首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent to which complex interrelationships between plants and microorganisms influence organic matter dynamics is critical to our understanding of global C cycles in changing environments. We examined the hypothesis that patterns of soil microbial activity and functional composition differ among vegetation types in northern peatland ecosystems. Microbial characteristics were compared among peatlands differing in plant growth form (tree, shrub/moss, sedge) in two regions (New York State and West Virginia). Microbial activity (basal respiration) was greater in surface (0-15 cm) than subsurface (15-30 cm) peat and from sites dominated by shrubs and Sphagnum moss (3.9±0.65 μg C g−1 h−1) compared to forested (1.8±0.20 μg C g−1 h−1) or sedge-dominated sites (1.9±0.38 μg C g−1 h−1). Microbial activity was not related to decomposability of peat organic matter among vegetation types, and activity was unexpectedly higher in sites with lower peat pH and higher water table level. Substrate-induced respiration (SIR) did not show a clear pattern among vegetation types, but was greater in surface than subsurface peat. Microbial responsiveness to added glucose was very low. The ratio of basal respiration to SIR varied between 0.39 and 0.72 and, like activity, was highest in shrub/Sphagnum sites. Microbial substrate utilization patterns (assayed with BIOLOG® GN plates) also differed between shrub/Sphagnum sites and forest or sedge sites, suggesting that C fluxes were mediated by different assemblages of microorganisms in shrub/Sphagnum peatlands. Principal component (PC) scores indicated more utilization of N-containing compounds and carboxylic acids, and less utilization of carbohydrates by microbial communities in shrub/Sphagnum sites. PC scores were much more variable both within and among vegetation types for sites in West Virginia than in New York State, and a greater diversity of C sources were utilized in WV (57±3) than NYS (47±2) peat. Our results suggest a link between microbial respiratory activity and microbial functional composition as they vary among these peatland vegetation types.  相似文献   

2.
We developed and tested a new method to collect CO2 from the surface to deep layers of a peatland for radiocarbon analysis. The method comprises two components: i) a probe equipped with a hydrophobic filter that allows entry of peat gases by diffusion, whilst simultaneously excluding water, and, ii) a cartridge containing zeolite molecular sieve that traps CO2 passively. We field tested the method by sampling at depths of between 0.25 and 4 m at duplicate sites within a temperate raised peat bog. CO2 was trapped at a depth-dependent rate of between ∼0.2 and 0.8 ml d−1, enabling sufficient CO2 for routine 14C analysis to be collected when left in place for several weeks. The age of peatland CO2 increased with depth from modern to ∼170 BP for samples collected from 0.25 m, to ∼4000 BP at 4 m. The CO2 was younger, but followed a similar trend to the age profile of bulk peat previously reported for the site (Langdon and Barber, 2005). δ13C values of recovered CO2 increased with depth. CO2 collected from the deepest sampling probes was considerably 13C-enriched (up to ∼+9‰) and agreed well with results reported for other peatlands where this phenomenon has been attributed to fermentation processes. CO2 collected from plant-free static chambers at the surface of the mire was slightly 14C-enriched compared to the contemporary atmosphere, suggesting that surface CO2 emissions were predominantly derived from carbon fixed during the post-bomb era. However, consistent trends of enriched 13C and depleted 14C in chamber CO2 between autumn and winter samples were most likely explained by an increased contribution of deep peat CO2 to the surface efflux in winter. The passive sampling technique is readily portable, easy to install and operate, causes minimal site disturbance, and can be reliably used to collect peatland CO2 from a wide range of depths.  相似文献   

