首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil respiration was measured with the enclosed chamber method in an ungrazed Leymus chinensis steppe during the growing seasons of 2001 and 2002. Soil respiration rate (RS) was significantly influenced by air temperature (T) at the diurnal scale, and could be described by Van't Hoff's equation (RS = R10 exp(β(T − 10))). At the seasonal scale, the normalized soil respiration rate at 10 °C (R10) was mainly controlled by soil water content (R2 = 0.717, P < 0.001), while the sensitivity of soil respiration to temperature (Q10) was partially affected by absolute growth rate (R2 = 0.482, P = 0.004). Thus, soil respiration could be described as RS = (20.015W − 84.085) (0.103AGR + 1.786)(T−10)/10 during the growing seasons, integrating soil water content (W) and absolute growth rate (AGR) into the temperature-dependent soil respiration equation. It was validated by the observed soil respiration rates in this study (R2 = 0.890, P < 0.001) and observations from near-field experiment (R2 = 0.687, P = 0.011). It implied that accurately evaluating annual soil respiration should include the effects of plant biomass production and other abiotic factors besides air temperature.  相似文献   

2.
Forest soils contain the largest carbon stock of all terrestrial biomes and are probably the most important source of carbon dioxide (CO2) to atmosphere. Soil CO2 fluxes from 54 to 72-year-old monospecific stands in Rwanda were quantified from March 2006 to December 2007. The influences of soil temperature, soil water content, soil carbon (C) and nitrogen (N) stocks, soil pH, and stand characteristics on soil CO2 flux were investigated. The mean annual soil CO2 flux was highest under Eucalyptus saligna (3.92 μmol m−2 s−1) and lowest under Entandrophragma excelsum (3.13 μmol m−2 s−1). The seasonal variation in soil CO2 flux from all stands followed the same trend and was highest in rainy seasons and lowest in dry seasons. Soil CO2 flux was mainly correlated to soil water content (R2 = 0.36-0.77), stand age (R2 = 0.45), soil C stock (R2 = 0.33), basal area (R2 = 0.21), and soil temperature (R2 = 0.06-0.17). The results contribute to the understanding of factors that influence soil CO2 flux in monocultural plantations grown under the same microclimatic and soil conditions. The results can be used to construct models that predict soil CO2 emissions in the tropics.  相似文献   

3.
Quantifying the net carbon (C) storage of forest plantations is required to assess their potential to offset fossil fuel emissions. In this study, a biometric approach was used to estimate net ecosystem productivity (NEP) for two monoculture plantations in South China: Acacia crassicarpa and Eucalyptus urophylla. This approach was based on stand-level net primary productivity (NPP, based on direct biometric inventory) and heterotrophic respiration (Rh). In comparisons of Rh determination based on trenching vs. tree girdling, both trenching and tree girdling changed soil temperature and soil moisture relative to undisturbed control plots, and we assess the effects of corrections for disturbances of soil moisture and soil moisture on the estimation of soil CO2 efflux partitioning. Soil microbial biomass and dissolved organic carbon were significantly lower in trenched plots than in tree girdled plots for both plantations. Annual soil CO2 flux in trenched plots (Rh-t) was significantly lower than in tree-girdled plots (Rh-g) in both plantations. The estimates of Rh-t and Rh-g, expressed as a percentage of total soil respiration, were 58 ± 4% and 74 ± 6%, respectively, for A. crassicarpa, and 64 ± 3% and 78 ± 5%, respectively, for E. urophylla. By the end of experiment, the difference in soil CO2 efflux between the trenched plots and tree-girdled plots had become small for both plantations. Annual Rh (mean of the annual Rh-t and Rh-g) and net primary production (NPP) were 470 ± 25 and 800 ± 118 g C m−2 yr−1, respectively, for A. crassicarpa, and 420 ± 35 and 2380 ± 187 g C m−2 yr−2, respectively, for E. urophylla. The two plantations in the developmental stage were large carbon sinks: NEP was 330 ± 76 C m−2 yr−1 for A. crassicarpa and 1960 ± 178 g C m−2 yr−1 for E. urophylla.  相似文献   

