首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the 14C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (<∼40‰ given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acids (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by ∼750‰ between high-14C and low-14C treatments. Assuming any difference in 14C between the high- and low-14C plots would reflect C derived from these manipulated litter additions, we estimate that <∼6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the 14C signatures of the PLFA compounds (averaging 200-220‰) is much higher that of the 2004-5 leaf litter (115‰) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from 14C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the 14C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA Δ14C signatures were higher than those measured in bulk mineral soil organic matter in our experiments, but fell within the range of 14C values measured in mineral soil roots. Together, our experiments suggest that root-derived C is the major (>60%) source of C for microbes in these temperate deciduous forest soils.  相似文献   

2.
Nitrogen (N) limits plant growth in many forest ecosystems. The largest N pool in the plant-soil system is typically organic, contained primarily within the living plants and in the humus and litter layers of the soil. Understanding the pathways by which plants obtain N is a priority for clarifying N cycling processes in forest ecosystems. In this review, the interactions between saprotrophic microorganisms and ectomycorrhizal fungi in N nutrition with a focus on the ability of ectomycorrhizal fungi to circumvent N mineralization for the nutrition of plants in forest ecosystems will be discussed. Traditionally, it is believed that in order for plants to fulfill their N requirements, they primarily utilize ammonium (NH4+) and nitrate (NO3). In temperate forest ecosystems, many woody plants form ectomycorrhizas which significantly improves phosphorus (P) and N acquisition by plants. Under laboratory conditions, ectomycorrhizal fungi have also been proven to be able to obtain N from organic sources such as protein. It was thus proposed that ectomycorrhizal fungi potentially circumvent the standard N cycle involving N mineralization by saprotrophic microorganisms. However, in many forest ecosystems the majority of the proteins in the forest floor form complexes with polyphenols. Direct access of N by ectomycorrhizal fungi from a polyphenol-protein complex may be limited. Ectomycorrhizal fungi may depend on saprotrophic microorganisms to liberate organic N sources from polyphenol complexes. Thus, interactions between saprotrophic microorganisms and ectomycorrhizal fungi are likely to be essential in the cycling of N within temperate forest ecosystems.  相似文献   

3.
Litter decomposing basidiomycetous fungi produce ligninolytic oxidases and peroxidases which are involved in the transformation of lignin, as well as humic and fulvic acids. The aim of this work was to evaluate their importance in lignin transformation in forest litter. Two litter decomposing basidiomycete species differing in their abilities to degrade lignin - Hypholoma fasciculare, and Gymnopus erythropus - were cultured on sterile or non-sterile oak litter and their transformation of a 14C-labelled synthetic lignin (dehydrogenation polymer 14C-DHP) was compared with that of the indigenous litter microflora. Both in sterile and non-sterile litter, colonisation by basidiomycetes led to higher titres of lignocellulose-degrading enzymes, in particular of laccase and Mn-peroxidase (MnP). The titres of the latter were 6 to 40-fold increased in the presence of basidiomycetes compared to non-sterile litter. During 10 weeks, G. erythropus mineralised over 31% of 14C-DHP in sterile litter and 23% in non-sterile litter compared to 14% in the non-sterile control. Lignin mineralization by H. fasciculare was comparable to the non-sterile control, 12% in sterile litter and 16% in the non-sterile litter. The largest part of 14C from 14C-DHP was transformed into humic compounds during litter treatment with both fungi as well as in the control. In addition to the fast lignin mineralization, microcosms containing G. erythropus also showed a lower final content of unaltered lignin and 23-28% of the lignin was converted into water-soluble compounds with relatively low molecular mass (<5 kDa). Both G. erythropus and H. fasciculare were also able to further mineralise humic compounds. During a 10-week fungal treatment of an artificial 14C-humic acid (14C-HA) supplemented to the natural humic material of a forest soil, the fungi mineralised 42% and 19% of the labelled material, respectively, under sterile conditions. The 14C-HA mineralization by introduced basidiomycetes in microcosms containing non-sterile humic material, however, did not significantly differ from that of a non-sterile control and was around 12%. Altogether the results show that saprobic basidiomycetes can considerably differ in their rates of lignin and humic substance conversion. Furthermore, lignin degradation in forest soil can rather slow down by interspecific competition than it is accelerated by cooperation of different microorganisms occupying specific nutritional niches. Therefore, the overall contribution of saprobic basidiomycetes depends on their particular eco-physiological status and the competitive pressure, and may be often lower than initially expected. Significant lignin transformation including partial mineralization is seemingly not exclusively dependent on exceptional high titres of ligninolytic enzymes but also on so far unknown factors. Higher endocellulase production and subsequent weight loss was found in microcosms where saprobic basidiomycetes were combined with indigenous microbes. Potentially, lignin degradation by the basidiomycetes may have increased cellulose availability to the indigenous microbes.  相似文献   

