首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Forest soils contain a variable amount of organic N roughly repartitioned among particles of different size, microbial biomass and associated with mineral compounds. All pools are alimented by annual litter fall as main input of organic N to the forest floor. Litter N is further subject to mineralization/stabilization recognized as the crucial process for the turnover of litter N. Although it is well documented that different soil types have different soil N stocks, it is presently unknown how different soil types affect the turnover of recent litter N. Here, we compared the potential mineralization of the total soil organic N with that of recent litter-released N in three beech forests varying in their soil properties. Highly 15N-labelled beech litter was applied to stands located at Aubure, Ebrach, Collelongo, which differ in humus type, soil type and soil chemistry. After 4-5 years of litter decomposition, the upper 3 cm of the organo-mineral A horizon was sampled and the net N mineralization was measured over 112 days under controlled conditions. The origin of mineralized N (litter N versus soil organic N) was calculated using 15N labeling. In addition, soils were fractionated according to their particle size (>2000 μm, 200-2000 μm, 50-200 μm, <50 μm) and particulate organic matter (POM) was separated from the mineral fraction in size classes, except the <50 μm fraction. Between 41 and 69% of soil organic N was recovered as POM. Litter-released 15N was mainly to be found in the coarse POM fractions >200 μm. On a soil mass basis, N mineralization was two-fold higher at Aubure and Collelongo than at Ebrach, but, on a soil N basis, N mineralization was the lowest at Collelongo and the highest at Ebrach. On a soil N (or 15N) basis, mineralization of litter 15N was two to four-fold higher than mineralization of the average soil N. Furthermore, the δ15N of the mineral N produced was closer to that of POM than to that of the mineral-bound fraction (<50 μm). Highest rates of 15N mineralization happened in the soil with the lowest N content, and we found a negative relationship between accumulations of N in the upper A horizon and the mineralization of 15N from the litter. Our results show that mineral N is preferentially mineralized from POM in the upper organo-mineral soil irrespective of the soil chemistry and that the turnover rate of litter N is faster in soils with a low N content.  相似文献   

2.
Substrate quality and decomposition (measured as CO2 release in laboratory microcosms) of fresh leaf litter and fine roots of Cupressus lusitanica, Pinus patula, Eucalyptus grandis and native forest trees were studied. Changes in litter chemistry in each forest stand were analysed by comparing fresh leaf litter (collected from trees) and decomposed litter from the forest floor. Elemental concentrations, proximate fractions including monomeric sugars, and cross polarisation magic-angle spinning (CPMAS) 13C NMR spectra were analysed in leaf litters, decomposed litter and fine roots. Leaf litters and fine roots varied in their initial substrate chemistry with Ca concentration in leaf litters being higher than that in fine roots. In each stand, fine roots had a higher acid unhydrolysable residue (AUR) (except for the Pinus stand), higher holocellulose concentration and lower concentration of water-soluble extractives (WSE) and dichloromethane extractives (NPE) than fresh leaf litter. Likewise, 13C NMR spectra of fine roots showed lower alkyl and carboxyl C, and higher phenolic (except P. patula), aromatic and O-alkyl C proportions than leaf litters. Compared with fresh leaf litter, decomposed litter had lower concentrations of potassium, holocellulose, WSE, NPE, arabinose and galactose, similar or higher concentrations of Mg, Ca, S and P, and higher concentrations of N and AUR. CPMAS 13C NMR spectra of decomposed litter showed a higher relative increase in signal intensity due to methoxyl C, aromatic C, phenolic C and carboxylic C compared with alkyl C. In a microcosm decomposition study, the proportion of initial C remaining in leaf litter and fine roots significantly fitted an exponential regression model. The decomposition constants (k) ranged between 0.0013 and 0.0030 d−1 for leaf litters and 0.0010-0.0017 d−1 for fine roots. In leaf litters there was a positive correlation between the k value and the initial Ca concentration, and in fine roots there was an analogous positive correlation with initial WSE. Leaf litters decomposed in the order Cupressus>native forest>EucalyptusPinus, and fine roots in the order Pinus>native forest>CupressusEucalyptus. In each stand the fine root decomposition was significantly lower than the leaf litter decomposition, except for the P. patula stand where the order was reversed.  相似文献   