4.
Forest ecosystems on the Loess Plateau are receiving increasing attention for their special importance in carbon fixation and conservation of soil and water in the region. Soil respiration was investigated in two typical forest stands of the forest-grassland transition zone in the region, an exotic black locust (Robinia pseudoacacia) plantation and an indigenous oak (Quercus liaotungensis) forest, in response to rain events (27.7 mm in May 2009 and 19 mm in May 2010) during the early summer dry season. In both ecosystems, precipitation significantly increased soil moisture, decreased soil temperature, and accelerated soil respiration. The peak values of soil respiration were 4.8 and 4.4 μmol CO2 m−2 s−1 in the oak plot and the black locust plot, respectively. In the dry period after rainfall, the soil moisture and respiration rate gradually decreased and the soil temperature increased. Soil respiration rate in black locust stand was consistently less than that in oak stand, being consistent with the differences in C, N contents and fine root mass on the forest floor and in soil between the two stands. However, root respiration (Rr) per unit fine root mass and microbial respiration (Rm) per unit the amount of soil organic matter were higher in black locust stand than in oak stand. Respiration by root rhizosphere in black locust stand was the dominant component resulting in total respiration changes, whereas respiration by roots and soil microbes contributed equally in oak stand. Soil respiration in the black locust plantation showed higher sensitivity to precipitation than that in the oak forest.  相似文献   

5.
Although information regarding the spatial variability of soil respiration is important for understanding carbon cycling and developing a suitable sampling design for estimating average soil respiration, it remains relatively understudied compared to temporal changes. In this study, soil respiration was measured at 35 locations by season on a slope of Japanese cedar forest in order to examine temporal changes in the spatial distribution of soil respiration. Spatial variability of soil respiration varied between seasons, with the highest coefficient variation in winter (42%) and lowest in summer (26%). Semivariogram analysis and kriged maps revealed different patterns of spatial distribution in each season. Factors affecting the spatial variability were relief index (autumn), soil hardness of the A layer (winter), soil hardness at 50 cm depth (spring) and the altitude and relief index (summer). Annual soil respiration (average: 39 mol m−2 y−1) varied from 26 mol m−2 y−1 to 55 mol m−2 y−1 between the 35 locations and was higher in the upper part of the slope and lower in the lower part. The average Q10 value was 2.3, varying from 1.3 to 3.0 among the locations. These findings suggest that insufficient information on the spatial variability of soil respiration and imbalanced sampling could bias estimates of current and future carbon budgets.  相似文献   

6.
Total belowground C allocation (TBCA) accounts for a large fraction of gross primary production, it may overtake aboveground net primary production, and contributes to the primary source of detrital C in the mineral soil. Here, we measure soil respiration, water erosion, litterfall and estimate annual changes in C stored in mineral soil, litter and roots, in three representative land uses in a Mediterranean ecosystem (late-successional forest, abandoned agricultural field, rain-fed olive grove), and use two C balance approaches (steady-state and non-steady-state) to estimate TBCA. Both TBCA approaches are compared to assess how different C fluxes (outputs and inputs) affect our estimates of TBCA within each land use. In addition, annual net primary productivity is determined and C allocation patterns are examined for each land use. We hypothesized that changes in C stored in mineral soil, litter and roots will be slight compared to soil respiration, but will still have a significant effect on the estimates of TBCA. Annual net primary productivity was 648 ± 31.5, 541 ± 42.3 and 324 ± 22.3 g C m−2 yr−1 for forest, abandoned agricultural field and olive grove, respectively. Across land uses, more than 60% of the C was allocated belowground. Soil respiration (FS) was the largest component in the TBCA approaches across all land uses. Annual C losses through water erosion were negligible compared to FS (less than 1%) and had little effect on the estimates of TBCA. Annual changes in C stored in the soil, litter layer and roots were low compared to FS (16, 24 and 10% for forest, abandoned agricultural field and olive grove, respectively), but had a significant effect on the estimates of TBCA. In our sites, an assumption that Δ[CS + CR + CL]/Δt = 0 will underestimate TBCA, particularly in the abandoned agricultural field, where soil C storage may be increasing more rapidly. Therefore, the steady-state model is unsuited to these Mediterranean ecosystems and the full model is recommended.  相似文献   