4.
We investigated carbon (C) incorporation and sources of C in the surface CO2 flux at two sites in northern England on peaty (stagnohumic) gley soil, one afforested by Picea sitchensis, the other under continuous Molinia grassland cover. Radiocarbon (14C) derived from atmospheric nuclear weapons testing was used to trace the incorporation of C into the soil and sources of C in the soil CO2 flux from the soil surface and deeper layers. Larger values of 14CO2 in surface flux were found at the afforested site (109–110 per cent modern (pM) compared with 107–108 pM at the grassland site). Surface litter fractions (Oi horizon) from the afforested site showed larger 14C signatures than the equivalent fractions in the grassland (113–115 pM in the forest compared with 106–109 pM in the grassland). Fine root fractions (<2 mm, Oe horizon) had similar signatures at both sites (109 pM in the forest compared with 109–111 pM in the grassland). Humified fractions at 10‐cm depth (Oa horizon) showed smaller signatures (100–103 pM) in the forest than the equivalent fraction in the grassland soil (106–114 pM). According to a mixing model that takes into account pool size and 14C signature, the contributions to surface CO2 fluxes from slow turnover fractions that had resided in the soil for more than one year were greater at the forested site than the grassland site, but contributions from fast‐turnover C fixed within the year prior to study showed the opposite trend. The results, taken together with previous work indicating that both site preparation and clear‐felling lead to a net loss of C, indicate that long‐term fixation in deep soil organic fractions is limited on this soil type under plantation forest over 40–50‐year commercial rotations.  相似文献   

5.
Ectomycorrhizal mycelial necromass is an important source of carbon for free-living microorganisms in forest soils, yet we know little either of its fate when it enters soil or of the identity of microbes that are able to utilise mycelium as their energy source. Here we used 13C-labelled mycelium of the ectomycorrhizal fungus Pisolithus microcarpus in laboratory incubations in combination with DNA-stable isotope probing (SIP) to determine the identity of functionally active soil fungi that can utilise dead mycelium. We also used solid-state nuclear magnetic resonance (NMR) spectroscopy to detect parallel changes in the abundance of key biochemical constituents of soil. A decrease in bulk soil 13C concentration together with rapid loss of glycogen and chitin-glucan during the 4 week incubations suggested that dead mycelium was rapidly turned over. Further, 13C was incorporated into fungal DNA within 7 days of addition to soil. DNA-SIP also revealed a dynamic community of functionally active soil fungi. By applying DNA-SIP and NMR in parallel, our data show that carbon from decaying ectomycorrhizal mycelium is rapidly transformed and incorporated into free-living soil fungi. This finding emphasises that dead extra-matrical mycelium is an important source of labile carbon for soil microorganisms.  相似文献   

6.
The degree of trophic plasticity in soil animals is intensely debated. We used stable isotope ratios (15N/14N, 13C/12C) of oribatid mite species from six oak (Quercus robur) forests to investigate (1) if trophic niches vary between forests and (2) the range of trophic levels spanned by oribatid mites. Using litter as baseline stable isotope signatures of most oribatid mite species differed between forests. Therefore, the stable isotope signatures were re-calibrated using stable isotope values of Platynothrus peltifer as primary decomposer species occurring in each of the six forests. Re-calibrated values of nine species (Cerachipteria jugata, Damaeus clavipes, Neotrichoppia variabilis, Oppia denticulata, Hermaniella dolosa, Steganacarus magnus, Ceratozetes peritus, Nanhermannia nana, Xenillus tegeocranus, Eremaeus cordiformis) differed significantly between forests indicating trophic plasticity in most of the studied oribatid mite species. Overall, calibrated stable isotope ratios spanned over 8.7 δ units for 15N and 5.9 δ units for 13C indicating that in forest ecosystems oribatid mite species span about three trophic levels.  相似文献   