3.
After implementation of legislative measures for the reduction of environmental hazards from nitrate leaching and ammonia volatilisation when using organic manures and fertilizers in Europe, much attention is now paid to the specific effects of these fertilizers on the dynamics of global warming-relevant trace gases in soil. Particularly nitrogen fertilizers and slurry from animal husbandry are known to play a key role for the CH4 and N2O fluxes from soils. Here we report on a short-term evaluation of trace gas fluxes in grassland as affected by single or combined application of mineral fertilizer and organic manure in early spring. Methane fluxes were characterised by a short methane emission event immediately after application of cattle slurry. Within the same day methane fluxes returned to negative, and on average over the 4-day period after slurry application, only a small but insignificant trend to reduced methane oxidation was found. Nitrous oxide emissions showed a pronounced effect of combined slurry and mineral fertilizer application. In particular fresh cattle slurry combined with calcium ammonium nitrate (CAN) mineral fertilizer induced an increase in mean N2O flux during the first 4 days after application from 10 to 300 μg N2O-N m−2 h−1. 15N analysis of emitted N2O from 15N-labelled fertilizer or manure indicated that easily decomposable slurry C compounds induced a pronounced promotion of N2O-N emission derived from mineral CAN fertilizer. Fluxes after application of either mineral fertilizer or slurry alone showed an increase of less than 5-fold. The NOx sink strength of the soil was in the range of −6 to −10 μg NOx-N m−2 h−1 and after fertilization it showed a tendency to be reduced by no more than 2 μg NOx-N m−2 h−1, which was a result of both, increased NO emission and slightly increased NO2 deposition. Associated determination of the N2O:N2 emission ratio revealed that after mineral N application (CAN) a large proportion (c. 50%) was emitted as N2O, while after application of slurry with easily decomposable C and predominantly -N serving as N-source, the N2O:N2 emission ratio was 1:14, i.e. was changed in favour of N2. Our work provides evidence that particularly the combination of slurry and nitrate-containing N fertilizers gives rise to considerable N2O emissions from mineral fertilizer N pool.  相似文献   

4.
This study examines the recovery of the microbial compartment following active restoration of a North American ombrotrophic peatland extracted for horticultural peat-based substrates and restored by the Sphagnum moss transfer method. We used phospholipid fatty acids (PLFAs) to portrait the microbial community structure and Community Level Physiological Profiles (CLPP) to describe the functional diversity of the microbial communities. Our results indicate that the PLFA profiles were different between the beginning and the end of the growing season, but that it was impossible to distinguish five different vegetation classes found along the disturbance-recovery gradient on the basis of the microbial community structure. The pH, the cover of mosses, Ledum groenlandicum and Eriophorum vaginatum var. spissum were the best environmental predictors for the PLFA composition. The newly formed peat found in aerobic conditions beneath restored Sphagnum carpets had the highest decomposition capacity, whereas the lowest rates were found in the surface samples of non-restored conditions or in the deepest horizons of the natural samples. A large proportion of the variation in the physiological profiles was explained with variables related to the vegetation cover, the physicochemical environment and the microbial structure of the community, which is very promising for future monitoring studies. Overall, this study demonstrates that the recovery of particular plant groups, namely mosses and shrubs in restored peatlands might be the driver of changes occurring in the structure of the microbial communities in restored peatlands.  相似文献   

5.
In central Ontario, elevated SO4 concentrations and export have been measured in both upland and wetland-draining catchments following summer droughts, although the source of excess SO4 is unclear. The objective of this study was to determine the effects of drying and re-wetting and temperature, respectively, on the release of SO4 from the primary S pools in wetlands (Sphagnum and peat) and uplands (forest floor and mineral soil), using material collected from the PC1 catchment in Haliburton County, and from catchment S50 in the Turkey Lakes Watershed. Peat exhibited the most marked response to drying of the four materials considered, and within 24 h of re-wetting dried peat from both catchments released 3-4 times more SO4 (50-67 mg kg−1 S-SO4) than continuously moist peat (16 mg kg−1 S-SO4), although temperature had only a marginal effect on SO4 concentrations. There was no immediate response of Sphagnum to either drying or temperature, although S-SO4 concentrations in Sphagnum tended to increase over the 30-day (d) incubation. There was a small but immediate increase in S-SO4 concentrations in forest floor material (LFH) from both catchments within the first 24 h of incubation, which was greatest in treatments that were dried and/or incubated at a higher temperature. In contrast, neither temperature nor drying appeared to affect SO4 release from mineral soil collected from either site. Results of laboratory incubations suggest that increases in SO4 concentration that have been reported in wetland-draining streams immediately following summer dry periods may be quantitatively explained by drying and re-wetting of peat rather than increased mineralization in Sphagnum. Similarly, the higher SO4 concentrations that have been measured in upland streams following summer droughts may in part be due to enhanced SO4 release from the forest floor following drying and re-wetting. In contrast, while the mineral soil constitutes a large pool of total S, it does not appear to be responsive to changes in moisture or temperature in the short-term (<30 d) and therefore likely does not contribute to reported climate-related temporal variations in stream SO4.  相似文献   