7.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

8.
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass.  相似文献   

9.
Long-term fluxes of sulphur dioxide (SO2) have been measured over a mixed suburban forest subjected to elevated SO2 concentrations. The net exchange was shown to be highly dynamic with substantial periods of both upward and downward fluxes observed in excellent conditions for flux measurement. Upward fluxes constituted 30% of selected fluxes and appeared more frequently when the canopy was acidic. Upward fluxes were shown to be due to desorption from a drying surface or when ambient levels declined after periods of increased SO2 exposure.The long term average SO2 flux (F) was −59 ng SO2 m−2 s−1 for the period 1997-2009 corresponding to an average SO2 concentration of 12.3 μg SO2 m−3 and a deposition velocity υd of 5 mm s−1. The smallest deposition fluxes and υd were measured in dry conditions (−42 ng m−2 s−1 and 3.5 mm s−1, resp.), which represented 57% of all cases. Wet canopies were more efficient sinks for SO2 and a dew-wetted canopy had a smaller υd (6 mm s−1) than a rain-wetted canopy (ca 10 mm s−1). Seasonal variability reflected differences in chemical climate or canopy buffering properties. During the summer half-year when surface acidity was low due to higher NH3/SO2 ratios, a higher deposition efficiency (υd/υdmax) and lower non-stomatal resistance (Rw) were observed compared to winter conditions. Comparisons of Rc for different combinations of canopy wetness and surface acidity categories emphasized the importance of both factors in regulating the non-stomatal sinks of SO2. Increased surface water acidity gradually led to a lower υd/υdmax and an increased Rc for all considered canopy wetness categories. The smallest υd/υdmax ratio and highest Rc were obtained for a dry canopy with high surface acidity. Conversely, a rain-wetted canopy was the most efficient sink for SO2. The canopy sink strength was further enhanced by high friction velocities (u*), optimizing the mechanical mixing into the canopy. Long-term trends were strongly coupled to changes in the NH3/SO2 ratio, which has clearly enhanced the deposition efficiency of SO2 in recent years.  相似文献   

10.
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential.  相似文献   

11.
Recent research on life in extreme environments has shown that some microorganisms metabolize at extremely low temperatures in Arctic and Antarctic ice and permafrost. Here, we present kinetic data on CO2 and 14CO2 release from intact and 14C-glucose amended tundra soils (Barrow, Alaska) incubated for up to a year at 0 to −39°C. The rate of CO2 production declined exponentially with temperature but it remained positive and measurable, e.g. 2-7 ng CO2-C cm−3 soil d−1, at −39 °C. The variation of CO2 release rate (v) was adequately explained by the double exponential dependence on temperature (T) and unfrozen water content (W) (r2>0.98): v=A exp(λT+kW) and where A, λ and k are constants. The rate of 14CO2 release from added glucose declined more steeply with cooling as compared with the release of total CO2, indicating that (a) there could be some abiotic component in the measured flux of CO2 or (b) endogenous respiration is more cold-resistant than substrate-induced respiration. The respiration activity was completely eliminated by soil sterilization (1 h, 121 °C), stimulated by the addition of oxidizable substrate (glucose, yeast extract), and reduced by the addition of acetate, which inhibits microbial processes in acidic soils (pH 3-5). The tundra soil from Barrow displayed higher below-zero activity than boreal soils from West Siberia and Sweden. The permafrost soils (20-30 cm) were more active than the samples from seasonally frozen topsoil (0-10 cm, Barrow). Finding measurable respiration to −39 °C is significant for determining, understanding, and predicting current and future CO2 emission to the atmosphere and for understanding the low temperature limits of microbial activity on the Earth and on other planets.  相似文献   

12.
This paper reports the results of soil respiration (SR, including heterotrophic and autotrophic respiration), in a presumably successional series (early, middle and advanced) of subtropical forests in Dinghushan Biosphere Reserve in Guangdong Province, China. A static chamber method was used to characterize SR in dynamics of diurnal and seasonal patterns. The relationships of SR with soil temperature (ST) at 5 cm depth and with soil moisture (SM) at 0-10 cm depth were studied in order to estimate the annual SR of each of the forests. The annual SR in a climax forest community, monsoon evergreen broad-leaved forest (MEBF) was estimated as 1163.0 g C m−2 year−1 and in its successional communities, coniferous and broad-leaved mixed forest (MF) and the Masson pine forest (MPF) were 592.1 g C m−2 year−1, 1023.7 g C m−2 year−1, respectively. In addition, removal of surface litter led to the reduction of annual SR by 27-45% in those three forests. Analysis of the results indicated that the annual SR was highly correlated with both ST and SM. Furthermore, ST and SM themselves were highly correlated with each other across season in this study area. Thus for seasonal predictive SR model, either ST or SM could be integrated. However, for SR daily change prediction, both ST and SM were required because of confounding effects of ST and SM on a diurnal time scale. The Q10 values of SR derived from ST dependence function were 2.37, 2.31 and 2.25 in the three forests: MPF, MF and MEBF, respectively, suggesting a decreasing trend of the Q10 with the degree of forest succession.  相似文献   