3.
High-yield (HY) areas of an agricultural cropland were characterized by different positions on a slope and lower silt and clay contents, compared to low-yield (LY) areas, and this was associated with differences in water regime and C and N turnover. To understand differences in N flows of HY and LY areas, a combination of 15N tracer techniques and physical fractionation procedures was applied. Within 570 d after application of 15N labelled mustard litter to an agricultural cropland, the distribution of 15N was measured in particulate organic matter (POM) fractions and in fine mineral fractions (fine silt- and clay-sized fractions). After 570 d, only 2.5% of the initial 15N amount was found in POM fractions, with higher amounts in POM occluded in aggregates than in free POM. After this period, stabilization of the initial 15N in fine silt- and clay-sized fractions amounts to 10% in HY, but 20% in LY soils. 70% to 85% of the added 15N were lost. Initial decomposition of labelled material was faster in HY than in LY areas during the first year, but the remaining 15N amounts in POM fractions of the different areas were similar after 570 d. 15N amounts and concentrations in mineral-associated fractions increased within 160 d after application. From 160 to 570 d, HY and LY areas showed different 15N dynamics, resulting in a decline of 15N amounts in HY, but constant 15N amounts in LY soils. The results indicate faster decomposition processes in HY than in LY areas, due to different soil conditions, such as soil texture and water regime. The higher silt and clay contents of LY areas seem to promote N stabilization in fine mineral fractions. As a whole, N flows were higher in HY compared to LY areas, thus supporting higher yields and accelerated organic matter degradation due to higher N supply.  相似文献   

4.
Jarrah (Eucalyptus marginata Donn ex Smith) forest grows on poor soils with low stores of plant-available nutrients. We evaluated the impact of fertilizers on nutrient cycling in soil under Jarrah forest using a field study with three rates of P (0, 50, 200 kg P ha–1) and three rates of N (0, 100, 200 kg N ha–1) in a full factorial design. Litterfall was significantly increased by N application (30% relative to controls) in the first 2 years after treatment and by P application in the second year. The amounts of N, P, K, Ca and Mg in litterfall were also increased significantly by both N and P fertilizer. Although fertilizer treatments did not affect the total amount of litter accumulated on the forest floor over 4–5 years after application, there were large treatment differences in the amounts of N and P stored in the forest floor. Microbial respiration in litter was significantly greater (19%) on P-treated plots relative to controls, but this increase did not translate into increased decomposition rates as measured in long-term (5-year) mesh-bag studies. The results indicate that factors other than nutrition are mainly responsible for controlling the rate of decomposition in this ecosystem. Application of P, in particular, resulted in substantial accumulation of P in forest floor litter over 5 years. This accumulation was partly a result of the deposition of P in litterfall, but was also probably a result of translocation of P from the mineral soil. During the 5-year decomposition study, there was no net release of P from leaf litter and, at the highest rate of P application, the amounts of P stored in forest floor litter were more than four-fold greater than in fresh litter. Regular fire, a common phenomenon in these ecosystems, may be an important P-mobilizing agent for enhancing plant P uptake in these forests.  相似文献   

5.
Abstract

The short‐term fate and retention of ammonium (NH4)‐15nitrogen (N) applied to two types of forest soils in east Tennessee was investigated. Four ridgetop forests, predominantly oak (Quercus spp.), were studied. Five applications of NH415N tracer were made to the forest floor at 2‐ to 4‐week intervals over a 14‐week period in 2004. Nitrogen‐15 recovery in the forest floor, fine roots (<2 mm), and the mineral soil (0–20 cm) was calculated at 6, 21, and 42 weeks after the last application. Most of the 15N was retained in the forest floor and the mineral soil, with only small amounts (≤2%) found in roots from both soil layers. Recovery of NH415N was greater in Inceptisols, which had a wider carbon (C)‐to‐N ratio than Ultisols. For both soil types, higher NH415N recoveries and long retention times (half‐lives>100 weeks) indicated the forest floor is an effective filter for atmospheric N inputs.  相似文献   