7.
Upland oak forests in the ecotone between the eastern deciduous forest and the southern Great Plains are threatened by encroachment of eastern redcedar (Juniperus virginiana) due to fire suppression. The rapid rate of encroachment caused concern about concomitant alterations of site characteristics including nutrient cycling and the soil microbial communities (SMC) that could lead to positive feedbacks reinforcing eastern redcedar encroachment. We studied eight upland oak forests across central and western Oklahoma with stands representing three levels of encroachment: oak-dominated, eastern redcedar-dominated, and an intermediate mixture of both species. We analyzed litter chemistry (carbon, lignin, and nitrogen), soil chemistry (soil organic matter, NH4N, NO3-N, PO4, K, and pH), and profiled soil microbial communities using phospholipid fatty acid analysis (PLFA). Eastern redcedar encroachment was accompanied by reduced litter carbon along with higher levels of arbuscular mycorrhizal (AM) fungi while litter N was lower in mixed stands. However, we detected no change in soil chemistry. Our results indicate eastern redcedar encroachment in these upland oak forests reduced litter quality and altered the SMC through increases in AM fungi, a symbiont associated with eastern redcedar. These alterations may create positive soil–microbial feedbacks by reducing the fitness of the dominant oak species and facilitating rapid increase in eastern redcedar in this threatened, oak-dominated ecosystem.  相似文献   

8.
Summary Specialized ectomycorrhizal fungi form dense mats in forest soils that have different enzyme levels, higher respiration rates, more biomass, different soil fauna, and different soil chemistry compared with adjacent soils not obviously colonized by these mats. In this study, mats formed by two genera of fungi collected in three locations were compared with a wide range of measurements. Per cent moisture, pH, chloroform fumigation-flush C, anaerobic N mineralization, exchangeable ammonium, and respiration, N2 fixation, and denitrification rates were compared between soils or litter colonized by ectomycorrhizal mat-forming fungi and adjacent non-mat material. Significant differences were observed between the two genera of mat-forming fungi and also between mats formed primarily in mineral soil and those formed in litter. These differences suggest that different mat-forming fungi perform different functions in forest soils and that these fungi function differently in mineral soil compared with litter.Published as Technical Paper 9496, Oregon Agricultural Experiment Station  相似文献   

9.
Host-plants may rarely leave their ancestral niche and in which case they tend to be surrounded by phylogenetically distant neighbours. Phylogenetically isolated host-plants might share few mutualists with their neighbours and might suffer from a decrease in mutualist support. In addition host plants leaving their ancestral niche might face a deterioration of their abiotic and biotic environment and might hence need to invest more into mutualist partners. We tested whether phylogenetic isolation of hosts from neighbours decreases or increases abundance and activity of their mutualists and whether mutualist activity may help to compensate deterioration of the environment. We study oak-hosts and their ectomycorrhizal fungi mutualists established in the litter layer formed by the phylogenetically closely or distantly related neighbourhood. We find that oaks surrounded by phylogenetically distant neighbours show increased abundance and enzymatic activity of ectomycorrhizal fungi in the litter. Moreover, oaks surrounded by phylogenetically distant neighbours also show delayed budburst but ectomycorrhizal fungi activity partly compensates this negative effect of phylogenetic isolation. This suggests decreased nutrient availability in a phylogenetically distant litter partly compensated by increased litter-degradation by ectomycorrhizal fungi activity. Most observed effects of phylogenetic isolation cannot be explained by a change in baseline soil fertility (as reflected by nutritional status of fresh oak litter, or soil microbial biomass and activity) nor by simple reduction of percentages of oak neighbours, nor by the presence of gymnosperms. Our results show that colonizing new niche represented by the presence of distantly related neighbours may delay plant phenology but may be supported by mycorrhizal mutualists. Studies on other host-plant species are required to generalize our findings.  相似文献   