13.
The effects of abiotic and biotic drivers on soil respiration (Rs) were studied in four grassland and one forest sites in Hungary in field measurement campaigns (duration of studies by sites 2-7 years) between 2000 and 2008. The sites are within a 100 km distance of each other, with nearly the same climate, but with different soils and vegetation. Soil respiration model with soil temperature (Ts) and soil water content (SWC) as independent variables explained larger part of variance (range 0.47-0.81) than the Lloyd and Taylor model (explained variance: 0.31-0.76). Direct effect of SWC on Rs at much smaller temporal and spatial scale (1.5 h, and a few meters, respectively) was verified.Soil water content optimal for Rs (SWCopt) was shown to significantly (positively) depend on soil clay content, while parameter related to activation energy (E0) was significantly (negatively) correlated to the total organic carbon content (TOC) in the upper 10 cm soil layer. Dependence of model parameters on soil properties could easily be utilized in models of soil respiration. The effect of current (a few hours earlier) assimilation rates on soil respiration after removing the effect of abiotic covariates (i.e. temperature and water supply) is shown. The correlation maximum between the Rs residuals (Rs_res, from the Rs (SWC, Ts) model) and net ecosystem exchange (NEE) was found at 13.5 h time lag at the sandy grassland. Incorporating the time-lagged effect of NEE on Rs into the model of soil respiration improved the agreement between the simulated vs. measured Rs data. Use of SWCopt and E0 parameters and consideration of current assimilation in soil respiration models are proposed.  相似文献   

14.
The distribution of organic matter (OM) in the soil profile reflects the balance between inputs and decomposition at different depths as well as transport of OM within the profile. In this study we modeled movement of OM in the soil profile as a result of mechanisms resulting in dispersive and advective movement. The model was used to interpret the distribution of 14C in the soil profile 41 years after the labeling event. The model fitted the observed distribution of 14C well (R2=0.988, AICc=−82.6), with a dispersion constant of D=0.71 cm2 yr−1 and an advection constant of v=0.0081 cm yr−1. However, the model consistently underestimated the amount of OM in the soil layers from 27 to 37 cm depth. A possible explanation for this is that different fractions of OM are transported by different mechanisms. For example, particulate OM, organomineral colloids and dissolved OM are not likely to be transported by the same mechanisms. A model with two OM fractions, one moving exclusively by dispersive processes (D=0.26 cm2 yr−1) and another moving by both dispersive (D=0.99 cm2 yr−1) and advective (v=0.23 cm yr−1) processes provided a slightly better fit to the data (R2=0.995, AICc=−83.6). More importantly, however, this model did not show the consistent underestimation from 27 to 37 cm soil depth. This corroborates the assumption that differing movement mechanisms for different OM fractions are responsible for the observed distribution of 14C in the profile. However, varying dispersion, advection, and decay of OM with depth are also possible explanations.  相似文献   