6.
Agricultural peat soils in the Sacramento-San Joaquin Delta, California have been identified as an important source of dissolved organic carbon (DOC) and trihalomethane precursors in waters exported for drinking. The objectives of this study were to examine the primary sources of DOC from soil profiles (surface vs. subsurface), factors (temperature, soil water content and wet-dry cycles) controlling DOC production, and the relationship between C mineralization and DOC concentration in cultivated peat soils. Surface and subsurface peat soils were incubated for 60 d under a range of temperature (10, 20, and 30 °C) and soil water contents (0.3-10.0 g-water g-soil−1). Both CO2-C and DOC were monitored during the incubation period. Results showed that significant amount of DOC was produced only in the surface soil under constantly flooded conditions or flooding/non-flooding cycles. The DOC production was independent of temperature and soil water content under non-flooded condition, although CO2 evolution was highly correlated with these parameters. Aromatic carbon and hydrophobic acid contents in surface DOC were increased with wetter incubation treatments. In addition, positive linear correlations (r2=0.87) between CO2-C mineralization rate and DOC concentration were observed in the surface soil, but negative linear correlations (r2=0.70) were observed in the subsurface soil. Results imply that mineralization of soil organic carbon by microbes prevailed in the subsurface soil. A conceptual model using a kinetic approach is proposed to describe the relationships between CO2-C mineralization rate and DOC concentration in these soils.  相似文献   

7.
Forest soils contain the largest carbon stock of all terrestrial biomes and are probably the most important source of carbon dioxide (CO2) to atmosphere. Soil CO2 fluxes from 54 to 72-year-old monospecific stands in Rwanda were quantified from March 2006 to December 2007. The influences of soil temperature, soil water content, soil carbon (C) and nitrogen (N) stocks, soil pH, and stand characteristics on soil CO2 flux were investigated. The mean annual soil CO2 flux was highest under Eucalyptus saligna (3.92 μmol m−2 s−1) and lowest under Entandrophragma excelsum (3.13 μmol m−2 s−1). The seasonal variation in soil CO2 flux from all stands followed the same trend and was highest in rainy seasons and lowest in dry seasons. Soil CO2 flux was mainly correlated to soil water content (R2 = 0.36-0.77), stand age (R2 = 0.45), soil C stock (R2 = 0.33), basal area (R2 = 0.21), and soil temperature (R2 = 0.06-0.17). The results contribute to the understanding of factors that influence soil CO2 flux in monocultural plantations grown under the same microclimatic and soil conditions. The results can be used to construct models that predict soil CO2 emissions in the tropics.  相似文献   

8.
Applying pig slurry (PS) on agricultural soils is a common practice. However, its impact on soil organic C dynamics is not clear. This experiment investigated the use of natural 13C abundance to study the short-term C mineralization of anaerobically stored PS under field conditions. Measurements of δ13C-CO2 were made on soil air samples obtained from a bare sandy loam during 22 d following incorporation of either PS alone, PS+barley straw, or barley straw alone; an unamended treatment was used as a control. Slurry C was enriched in 13C (−20.0‰) because of the high corn (Zea mays L.) content of the animal diet. This value contrasted with δ13C of −28.4‰ for the soil organic matter and of −29.0‰ for the barley straw. A peak of high δ13CO2 values (average of −9.2‰) was observed on the day of PS application and was attributed to the dissociation of PS carbonates when mixed with the relatively acidic soil. After this initial burst, 36% of the evolved CO2 originated from the decomposing PS. After 22 d of incubation, approx. 20% of the PS-C had been lost as CO2. This short-term field study did not show any priming effect of PS on the mineralization of straw or native soil C. Due to its heterogeneity, the use of the isotopic composition of the evolved CO2 for estimating PS decomposition requires precaution either through the use of a specific experimental design involving comparable C3 and C4 treatments, or calculations to account for the presence of 13C-enriched inorganic C in the PS.  相似文献   