10.
The soil animal food web has become a focus of recent ecological research but trophic relationships still remain enigmatic for many taxa. Analysis of stable isotope ratios of N and C provides a powerful tool for disentangling food web structure. In this study, animals, roots, soil and litter material from a temperate deciduous forest were analysed. The combined measurement of δ15N and δ13C provided insights into the compartmentalization of the soil animal food web. Leaf litter feeders were separated from animals relying mainly on recent belowground carbon resources and from animals feeding on older carbon. The trophic pathway of leaf litter-feeding species appears to be a dead end, presumably because leaf litter feeders (mainly diplopods and oribatid mites) are unavailable to predators due to large size and/or strong sclerotization. Endogeic earthworms that rely on older carbon also appear to exist in predator-free space. The data suggest that the largest trophic compartment constitutes of ectomycorrhizal feeders and their predators. Additionally, there is a smaller trophic compartment consisting of predators likely feeding on enchytraeids and potentially nematodes.  相似文献   

11.
Rock fragments in soil can contain significant amounts of organic carbon. We investigated the nature and dynamics of organic matter in rock fragments in the upper horizons of a forest soil derived from sandstone and compared them with the fine earth fraction (<2 mm). The organic C content and its distribution among humic, humin and non‐humic fractions, as well as the isotopic signatures (Δ14C and δ13C) of organic carbon and of CO2 produced during incubation of samples, all show that altered rock fragments contain a dynamic component of the carbon cycle. Rock fragments, especially the highly altered ones, contributed 4.5% to the total organic C content in the soil. The bulk organic matter in both fine earth and highly altered rock fragments in the A1 horizon contained significant amounts of recent C (bomb 14C), indicating that most of this C is cycled quickly in both fractions. In the A horizons, the mean residence times of humic substances from highly altered rock fragments were shorter than those of the humic substances isolated in the fine earth. Values of Δ14C of the CO2 produced during basal respiration confirmed the heterogeneity, complexity and dynamic nature of the organic matter of these rock fragments. The weak 14C signatures of humic substances from the slightly altered rock fragments confirmed the importance of weathering in establishing and improving the interactions between rock fragments and surrounding soil. The progressive enrichment in 13C from components with high‐14C (more recent) to low‐14C (older) indicated that biological activity occurred in both the fine and the coarse fractions. Hence the microflora utilizes energy sources contained in all the soil compartments, and rock fragments are chemically and biologically active in soil, where they form a continuum with the fine earth.  相似文献   

12.
Leaf litters from beech (Fagus sylvatica L.) and oak (Quercus robur L.) trees were collected from mixed, deciduous woodlands growing on three soil types that varied in mineral nutrient concentrations and N mineralisation potential. Litter quality, including %N, %Mn, %P, acid detergent fibre, cellulose, Klason lignin, phenylpropanoid constituents of lignin, hexose and pentose sugar (mainly from hemicelluloses) varied within species according to soil type. However, oak and beech showed the opposite responses to soil nutrient status for most of these variables. The litters were incubated in the laboratory for 12 months (at 18 °C and constant moisture) on beds of forest floor material from two soils of contrasting high nutrient material (HNM) or low nutrient material (LNM) nutrient status to investigate litter quality and substrate interactions. At 4, 8 and 12 months there were significant differences in mass losses from oak and beech litters from all sites, and for each litter type exposed to the HNM and LMN soils. At 12 months mean mass losses were higher for HNM treatment (38.7% oak, 27.8% beech) than for the LNM treatment (30.6% oak, 25.5% beech). However, the beech and oak litters from the different sites consistently responded in opposite ways on the same soil treatment reflecting site-related effects on litter quality. Initial concentration of Klason lignin was the best predictor for mass losses from litter species and litter types. Intra-specific variation in rates of litter decomposition of beech and oak litters from different sites, and differences in their interactions with the two forest floor materials, illustrate the complexities of proximate controls on decomposition that are often masked in system-level studies.  相似文献   