6.
Our understanding of leaf litter carbon (C) and nitrogen (N) cycling and its effects on N management of deciduous permanent crops is limited. In a 30-day laboratory incubation, we compared soil respiration and changes in mineral N [ammonium (NH4+-N) + nitrate (NO3-N)], microbial biomass nitrogen (MBN), total organic carbon (TOC) and total non-extractable organic nitrogen (TON) between a control soil at 15N natural abundance (δ15N = 1.08‰) without leaf litter and a treatment with the same soil, but with almond (Prunus dulcis (Mill.) D.A. Webb) leaf litter that was also enriched in 15N (δ15N = 213‰). Furthermore, a two-end member isotope mixing model was used to identify the source of N in mineral N, MBN and TON pools as either soil or leaf litter. Over 30 d, control and treatment TOC pools decreased while the TON pool increased for the treatment and decreased for the control. Greater soil respiration and significantly lower (p < 0.05) mineral N from 3 to 15 d and significantly greater MBN from 10 to 30 d were observed for the treatment compared to the control. After 30 d, soil-sourced mineral N was significantly greater for the treatment compared to the control. Combined mineral N and MBN pools derived from leaf litter followed a positive linear trend (R2 = 0.75) at a rate of 1.39 μg N g?1 soil day?1. These results suggest early-stage decomposition of leaf litter leads to N immobilization followed by greater N mineralization during later stages of decomposition. Direct observations of leaf litter C and N cycling assists with quantifying soil N retention and availability in orchard N budgets.  相似文献   

7.
An incubation experiment was carried out with maize (Zea mays L.) leaf straw to analyze the effects of mixing the residues with soil and N amendment on the decomposition process. In order to distinguish between soil effects and nitrogen effects for both the phyllospheric microorganisms already present on the surface of maize straw and soil microorganisms the N amendment was applied in two different placements: directly to the straw or to the soil. The experiment was performed in dynamic, automated microcosms for 22 days at 15 °C with 7 treatments: (1) untreated soil, (2) non-amended maize leaf straw without soil, (3) N amended maize leaf straw without soil, (4) soil mixed with maize leaf straw, (5) N amended soil, (6) N amended soil mixed with maize leaf straw, and (7) soil mixed with N amended maize leaf straw. 15NH415NO3 (5 at%) was added. Gas emissions (CO2, 13CO2 and N2O) were continuously recorded throughout the experiment. Microbial biomass C, biomass N, ergosterol, δ13C of soil organic C and of microbial biomass C as well as 15N in soil total N, mineral N and microbial biomass N were determined in soil samples at the end of the incubation. The CO2 evolution rate showed a lag-phase of two days in the non-amended maize leaf straw treatment without soil, which was completely eliminated when mineral N was added. The addition of N generally increased the CO2 evolution rate during the initial stages of maize leaf straw decomposition, but not the cumulative CO2 production. The presence of soil caused roughly a 50% increase in cumulative CO2 production within 22 days in the maize straw treatments due to a slower decrease of CO2 evolution after the initial activity peak. Since there are no limitations of water or N, we suggest that soil provides a microbial community ensuring an effective succession of straw decomposing microorganisms. In the treatments where maize and soil was mixed, 75% of microbial biomass C was derived from maize. We concluded that this high contribution of maize using microbiota indicates a strong influence of organisms of phyllospheric origin to the microbial community in the soil after plant residues enter the soil.  相似文献   

8.
We investigated the nitrogen source for main taxa of soil fauna in two beech forests of contrasted humus type using 15N-labelled beech litter and 15N analysis of soil fauna. 15N-labelled beech litter was deposited on the topsoil in December 2000 in four stands of different ages at Leinefelde (Germany) with mull humus and in one mature stand at Sorø (Denmark) with moder humus. The fate of the tracer isotope was measured in litter and soil, as well as in the soil fauna, and for each taxa, we calculated the proportion of N in the animal derived from the labelled substrate. Of the original N contained in the litter, 20-41% was lost after 9 months at Leinefelde, and only 10% at Sorø. This loss was counterbalanced by the incorporation of 24-31% external N at Leinefelde, and 31% at Sorø, partly originating from fungal colonisation of the added litter. The proportion of N assimilated from the labelled litter by the different soil animals varied in relation to their mobility and feeding preferences. Large and mobile soil animals, especially predators, derived on average less 15N because they were also able to feed outside the labelled litter boxes. Detritivores assimilated at most 15% of their nitrogen content at Leinefelde and 11% at Sorø from the decomposing labelled litter. The most labelled taxa at Leinefelde were small fungivorous and coprophagous species, mainly isotomid Collembola such as Isotomiella and Folsomia. At Sorø, best labelled taxa were saprophagous species such as Enchytraeidae, Glomeridae and Phthiracaroidea. These low rates of 15N assimilation indicate that fresh litter is not directly the main N source for soil animals. The results obtained suggest that soil fauna fed preferentially upon microorganisms colonising the litter at Leinefelde (mull) and from litter itself at Sorø (moder).  相似文献   

