic activity was not affected by the exogenous microorganisms. Temporary and permanent changes were observed for several of the properties investigated, thereby providing useful information on the impact of Phe on soil metabolic activity.  相似文献   

6.
A short-term mesocosm experiment was conducted to ascertain the impact of tebuconazole on soil microbial communities. Tebuconazole was applied to soil samples with no previous pesticide history at three rates: 5, 50 and 500 mg kg−1 DW soil. Soil sampling was carried out after 0, 7, 30, 60 and 90 days of incubation to determine tebuconazole concentration and microbial properties with potential as bioindicators of soil health [i.e., basal respiration, substrate-induced respiration, microbial biomass C, enzyme activities (urease, arylsulfatase, β-glucosidase, alkaline phosphatase, dehydrogenase), nitrification rate, and functional community profiling]. Tebuconazole degradation was accurately described by a bi-exponential model (degradation half-lives varied from 9 to 263 days depending on the concentration tested). Basal respiration, substrate-induced respiration, microbial biomass C and enzyme activities were inhibited by tebuconazole. Nitrification rate was also inhibited but only during the first 30 days. Different functional community profiles were observed depending on the tebuconazole concentration used. It was concluded that tebuconazole application decreases soil microbial biomass and activity.  相似文献   

7.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

8.
The production and persistence of microbial biomass and also urease, phosphate and casein-hydrolysing activities were investigated when either glucose or ryegrass were added, as energy sources, with 15NO3? to a clay-loam soil. Both direct count and fumigation methods were used to determine soil microbial biomass. Microbial biomass and enzyme activities increased after the addition of energy sources. Increases in phosphatase and urease activities coincided mainly with increases in bacterial biomass and with the rapid immobilization of labeled N. Conversely, the increase in casein-hydrolysing activities preceded the phase of net mineralization that occurred during the later period of incubation.Although microbial biomass and the biochemical activities tested increased in the soils treated with energy supplies, they eventually decreased to the level of the control soil. Even the increases in biomass and enzyme activities present at zero time, as a result of the addition to the soil of exogenous microorganisms and enzymes with the ryegrass, were not maintained after extensive incubation. The influence of homeostatie mechanisms which tend to maintain a stable biological composition in the soil microbial population is discussed. A possible relationship between the available “active” or “biological” space, total microbial biomass and total enzyme activity in soil is suggested.  相似文献   

9.
Water availability strongly affects soil microbial activity and community composition. In a laboratory incubation we investigated the combined effect of soil moisture potential (−10 kPa, −135 kPa, and <−1500 kPa) and plant residue addition on soil enzyme activities (protease, β-glucosidase, β-glucosaminidase and exocellulase) and phospholipid fatty acid (PLFA) profiles. Soil respiration was positively correlated with soil moisture potential and significantly increased with the addition of residue. In the unamended soil, enzyme activities were little affected by soil moisture potential, nor did they change much over time. The addition of residue, however, significantly increased enzyme activity at each moisture level. Furthermore, all four enzyme activities were considerably higher in the amended dry soil than in amended samples with a higher moisture potential. In contrast, in the amended dry soil, respiration and microbial biomass were reduced compared to the amended samples with a higher moisture potential. The low microbial biomass in the amended dry soil was mainly due to a decrease in Gram-negative bacteria, while the fungal biomass reached similar levels at all water potentials. Therefore, shifts in microbial community composition alone cannot explain the increased enzyme activities in the dry soil. Other factors, such as increased fungal activity, stronger interactions between enzymes and soil particles due to thinner water films, may have contributed to the observed effects. Our results suggest that under dry conditions, potential enzyme activities may be decoupled from microbial biomass and respiration in the presence of substrates.  相似文献   

10.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

11.
Olive mill waste water (OMW), a by-product of the olive mill industry, is produced in large amounts in Mediterranean countries. Olive mill waste water contains a high organic load, substantial amounts of plant nutrients but also several compounds with recognized toxicity towards living organisms. Moreover, OMW may represent a low cost source of water. Thus, the use of OMW for soil fertigation is a valuable option for its disposal, provided that its impact on soil chemical and biochemical properties is established. Investigations were performed on the short-term influence of OMW on several chemical and biochemical properties of a soil from a continental semi-arid Mediterranean region (Morocco). The soil was amended with 0, 18 and 36 ml 100 g−1 soil of OMW (corresponding to a field rate of 0, 40 and 80 m3 ha−1, respectively) and changes in various functionally related properties such as microbial biomass, basal respiration, extractable C and N, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties as well as the residual phytotoxicity of OMW amended and non-amended soils as assessed by tomato seed germination tests were also monitored. Temporary and permanent changes in several chemical and biochemical soil properties occurred following OMW application, thus being these properties varied in sensitivity to the applied disturbance. A sudden increase of total organic C, extractable N and C, available P and extractable Mn and Fe contents were measured. Simultaneously, a rapid increase of soil respiration, dehydrogenase and urease activities and microbial biomass (at 14 day incubation) of OMW amended soils occurred. In contrast, the activities of phosphatase, β-glucosidase, nitrate reductase and diphenol oxidase decreased markedly. The soil became highly phytotoxic after OMW addition (large decline of soil germination capability), mainly at 80 m3 ha−1 OMW. After 42 days' incubation, however, a complete recovery of the soil germination capability and a residual phytotoxicity of about 30% were observed with 40 and 80 m3 ha−1 OMW, respectively. These findings indicate that the impact of OMW on soil properties was the result of opposite effects, depending on the relative amounts of beneficial and toxic organic and inorganic compounds present. The toxic compounds contained in OMW most likely counteracted the beneficial effect of organic substrates provided, which promoted the growth and activity of indigenous microorganisms.  相似文献   