13.
Host trees can modify their soil abiotic conditions through their leaf fall quality which in turn may influence the ectomycorrhizal (ECM) fungal community composition. We investigated this indirect interaction using a causal modelling approach. We identified ECM fungi on the roots of two coexisting oak species growing in two forests in southern Spain - Quercus suber (evergreen) and Quercus canariensis (winter deciduous)-using a PCR-based molecular method. We also analysed the leaf fall, litter and soil sampled beneath the tree canopies to determine the concentrations of key nutrients. The total mycorrhizal pool was comprised of 69 operational taxonomic units (OTUs). Tomentella and Russula were the most species-rich, frequent and abundant genera. ECM fungi with epigeous and resupinate fruiting bodies were found in 60% and 34% of the identified mycorrhizas, respectively. The calcium content of litter, which was significantly higher beneath the winter-deciduous oak species due to differences in leaf fall quality, was the most important variable for explaining ECM species distribution. The evaluation of alternative causal models by the d-sep method revealed that only those considering indirect leaf fall-mediated host effects statistically matched the observed covariation patterns between host, environment (litter, topsoil, subsoil) and fungal community variables.  相似文献   

14.
The abundance and micro-stratification of bacteria and fungi inhabiting the organic layers of a Scots pine forest (Pinus sylvestris L.) were investigated. An experiment using stratified litterbags, containing organic material of four degradation stages (fresh litter, litter, fragmented litter and humus) was performed over a period of 2.5 years. Dynamics and stratification of fluorescent stained bacteria and fungi, ratios between bacterial and fungal biomass, and relationships with moisture and temperature are described. Average bacterial counts in litter and fragmented litter were similar, i.e., approximately 5×109 bacteriag–1 (dry weight) organic matter, and significantly exceeded those in humus. The mean bacterial biomass ranged from 0.338 to 0.252mg carbon (C) g–1 (dry weight) organic matter. Lengths of mycelia were significantly below the usually recorded amounts for comparable temperate coniferous forests. The highest average hyphal length, 53mg–1 (dry weight) organic matter, was recorded in litter and decreased significantly with depth. The corresponding mean fungal biomass ranged from 0.050 to 0.009mg Cg–1 (dry weight). The abundance of bacteria and fungi was influenced by water content, that of fungi also by temperature. A litterbag series with freshly fallen litter of standard quality, renewed bimonthly, revealed a clear seasonal pattern with microbial biomass peaks in winter. The mean hyphal length was 104mg–1 (dry weight) and mean number of bacteria, 2.40×109 bacteria g–1 (dry weight). Comparable bacterial and fungal biomass C were found in the freshly fallen litter [0.154 and 0.132mgCg–1 (dry weight) organic material, respectively]. The ratio of bacterial-to-fungal biomass C increased from 1.2 in fresh litter to 28.0 in humus. The results indicate the existence of an environmental stress factor affecting the abundance of fungi in the second phase of decomposition. High atmospheric nitrogen deposition is discussed as a prime factor to explain low fungal biomass and the relatively short lengths of fungal hyphae in some of the forest soil layers under study. Received: 26 June 1997  相似文献   

15.
The mycelia of saprotrophic (SP) and ectomycorrhizal (ECM) fungi occur throughout the upper soil horizons in coniferous forests and could therefore be exposed to high concentrations of monoterpenes occurring in the needle litter of some tree species.Monoterpenes are mycotoxic and could potentially affect fungi that are exposed to them in the litter layers. In order to investigate whether monoterpenes typical of coniferous litters could influence fungal communities, we analysed the monoterpene content of freshly fallen needles of Pinus sylvestris, Picea abies and Picea sitchensis. The most abundant monoterpenes were found to be α-pinene, β-pinene and 3-carene. We evaluated the effects of these three monoterpene vapours on the biomass production of 23 SP isolates and 16 ECM isolates. Overall, 75% of ECM isolates and 26% of SP isolates were significantly inhibited by at least one of the monoterpene treatments and both intra- and inter-specific variations in response were observed.Monoterpene concentrations are highest in surface litters. The differential effects on fungal taxa may influence the spatial and temporal distribution of fungal community composition, indirectly affecting decomposition and nutrient cycling, the fundamental ecosystem processes in which fungi have a key role in coniferous forest soils.  相似文献   