9.
The soil animal food web has become a focus of recent ecological research but trophic relationships still remain enigmatic for many taxa. Analysis of stable isotope ratios of N and C provides a powerful tool for disentangling food web structure. In this study, animals, roots, soil and litter material from a temperate deciduous forest were analysed. The combined measurement of δ15N and δ13C provided insights into the compartmentalization of the soil animal food web. Leaf litter feeders were separated from animals relying mainly on recent belowground carbon resources and from animals feeding on older carbon. The trophic pathway of leaf litter-feeding species appears to be a dead end, presumably because leaf litter feeders (mainly diplopods and oribatid mites) are unavailable to predators due to large size and/or strong sclerotization. Endogeic earthworms that rely on older carbon also appear to exist in predator-free space. The data suggest that the largest trophic compartment constitutes of ectomycorrhizal feeders and their predators. Additionally, there is a smaller trophic compartment consisting of predators likely feeding on enchytraeids and potentially nematodes.  相似文献   

10.
Forests cover one-third of the Earth’s land surface and account for 30-40% of soil carbon (C). Despite numerous studies, questions still remain about the factors controlling forest soil C turnover. Present understanding of global C cycle is limited by considerable uncertainty over the potential response of soil C dynamics to rapid nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application. Here, we present a 15-year-long field study and show an average increase of 14.6% in soil C concentration in the 0-5 cm mineral soil layer in N fertilized (defined as N+ hereafter) sub-plots of a second-rotation Pinus radiata plantation in New Zealand compared to control sub-plots. The results of 14C and lignin analyses of soil C indicate that N additions significantly accelerate decomposition of labile and recalcitrant soil C. Using an annual-time step model, we estimated the soil C turnover time. In the N+ sub-plots, soil C in the light (a density < 1.70 g cm−3) and heavy fractions had the mean residence times of 23 and 67 yr, respectively, which are lower than those in the control sub-plots (36 and 133 yr in the light and heavy fractions, respectively). The commonly used lignin oxidation indices (vanillic acid to vanillin and syringic acid to syringaldehyde ratios) were significantly greater in the N+ sub-plots than in the control sub-plots, suggesting increased lignin decomposition due to fertilization. The estimation of C inputs to forest floor and δ13C analysis of soil C fractions indicate that the observed buildup of surface soil C concentrations in the N+ sub-plots can be attributed to increased inputs of C mass from forest debris. We conclude that long-term N additions in productive forests may increase C storage in both living tree biomass and soils despite elevated decomposition of soil organic matter.  相似文献   

11.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

12.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

13.
The objective of this work was to investigate the usefulness of near infrared reflectance spectroscopy (NIRS) in determining some C and N fractions of soils: labile compounds, microbial biomass, compounds derived from added 13C- and 15N-labelled straw. Soil samples were obtained from a previous experiment where soils were labelled by addition of 13C- and 15N-labelled wheat straw and incubated in coniferous forests in northern Sweden (64-60°N) and south France (43°N). The incubation lasted three years with 7-9 samplings at regular time steps and four replicates at each sampling (204 samples). Samples were scanned using a near infrared reflectance spectrophotometer (NIRSystem 6500). Calibrations were obtained by using a modified partial least squares regression technique with reference data on total C and N, 13C, 15N, control extract-C, -N, -13C and -15N, fumigated extract-C, -N, -13C and -15N, biomass-C, -N, -13C and -15N contents. Mathematical treatments of the absorbance data were first or second derivative with a gap from 4 to 10 nm. The standard error of calibration (SEC)-to-standard deviation of the reference measurements ratio was ≤0.2 for 10 models, namely total C and N, 13C, 15N, control extract-C, fumigated extract-C and -N, biomass-C and -N and biomass-15N models and therefore considered as very good. With an R2=0.955, the fumigated extract-15N model is also good. The standard error of performance calculated on the independent set of data and SEC were within 20% of each other for all the best equations except for the biomass-15N model. The ability of NIRS to detect 13C and 15N in total C and N and in the extracts is noteworthy, not because of its predictive function that is not really of interest in this case, but because it indicates that the spectra kept the signature of the properties of the organic matter derived from the straw even after two- or three-year decomposition. The incorporation of the 13C in the biomass was less well predicted than that of the 15N. This could indicate that the biomass derived from the straw was characterised by a particular protein or amino acid composition compared to the total biomass that includes a large proportion of dormant micro-organisms. The predictive ability of NIRS for microbial biomass-C and -N is particularly interesting because the conventional analyses are time consuming. In addition, NIRS allows detecting analytical errors.  相似文献   