12.
Quantification of microbial activities involved in soil organic carbon (SOC) decomposition is critical for the prediction of the long-term impact of climate change on soil respiration (SR) and SOC stock. Although the temperature sensitivity of SR is especially critical in semi-arid regions, such as North West Tunisia, where the SOC stock is low, little research has been carried out in these environments. More needs to be known about factors, such as SOC availability that influence temperature sensitivity. In this study, soil samples were incubated with and without glucose addition for 28 days after a 28-day pre-incubation period. Pre-incubation and incubation was carried out at 20 °C, 30 °C, 40 °C and 50 °C. Respiration measurements were taken with temperature, glucose addition and incubation time as independent variables. The highest pre-incubation temperature reduced the temperature sensitivity of SR during the subsequent incubation period, both with and without glucose addition. Soil samples pre-incubated at 50 °C had the lowest SR at all subsequent incubation temperatures and the lowest temperature sensitivity of SR, even after glucose addition. However, after glucose addition, the effect of a high pre-incubation temperature on soil respiration lasted only two days. Measuring the water-soluble carbon (WSC) in soil samples suggested that the high pre-incubation temperature may have killed part of the microbial biomass, modified microbial communities or solubilized SOC. For quantifying the possible effect of global warming, in particular heat waves, on soil respiration in the soil studied, the results indicate a moderate response of soil respiration to temperature at high temperatures, as shown by Q10 close to 1.7, even in the range 40-50 °C.  相似文献   

13.
An incubation experiment with organic soil amendments was carried out with the aim to determine whether formation and use of microbial tissue (biomass and residues) could be monitored by measuring glucosamine and muramic acid. Living fungal tissue was additionally determined by the cell-membrane component ergosterol. The organic amendments were fibrous maize cellulose and sugarcane sucrose adjusted to the same C/N ratio of 15. In a subsequent step, spherical cellulose was added without N to determine whether the microbial residues formed initially were preferentially decomposed. In the non-amended control treatment, ergosterol remained constant at 0.44 μg g−1 soil throughout the 67-day incubation. It increased to a highest value of 1.9 μg g−1 soil at day 5 in the sucrose treatment and to 5.0 μg g−1 soil at day 33 in the fibrous cellulose treatment. Then, the ergosterol content declined again. The addition of spherical cellulose had no further significant effects on the ergosterol content in these two treatments. The non-amended control treatment contained 48 μg muramic acid and 650 μg glucosamine g−1 soil at day 5. During incubation, these contents decreased by 17% and 19%, respectively. A 33% increase in muramic acid and an 8% increase in glucosamine were observed after adding sucrose. Consequently, the ratio of fungal C to bacterial C based on bacterial muramic acid and fungal glucosamine was lowered in comparison with the other two treatments. No effect on the two amino sugars was observed after adding cellulose initially or subsequently during the second incubation period. This indicates that the differences in quality between sucrose and cellulose had a strong impact on the formation of microbial residues. However, the amino sugars did not indicate a preferential decomposition of microbial residues as N sources.  相似文献   