16.
Although considerable research has been conducted on the importance of recent litter compared with older soil organic matter as sources of dissolved organic carbon (DOC) in forest soils, a more thorough evaluation of this mechanism is necessary. We studied water‐extractable organic carbon (WEOC) in a soil profile under a cool‐temperate beech forest by analysing the isotopic composition (13C and 14C) of WEOC and its fractions after separation on a DAX‐8 resin. With depth, WEOC became more enriched in 13C, which reflects the increasing proportion of the hydrophilic, isotopically heavier fraction. The 14C content in WEOC and its fractions decreased with depth, paralleling the 14C trend in soil organic matter (SOM). These results indicate a dynamic equilibrium of WEOC and soil organic carbon. The dominant process maintaining the WEOC pool in the mineral soil appears to be the microbial release of water‐soluble compounds from the SOM, which alters in time‐scales of decades to centuries.  相似文献   

17.
Comparisons were made between the phenolic and carbohydrate signatures of soil profiles developed under grass, spruce and ash stands. Samples were collected from a brown earth soil which was originally under the same land use, but over the past 43 years has supported different monocultures. Distinct signatures associated with each litter type were recorded in individual profiles. A relatively undecomposed phenolic fraction from lignin and hydrolysable carbohydrate fraction from plants had accumulated in the soils under spruce and ash. This largely reflected the quantity and quality of the litter inputs from the spruce and ash compared with the grass. The phenolic and hydrolysable carbohydrate fractions accounted for as much as 60% of the total organic carbon concentration in the deep horizons. In the grassland profile both fractions were more decomposed than under ash and spruce suggesting that the forest profiles had rapidly accumulated a carbon pool with a comparatively slow rate of decomposition. This was most apparent from the spruce profile (which contained 398 mg g?1 C carbohydrate hydrolysed using trifluoracetic acid (TFA) in the C horizon compared with 165 and 45 mg g?1 C under ash and grass respectively). We conclude that the decay rate of these fractions is a function of the vegetation type.  相似文献   

18.
We assessed the degree to which ectomycorrhizal fungi exploit organic nitrogen in situ. In an Alaskan boreal forest, we identified pairs of sporocarps from five taxa of ectomycorrhizal fungi. We added 13C-labeled alanine to the soil surrounding one sporocarp within each pair; the second served as an unlabeled control. Peak rates of 13C-respiration from alanine were higher in the labeled sporocarp plots than the controls, indicating that the 13C-alanine was detectably respired from the soil. “Reference” plots adjacent to the sporocarps served as an indication of background 13C-respiration rates released by the soil community as a whole. Ectomycorrhizal sporocarps displayed higher 13C-respiration rates than their reference plots. Thus, the sporocarps and associated mycorrhizal mycelium appeared to contribute significantly to the release of alanine-derived 13CO2, confirming the hypothesis that ectomycorrhizal fungi may access soil amino acid pools under natural conditions.  相似文献   

19.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

20.
The objective of this study was to determine whether differences in canopy structure and litter composition affect soil characteristics and microbial activity in oak versus mixed fir-beech stands. Mean litter biomass was greater in mixed fir-beech stands (51.9t ha−1) compared to oak stands (15.7t ha−1). Canopy leaf area was also significantly larger in mixed stands (1.96m2 m−2) than in oak stands (1.73m2 m−2). Soil organic carbon (C org) and moisture were greater in mixed fir-beech stands, probably as a result of increased cover. Soil microbial biomass carbon (C mic), nitrogen (N mic), and total soil nitrogen (N tot) increased slightly in the mixed stand, although this difference was not significant. Overall, mixed stands showed a higher mean C org/N tot ratio (22.73) compared to oak stands (16.39), indicating relatively low rate of carbon mineralization. In addition, the percentage of organic C present as C mic in the surface soil decreased from 3.17% in the oak stand to 2.26% in the mixed stand, suggesting that fir-beech litter may be less suitable as a microbial substrate than oak litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号