9.
Comparisons among 4 peatland sites representing a gradient of increasing Fe, Al, Mn, and S loading revealed significant accumulation of total Fe, Al, and S, but not Mn, in surface (0 to 20 cm deep) peat along the gradient. Iron and Al accumulation were contributed mainly by organically bound fractions, with oxides contributing to a lesser extent. Although SO4 2? and Fe sulfides showed significant increases in concentration along the gradient, most of the accumulation of total S was contributed by organic, rather than inorganic S. Laboratory studies of Fe2+ adsorption by peat indicated that increasing the pH of added Fe2+ solutions (pH values of 3, 4, 5, and 6) did not significantly affect Langmuir equation estimates of either maximum Fe2+ adsorption capacity or the affinity of peat for Fe2+. Regardless of the pH of the added Fe2+ solutions, final solution pH values were relatively uniform, averaging about 3.4, reflecting a considerable bufferring capacity of Sphagnum peat. Factors affecting the accumulation of metals and S in peat remain topics for further investigation.  相似文献   

10.
Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured from experimental dung and urine patches placed on boreal pasture soil during two growing seasons and one autumn period until soil freezing. N2O emissions in situ were studied by a static chamber method. NO was measured with a dynamic chamber method using a NO analyser in situ. Mean emissions from the control plots were 47.6±4.5 μg N2ON m−2 h−1 and 12.6±1.6 μg NON m−2 h−1. N2O and NO emissions from urine plots (132±21.2 μg N2ON m−2 h−1 and 51.9±7.6 μg NON m−2 h−1) were higher than those from dung plots (110.0±20.1 μg N2ON m−2 h−1 and 14.7±2.1 μg NON m−2 h−1). There was a large temporal variation in N2O and NO emissions. Maximum N2O emissions were measured a few weeks after dung or urine application, whereas the maximum NO emissions were detected the following year. NO was responsible on average 14% (autumn) and 34% (summer) of total (NO+N2O)N emissions from the pasture soil. NO emissions increased with increasing soil temperature and with decreasing soil moisture. N2O emissions increased with increasing soil moisture, but did not correlate with soil temperature. Therefore we propose that N2O and NO were produced mainly during different microbial processes, i.e., nitrification and denitrification, respectively. The results show that the overall conditions and mechanism especially for emissions of NO are still poorly understood but that there are differences in the mechanisms regulating N2O and NO production.  相似文献   

11.
Methane fluxes were measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The CH4 fluxes in forest ecosystem ranged from −4.53 to 8.40 μg C m−2 h−1, in the oil palm ecosystem from −32.78 to 4.17 μg C m−2 h−1 and in the sago ecosystem from −7.44 to 102.06 μg C m−2 h−1. A regression tree approach showed that CH4 fluxes in each ecosystem were related to different underlying environmental factors. They were relative humidity for forest and water table for both sago and oil palm ecosystems. On an annual basis, both forest and sago were CH4 source with an emission of 18.34 mg C m−2 yr−1 for forest and 180 mg C m−2 yr−1 for sago. Only oil palm ecosystem was a CH4 sink with an uptake rate of −15.14 mg C m−2 yr−1. These results suggest that different dominant underlying environmental factors among the studied ecosystems affected the exchange of CH4 between tropical peatland and the atmosphere.  相似文献   

12.
Several recent studies have indicated that an enriched atmosphere of carbon dioxide (CO2) could exacerbate the intensity of plant invasions within natural ecosystems, but little is known of how rising CO2 impacts the belowground characteristics of these invaded systems. In this study, we examined the effects of elevated CO2 and nitrogen (N) inputs on plant and soil microbial community characteristics of plant communities invaded by reed canary grass, Phalaris arundinacea L. We grew the invasive grass under two levels of invasion: the invader was either dominant (high invasion) at >90% plant cover or sub-dominant (low invasion) at <50% plant cover. Experimental wetland communities were grown for four months in greenhouses that received either 600 or 365 μl l−1 (ambient) CO2. Within each of three replicate rooms per CO2 treatment, the plant communities were grown under high (30 mg l−1) or low (5 mg l−1) N. In contrast to what is often predicted under N limitation, we found that elevated CO2 increased native graminoid biomass at low N, but not at high N. The aboveground biomass of reed canary grass did not respond to elevated CO2, despite it being a fast-growing C3 species. Although elevated CO2 had no impact on the plant biomass of heavily invaded communities, the relative abundance of several soil microbial indicators increased. In contrast, the moderately invaded plant communities displayed increased total root biomass under elevated CO2, while little impact occurred on the relative abundance of soil microbial indicators. Principal components analysis indicated that overall soil microbial community structure was distinct by CO2 level for the varying N and invasion treatments. This study demonstrates that even when elevated CO2 does not have visible effects on aboveground plant biomass, it can have large impacts belowground.  相似文献   