15.
Knowledge of seasonal trends and controls of soil CO2 emissions to the atmosphere is important for simulating atmospheric CO2 concentrations and for understanding and predicting the global carbon cycle. This is particularly the case for high arctic soils subject to extreme fluctuating environmental conditions. Based on field measurements of soil CO2 efflux, temperature, water content, pore gas composition in soil and frozen cores as well as detailed temperature experiments performed in the laboratory, we evaluated seasonal controls of CO2 effluxes from a well-drained tundra heath site in NE-Greenland. During the growing season, near-surface temperatures correlated well with observed CO2 effluxes (r2>0.9). However, during intensive thawing of near-surface layers we observed up to 1.5-fold higher effluxes than expected due to temperature alone. These high rates were consistent with high CO2 concentrations in frozen soil (>10% CO2) and suggested a spring burst event during soil thawing and a corresponding trapping of produced CO2 during winter. Laboratory experiments revealed that microbial soil respiration continued down to a least −18 °C and that up to 80% of the produced CO2 was trapped in soil at temperatures between 0 and −9 °C. The trapping of CO2 in frozen soil was positively correlated with soil moisture (r2=0.85) and led to an abrupt change of the temperature sensitivity (Q10) observed for soil CO2 release at 0 °C with Q10 values below 0 °C being up to 100-fold higher than above 0 °C. The results of sub-zero CO2 production allowed us to predict the microbial soil respiration throughout the year and to evaluate to what extent burst events during thawing can be explained by the release of CO2 being produced and trapped during winter. Taking only the upper 20 cm of the soil into account, winter soil respiration accounted for about 40% of the annual soil respiration. At least 14% of the winter CO2 production was trapped during the winter 2000-2001 and observed to be released upon thawing. Thus, the site-specific winter soil respiration is an important part of the annual C cycle and CO2 trapping should be accounted for in future field and modelling studies of soil respiration dynamics in arctic ecosystems. In conclusion, we have discovered a soil moisture dependent uncoupling of CO2 production and release in frozen soils with important implications for future field studies of Arctic C cycling.  相似文献   

16.
17.
Understanding the sensitivity of soil respiration to temperature change and its impacting factors is an important base for accurately evaluating the response of terrestrial carbon balance to future climatic change, and thus has received much recent attention. In this study, we synthesized 161 field measurement data from 52 published papers to quantify temperature sensitivity of soil respiration in different Chinese ecosystems and its relationship with climate factors, such as temperature and precipitation. The results show that the observed Q10 value (the factor by which respiration rates increase for a 10 °C increase in temperature) is strongly dependent on the soil temperature measurement depth. Generally, Q10 significantly increased with the depth (0 cm, 5 cm, and 10 cm) of soil temperature measuring point. Different ecosystem types also exhibit different Q10 values. In response to soil temperature at the depth of 5 cm, alpine meadow and tundra has the largest Q10 value with magnitude of 3.05 ± 1.06, while the Q10 value of evergreen broadleaf forests is approximately half that amount (Q10 = 1.81 ± 0.43). Spatial correlation analysis also shows that the Q10 value of forest ecosystems is significantly and negatively correlated with mean annual temperature (R = −0.51, P < 0.001) and mean annual precipitation (R = −0.5, P < 0.001). This result not only implies that the temperature sensitivity of soil respiration will decline under continued global warming, but also suggests that such acclimation of soil respiration to warming should be taken into account in forecasting future terrestrial carbon cycle and its feedback to climate system.  相似文献   

18.
Partitioning the soil surface CO2 flux (RS) flux is an important step in understanding ecosystem-level carbon cycling, given that RS is poorly constrained and its source components may have different sensitivities to climate change. Trenched plots are an inexpensive but labor-intensive method of separating the RS flux into its root (autotrophic) and soil (heterotrophic) components. This study tested if various methods of plant suppression in trenched plots affected RS fluxes, quantified the RS response to soil temperature and moisture changes, and estimated the heterotrophic contribution to RS. It was performed in a boreal black spruce (Picea mariana) plantation, using a randomized complete block design, during the 2007 and 2008 growing seasons. Trenched plots had significantly lower RS than control plots, with differences appearing ∼100 days after trenching; spatial variability doubled immediately after trenching but then declined throughout the experiment. Most trenching treatments had significantly lower (by ∼0.5 μmol CO2 m−2 s−1) RS than the controls, and there was no significant difference in RS among the various trenching treatments. Soil temperature at 2 cm explained more RS variability than did 10-cm temperature or soil moisture. Temperature sensitivity (Q10) declined in the control plots from ∼2.6 (at 5 °C) to ∼1.6 (at 15 °C); trenched plots values were higher, from 3.1 at 5 °C to 1.9 at 15 °C. We estimated RS for the study period to be 241 ± 40 g C m−2, with live roots contributing 64% of RS after accounting for fine root decay, and 293 g C m−2 for the entire year. These findings suggest that laborious hand weeding of trenched plot vegetation may be replaced by other methods, facilitating future studies of this large and poorly-understood carbon flux.  相似文献   