14.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

15.
Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the 14C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (<∼40‰ given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acids (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by ∼750‰ between high-14C and low-14C treatments. Assuming any difference in 14C between the high- and low-14C plots would reflect C derived from these manipulated litter additions, we estimate that <∼6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the 14C signatures of the PLFA compounds (averaging 200-220‰) is much higher that of the 2004-5 leaf litter (115‰) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from 14C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the 14C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA Δ14C signatures were higher than those measured in bulk mineral soil organic matter in our experiments, but fell within the range of 14C values measured in mineral soil roots. Together, our experiments suggest that root-derived C is the major (>60%) source of C for microbes in these temperate deciduous forest soils.  相似文献   

16.
15N标记羊粪和稻草还田氮素的转化和效应的研究   总被引:8,自引:1,他引:8       下载免费PDF全文
本工作通过田间微区试验,研究了^15N标记羊粪和稻草单独施用或分别与尿素配合施用作为水稻基肥时,肥料氮的命运及共对水稻产量的影响。  相似文献   

17.
肥料残留氮的有效性及其与形态分布的关系   总被引:19,自引:1,他引:19       下载免费PDF全文
  相似文献   

18.
Purposes

Prescribed burning is projected to be adopted more frequently with intensifying climate change; thus, a long-term study is necessary to understand the burning impacts on forest productivity and carbon (C) and nitrogen (N) cycling. Litter fall production rate can be used to indicate burning impacts on forest productivity, whereas N concentration, and C and N isotope composition (δ13C and δ15N) can be used to infer burning impacts on C and N cycling in plant-soil system.

Materials and methods

In this study, the impacts of low-intensity prescribed burning on litter production, N concentration, and C and N isotope compositions were continuously investigated for 6 years at five study sites in a natural eucalypt forest of subtropical Australia.

Results and discussion

Higher leaf litter production rate, N concentration and δ15N, and lower δ13C could be seen shortly after prescribed burning. The higher leaf litter N concentration and lower δ13C were likely due to the ease of competition for soil N and moisture from understory vegetation in the short term by prescribed burning. Leaf δ15N and N concentration were closely correlated, and seasonal changes in leaf litter production rate, δ13C and δ15N were observed. Burning season and related severity might determine the suppression degree of understory vegetation. Time since fire (TSF) was a significant impact factor influencing the litter fall production rate, N concentration, δ13C and δ15N of leaf litter fall for a decade following prescribed burning. However, monthly rainfall and temperature were less consistent in their impacts.

Conclusions

Nitrogen limitation was enhanced by prescribed burning through the removal of litter and understory vegetation in the N poor forest and might be responsible for the long-term burning impacts. Low-intensity prescribed burning might have a long-lasting impact on forest litter productivity in nutrient poor forests in subtropical Australia.

  相似文献   

19.
川西3种亚高山针叶林的养分和凋落物格局分析   总被引:4,自引:0,他引:4  
LIN Bo  LIU Qing  WU Yan  HE Hai 《土壤圈》2006,16(3):380-389
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.  相似文献   

20.
Comparisons were made of three different 15N-feeding techniques, leaf, petiole and stem feeding, to identify the most efficient technique for labelling above-and below-ground plant biomass under controlled environment conditions. 15N-urea (0.5%, 10 atom % excess 15N) was applied to chickpea (Cicer aritenium var. ICCV 5003) plants twice during early growth. Leaf feeding was found to be the most efficient in terms of 15N-solution uptake (5.9 ml 48 h−1) and 15N-enrichment at harvest, with 0.95, 0.41, 0.79, 0.67 and 0.22 atom % excess 15N in the leaves, stems, grain, grain straw and clean root fractions, respectively. Solution uptake was low in the second stem feeding event due to blockage of the drilled hole, resulting in low 15N-enrichment of leaves (0.29 atom % excess 15N). Although petiole feeding resulted in more even relative enrichments among plant parts our results highlight the usefulness of leaf 15N-feeding to estimate below-ground plant N and to trace the long-term fate of plant-derived N within the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号