13.
Peatland restoration via rewetting aims to recover biological communities and biogeochemical processes typical to pristine peatlands. While rewetting promotes recovery of C accumulation favorable for climate mitigation, it also promotes methane (CH4) emissions. The potential for exceptionally high emissions after rewetting has been measured for Central European peatland sites previously grazed by cattle. We addressed the hypothesis that these exceptionally high CH4 emissions result from the previous land use. We analyzed the effects of cattle dung application to peat soils in a short- (2 weeks), a medium- (1 year) and a long-term (grazing) approach. We measured the CH4 production potentials, determined the numbers of methanogens by mcrA qPCR, and analyzed the methanogen community by mcrA T-RFLP-cloning-sequencing. Dung application significantly increased the CH4 production potential in the short- and the medium-term approach and non-significantly at the cattle-grazed site. The number of methanogens correlated with the CH4 production in the short- and the long-term approach. At all three time horizons, we found a shift in methanogen community due to dung application and a transfer of rumen methanogen sequences (Methanobrevibacter spp.) to the peatland soil that seemed related to increased CH4 production potential. Our findings indicate that cattle grazing of drained peatlands changes their methanogenic microbial community, may introduce rumen-associated methanogens and leads to increased CH4 production. Consequently, rewetting of previously cattle-grazed peatlands has the potential to lead to increased CH4 emissions. Careful consideration of land use history is crucial for successful climate mitigation with peatland rewetting.  相似文献   

14.
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O.  相似文献   

15.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

16.
Root exudates and litter are the main sources of inputs of labile carbon into the microbial pool in successional ecosystems. Here we studied whether typical pioneer species (Eriophorum vaginatum, Eriophorum angustifolium and Calluna vulgaris) alter the functional response of the microbial community of a previously cutover peatland. Peat was sampled at three depths (0–5, 20–25 and 40–45 cm) from beneath these species and from bare soil areas. MicroResp analysis using ecologically relevant, radiolabelled, carbon sources showed significant separation in community level physiological profiles (CLPP) of soil microorganisms according to peat depth. This effect was also reflected in microbial biomass carbon, which also decreased with increasing depth. Furthermore, distinct differences in CLPP were observed between the three plant species and the bare soil in the absence of an effect on microbial biomass carbon or total soil carbon. The plant species effects were driven by differential utilisation of xylose, glutamic acid, lysine and phenylethylamine. The data suggest that ‘new’ carbon inputs from plants colonising abandoned cutover peatland may support communities of microorganisms that have functionally distinct roles in carbon turnover.  相似文献   

17.
Plant-plant and plant-soil interactions play a key role in determining plant community structure and ecosystem function. However, the effects of global change on the interplay between co-occurring plants and soil microbes in successional communities are poorly understood. In this study, we investigated competition for nitrogen (N) between soil microorganisms, grass plants and establishing tree seedlings under factorial carbon dioxide (CO2) and N treatments. Fraxinus excelsior seedlings were germinated in the presence or absence of grass competition (Dactylis glomerata) at low (380 μmol mol−1) or high (645 μmol mol−1) CO2 and at two levels of N nutrition in a mesocosm experiment. Pulse 15N labelling was used to examine N partitioning among plant and soil compartments. Dactylis exerted a strong negative effect on Fraxinus biomass, N capture and 15N recovery irrespective of N and CO2 treatment. In contrast, the presence of Dactylis had a positive effect on the microbial N pool. Plant and soil responses to N treatment were of a greater magnitude compared with responses to elevated CO2, but the pattern of Fraxinus- and microbial-N pool response to N and CO2 varied depending on grass competition treatment. Within the Dactylis competition treatment, decreases in Fraxinus biomass in response to N were not mirrored by decreases in tree seedling N content, suggesting a shift from below- to above-ground competition. In the Dactylis-sown pots, 15N recovery could be ranked Dactylis > microbial pool > Fraxinus in all N and CO2 treatment combinations. Inequalities between Fraxinus and soil microorganisms in terms of 15N recovery were exacerbated by N addition. Contrary to expectations, elevated CO2 did not increase plant-microbe competition. Nevertheless, microbial 15N recovery showed a small positive increase in the high CO2 treatment. Overall, elevated CO2 and N supply did not interact on plant/soil N partitioning. Our data suggest that the competitive balance between establishing tree seedlings and grass plants in an undisturbed sward is relatively insensitive to CO2 or N-induced modifications in N competition between plant and soil compartments.  相似文献   