14.
This study focused on the potential of using soil microbial biomass, enzyme and mineralization activities involved in organic C, N and P turnover, to evaluate the quality of a subtropical agricultural soil affected by long-term acid metal stress. Fractions of C, N and P involved in soil organic matter, microbial biomass and mineralization processes were estimated. Total enzyme activity (FDA) and eight hydrolase activities (xylanase, amylase, β-glucosidase, invertase, N-acteyl-glucosaminidase, urease, alkaline and acid phosphatases) in different decomposition stages of organic C, N and P were selected to characterize the soil functional diversity. These biological datasets were compared with soil metal variables (total contents and free and ligand-complexed ions of Cu, Pb, Zn, Cd, Al and Mn), using principal component analyses, co-inertia and discriminant analyses. The multiple statistics indicate that the metal variables were significantly related with not only general biological factors, but also respective datasets of biomass, enzyme activities and mineralization rates (all P < 0.001). In general, metal variables were inversely related to parameters and indices of microbial biomass C, N and P, FDA and C-related polysaccharidase and heterosidase activities, and P mineralization. As comparison, metal variables exhibited positive relationships with parameters and indices of N-related N-acteyl-glucosaminidase, urease, ammonification, total N mineralization and metabolic quotient, compared with inhibited nitrification. Specifically, free and complexed metal cations showed higher bioavailability than total contents in most cases. Cu, Pb, Al and Mn had different ecotoxicological impacts than Cd and Zn did. Stepwise regression models demonstrated that metal variables are key stress factors, but most of them excluded soil pH. Furthermore, spatial distribution in land uses and of sampling sites clearly separated the soil samples in these models (P < 0.001). We conclude that such a statistical analysis of microbiological and biochemical indices can provide a reliable and comprehensive indication of changes in soil quality and organic nutrient cycling, after exposure to long-term acid metal stress.  相似文献   

15.
Identifying the patterns of soil microbial responses to increasing nitrogen (N) availability are important since microbial processes are related to the potential nutrient transformations. The effects of the addition of N to the soil microbial community of the Gurbantunggut Desert, China, are described in this paper. The study was conducted over a two-year period with trials commencing at the beginning of each growing season. Soil enzyme activity, microbial biomass and microbial community level physiological profile (CLPP) were determined at 0–5 cm and 5–10 cm soil depths. Nitrogen was added to the soil at five rates plus a control, i.e. 0, 0.5, 1, 3, 6 and 24 g N m−2 y−1. We hypothesized that soil enzyme activities and microbial biomass N (MBN) would firstly increase and then decrease, and CLPP would be altered with increasing N addition, due to the deleterious effects of higher N addition upon microbial activity. Because of the relatively higher organic matter in the upper depth of soil layers, we further hypothesized that the responses of microbial activities in the 0–5 cm depth would be more marked than at 5–10 cm. In partial support of our hypothesis, soil enzyme activities, microbial biomass and nutrient concentrations responded to N addition with the most significant changes occurring in the 0–5 cm soil depth. Addition of N resulted in an increase in MBN and a decrease in urease activity. Invertase and alkaline phosphatase (AlP) activities increased at low doses of N addition and showed a decrease at higher doses. There was no evidence of change in oxidative enzyme activity at low N treatments but activity decreased at high N additions. However, the CLPP was not affected by N addition. The results of this study suggest that N supplementation in this desert soil may affect C transformation, increase availability of N and P, and immobilize N in the microbial biomass. Responses of the enzyme activity to N supplementation occurred within the context of an apparently stable or unresponsive microbial community structure.  相似文献   

16.
吡嘧磺隆对土壤中与氮素转化有关微生物活性的影响   总被引:1,自引:0,他引:1  
在室内培养条件下,研究了水田除草剂吡嘧磺隆在田间用量下对水稻土中与氮素转化有关的生物活性的影响。结果表明,吡嘧磺隆在培养7~30天内能显著抑制土壤脲酶的活性;在培养的前20天内表现为对土壤硝化作用和土壤微生物量氮的抑制作用;施用吡嘧磺隆处理的土壤脲酶活性、土壤硝化作用及土壤微生物量氮间存在显著相关关系。  相似文献   

17.
Biochemical characterization of urban soil profiles from Stuttgart, Germany   总被引:1,自引:0,他引:1  
The knowledge of biochemical properties of urban soils can help to understand nutrient cycling in urban areas and provide a database for urban soil management. Soil samples were taken from 10 soil profiles in the city of Stuttgart, Germany, differing in land use—from an essentially undisturbed garden area to highly disturbed high-density and railway areas. A variety of soil biotic (microbial biomass, enzyme activities) and abiotic properties (total organic C, elemental C, total N) were measured up to 1.9 m depth. Soil organic matter was frequently enriched in the subsoil. Microbial biomass in the top horizons ranged from 0.17 to 1.64 g C kg−1, and from 0.01 to 0.30 g N kg−1, respectively. The deepest soil horizon at 170-190 cm, however, contained 0.12 g C kg−1 and 0.05 kg N kg−1 in the microbial biomass. In general, arylsulphatase and urease activity decreased with depth but in three profiles potentially mineralizable N in the deepest horizons was higher than in soil layers directly overlying. In deeply modified urban soils, subsoil beside topsoil properties have to be included in the evaluation of soil quality. This knowledge is essential because consumption of natural soils for housing and traffic has to be reduced by promoting inner city densification.  相似文献   