19.
Crop production in Georgia and the Southeastern U.S. can be limited by water. Highly-weathered, drought-prone soils are susceptible to runoff and erosion. Rainfall patterns generate runoff producing storms followed by extended periods of drought during the crop growing season. Thus, supplemental irrigation is often needed to sustain profitable crop production. Increased water retention and soil conservation would efficiently improve water use and reduce irrigation amounts/costs and sedimentation, and sustain productive farm land, thus improving producer's profit margin. Soil amendments, such as flue gas desulfurization (FGD) gypsum, have been shown to retain rainfall and/or irrigation water through increased infiltration while decreasing runoff (R) and sediment (E). Objectives were to quantify rainfall partitioning and sediment delivery improvements with surface applied FGD gypsum from an Ultisol managed to conventional till (CT) and to assess the feasibility of using FGD gypsum on agricultural land in southern Georgia. A field study (Faceville loamy sand, Typic Kandiudult) was established (2006, 2007) near Dawson, GA managed to CT, irrigated cotton (Gossypium hirsutum L.). FGD gypsum application rates evaluated were 0, 1.1, 2.2, 4.5, and 9 Mg ha− 1. Gypsum treatments and simulated rainfall (50 mm h− 1 for 1 h) were applied to 2-m wide × 3-m long field plots (n = 3). Runoff and E were measured from each 6-m2 plot (slope = 1%). FGD gypsum plots averaged 26% more infiltration (INF), 40% less R, 58% less E, 27% lower maximum R rates (Rmax), and 2 times lower maximum E rates (Emax) than control plots. Values of INF and water for crop use increased, and R, E, Rmax, and Emax decreased as FGD gypsum application rate increased. Values of INF, R, E, Rmax, and Emax for 9 Mg ha− 1 plots were as much as 17% greater, 35% less, 1.9 times less, 35% less, and 1.9 times less than those from other FGD gypsum plots, respectively; and 40% greater, 40% less, 2.2 times less, 52% less, and 2.9 times less than those from control plots, respectively. Applying FGD gypsum to agricultural lands is a cost-effective management practice for producers in Georgia that beneficially impacts natural resource conservation, producer profit margins, and environmental quality. Agriculture in the Southeast provides a viable market for the electric power industry to convert disposal costs of FGD gypsum into a profitable commodity.  相似文献   

20.
An open dynamic chamber system was used to measure the soil CO2 efflux intensively and continuously throughout a growing season in a mature spruce forest (Picea abies) in Southern Germany. The resulting data set contained a large amount of temporally highly resolved information on the variation in soil CO2 efflux together with environmental variables. Based on this background, the dependencies of the soil CO2 efflux rate on the controlling environmental factors were analysed in-depth. Of the abiotic factors, soil temperature alone explained 72% of the variation in the efflux rate, and including soil water content (SWC) as an additional variable increased the explained variance to about 83%. Between April and December, average rates ranged from 0.43 to 5.15 μmol CO2 m−2 s−1 (in November and July, respectively) with diurnal variations of up to 50% throughout the experiment. The variability in wind speed above the forest floor influenced the CO2 efflux rates for measuring locations with a litter layer of relatively low bulk density (and hence relatively high proportions of pore spaces). For the temporal integration of flux rates for time scales of hours to days, however, wind velocities were of no effect, reflecting the fact that wind forcing acts on the transport, but not the production of CO2 in the soil. The variation in both the magnitude of the basal respiration rate and the temperature sensitivity throughout the growing season was only moderate (coefficient of variation of 15 and 25%, respectively). Soil water limitation of the CO2 production in the soil could be best explained by a reduction in the temperature-insensitive basal respiration rate, with no discernible effect on the temperature sensitivity. Using a soil CO2 efflux model with soil temperature and SWC as driving variables, it was possible to calculate the annual soil CO2 efflux for four consecutive years for which meteorological data were available. These simulations indicate an average efflux sum of 560 g C m−2 yr−1 (SE=22 g C m−2 yr−1). An alternative model derived from the same data but using temperature alone as a driver over-estimated the annual flux sum by about 7% and showed less inter-annual variability. Given a likely shift in precipitation patterns alongside temperature changes under projected global change scenarios, these results demonstrate the necessity to include soil moisture in models that calculate the evolution of CO2 from temperate forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号