18.
Decomposition of organic materials, oxygen consumption, and carbon dioxide emission were investigated in Masukata mire, a small minerotrophic mire in central Japan. We selected three dominant community types in the mire, a Sphagnum palustre community, a Phragmites australis community, and an Alnus japonica community, for the decomposition study sites. Decomposition rates were measured in the field by examining mass loss of peat and cellulose for 6 months. The oxygen consumption rate was measured in the field using a closed chamber equipped with an oxygen electrode. The carbon dioxide emission rate of the peat was measured by an infrared gas analyser in the laboratory under controlled conditions. Results of these measurements were tested by correlation analysis. The rate of mass loss of peat positively correlated with the CO2 emission rate. The cellulose decomposition rate showed significant differences among community types, and it had significant positive correlation with the oxygen consumption rate. Although oxygen consumption measurement is not generally used to estimate peatland soil respiration, the oxygen consumption method can be used for predicting long-term decomposition rate according to different vegetation types within a short time.  相似文献   

19.
Recognition of peatlands as a key natural store of terrestrial carbon has led to new initiatives to protect and restore them. Some afforested bogs are being clear-felled and restored (forest-to-bog restoration) to recover pre-afforestation ecosystem function. However, little is known about differences in the peat properties between intact, afforested and restored bogs. A stratified random sampling procedure was used to take 122 peat cores from three separate microforms associated with intact (hollows; hummocks; lawns), afforested and restored bogs (furrows; original surface; ridges) at two raised and two blanket bog locations in Scotland. Common physical and chemical peat properties at eight depths were measured in the laboratory. Differences in bulk density, moisture and carbon content between the afforested (mean = 0.103 g cm−3, 87.8% and 50.9%, respectively), intact (mean = 0.091 g cm−3, 90.3% and 51.3%, respectively) and restored bogs (mean = 0.095 g cm−3, 89.7% and 51.1%, respectively) were small despite their statistical significance. The pH was significantly lower in the afforested (mean = 4.26) and restored bogs (mean = 4.29) than the intact bogs (mean = 4.39), whereas electrical conductivity was significantly higher (mean: afforested = 34.2, restored = 38.0, intact = 25.3 μS cm−1). While significant differences were found between treatments, effect sizes were mainly small, and greater differences in pH, electrical conductivity, specific yield and hydraulic conductivity existed between the different intact bogs. Therefore, interactions between geographic location and land management need to be considered when interpreting the impacts of land-use change on peatland properties and functioning.  相似文献   

20.
In boreal forests, canopy-scale emissions of biogenic volatile organic compounds (BVOCs) are rather well characterised, but knowledge of ecosystem-scale BVOC emissions is still inadequate. We used adsorbent tubes to measure BVOCs from a boreal Scots pine (Pinus sylvestris L.) forest floor in southern Finland and analysed the compounds with a gas chromatograph-mass spectrometer. The most abundant compound group was the monoterpenes (averaging 5.04 μg m−2 h−1), in which α-pinene, Δ3-carene and camphene contributed over 90% of the emissions. Emissions of other terpenoids (isoprene and sesquiterpenes) were low (averaging 0.05 and 0.04 μg m−2 h−1, respectively). BVOC emissions from the forest floor varied seasonally, peaking in early summer and autumn, with most of the compounds following similar patterns. The emission pattern was sustained throughout the measurement period, suggesting that the main sources of the emissions remained more or less stable. We compared the BVOC fluxes with environmental parameters such as temperature, precipitation and PAR, and with fluxes of other trace gases (CO2, CH4, N2O), as well as with ground vegetation photosynthesis and with litter input. Several of these parameters were correlated with the presence of BVOCs. The sources of soil BVOC emissions are very poorly understood, but our results suggest, that changes in litter quantity and quality, soil microbial activity and the physiological stages of plants are linked with changes in BVOC fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号