18.
连年翻压绿肥对植烟土壤微生物量及酶活性的影响   总被引:14,自引:1,他引:14  
通过3年田间定位试验,研究连年翻压绿肥对植烟土壤微生物量碳、氮及酶活性的影响。结果表明,连年翻压绿肥能提高土壤微生物量碳、氮及土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶的活性,且随翻压年限的增加而增加。整个生育期,翻压3年绿肥的处理与对照相比微生物量碳、氮分别提高31.0%~67.1%、23.0%~145.1%;土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶活性分别提高34.4%~51.9%、11.0%~18.6%、58.0%~172.7%、24.0%~50.0%,表明翻压绿肥后土壤生物过程活跃,利于有机物质的转化和烤烟正常生长所需的营养供应。动态变化特征表明,翻压绿肥1、2、3年的各处理微生物量碳、氮均在团棵期出现峰值,土壤脲酶、酸性磷酸酶、过氧化氢酶均在旺长期出现峰值。在出现峰值时翻压3年的处理与对照相比微生物量碳、氮分别提高67.1%、60.7%;土壤脲酶、酸性磷酸酶、过氧化氢酶活性分别提高51.9%、14.2%、30.6%。此时正值生育旺期,利于烟株生长发育,说明连年翻压绿肥后培肥土壤效果显著。土壤微生物量C、N和酶活性能灵敏反映土壤肥力的变化,可作为评价土壤质量的生物学指标。  相似文献   

19.
Soil enzyme activities are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined in fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or air-drying and rewetting on β-glucosidase, acid phosphatase and urease activities in soils from different locations, degradation status and sampling seasons, and (ii) assess if air-drying or air-drying and rewetting is an accurate sample storage and pre-treatment procedure for enzyme activities in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that urease, phosphatase and β-glucosidase activities were hardly affected by air-drying of degraded and non-degraded soils from the two locations studied in all seasons. Short incubations (4, 8 and 12 d at 23 °C) of rewetted air-dried soil at 55% of water-holding capacity showed different patterns depending on the enzyme studied. Urease and β-glucosidase activities were relatively stable during incubation, with several significant (P<0.05) shifts up and down in some soils and samplings. However, acid phosphatase showed an increase in activity with incubation, of between 5% and 50% relative to air-dried samples. These increases followed no pattern and were unrelated to soil characteristics or sampling date. Hence, urease, phosphatase and β-glucosidase activities determined in air-dried soil samples seem to be representative of those obtained under field-moist conditions. In contrast, short incubations of rewetted soil samples can produce fluctuations in these enzyme activities, mainly of acid phosphatase, and estimations in these conditions are not so representative of field-moist soil values.  相似文献   

20.
In forest ecosystems, the external nitrogen (N) inputs mainly involve wet and dry depositions that potentially alter inorganic N availability in the soil and carbon (C) turnover. This study assesses the effect of a slow increase of inorganic N availability on microbial community activity and functionality in a Mediterranean forest soil. A four-month incubation experiment was performed with soil collected from the organic layer of a forest site and fertilized with a solution of ammonium nitrate. The fertilizer was supplied at an equivalent of 0, 10, 25, 50 and 75 kg N ha−1 (0, 0.3, 0.7, 1.3 and 2 mg N g−1 for control N0 and treatments N1, N2, N3 and N4, respectively). The incubation was carried out under optimal conditions, with the addition of the nutritive solution in small aliquots once a week to mimic the phenomenon of N deposition. In order to isolate the effect of N, the pH of the NH4NO3 solutions was adjusted to soil pH, and phosphorus was added in order to prevent any nutrient limitation effect. Inorganic N, C-mineralization, the activity of one oxidative enzyme (o-diphenol oxidase) and 8 hydrolitic enzymes (α-glucosidase, β-glucosidase, N-acetyl-β-d-glucosaminidase, cellulase, leucine amino-peptidase, acid phosphatase, butyric esterase and β-xylosidase) and the community level physiological profile (CLPP) were measured and analyzed during the whole incubation and at the end of the experiment as a proxy for microbial decomposition activity. In the first month, the highest N availability (N4) repressed the microbial respiration activity but stimulated microbial enzymatic activity, suggesting a change of C-pathways from spilling to enzymes and biomass investment. The treatments N1, N2 and N3 had no effect in the same period. Throughout the incubation, a general stress condition affected all the treated soils. As a consequence, treated soils exhibited higher respiration rates than the control. This was accompanied by a loss of functional diversity and an end-detected decline in biomass C. Although at the end of incubation most of the soil features showed a clear correlation with the inorganic N pool, the organic C content was strongly affected by different patterns of microbial activity during the experiment: the highest N treatment (N4) showed a lower C loss than the N3 treatment. Overall, the experiment showed how inorganic N availability can potentially alter the C cycle in a Mediterranean forest soil. The effect is non linear, depending on microbial community dynamics, on the community’s ability to adapt given the time scale of the process, and on N supply amount. Our study also revealed a common pattern in the short-term response to N addition in other, similar ecosystems with different climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号