首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that Pseudomonas fluorescens strain P13, a plant growth-promoting bacterium, enhanced the growth of corn in uncontaminated soil but not in contaminated soil, perhaps because of its inability to reduce phytotoxicity. Another bacterial strain, Pseudomonas aeruginosa strain SZH16, showed in situ phenol-degrading activity and contained a plasmid loaded with a gene encoding for catechol 2, 3-dioxygenase, an important enzyme in the degradation pathway of aromatic compounds. We implanted this biodegradation ability into strain P13, using horizontal gene transfer techniques using strain SZH16 as the donor and P13 as the recipient, to generate a phenol-degrading transconjugant which obtained the effective plasmid from strain SZH16. Introduction of the transconjugant P13 strain into an artificially phenol-spiked soil promoted the growth of corn and in situ phenol degradation, and the increase in plant biomass correlated with the decrease in soil phenol content. Furthermore, the transconjugant P13 strain was also found to stimulate corn growth and reduce phenol concentration in water containing phenol and in historically contaminated field soils, indicating that the transconjugant strain could promote plant growth in both contaminated and uncontaminated environments. The transconjugant P13 strain was more efficient than either strain P13 or SZH16, and shows how plant growth-promoting bacteria which show no, or only limited, ability to degrade organic pollutants may be modified. This technique is attractive for many environmental remediation and agronomic applications.  相似文献   

2.
The effectiveness of the SS-SBR (Soil Slurry – Sequencing Batch Reactor) process for the remediation of soils contaminated by several organic pollutants has been evaluated. Experimental tests have been performed on two different soils, a spiked one and an industrial aged soil. The spiked soil, artificially contaminated, has been prepared trying to simulate the pollution of an industrial aged soil in terms of number and kind of contaminants. PAHs (Polycyclic Aromatic Hydrocarbons) and phenols degradation has been particularly investigated because they are considered persistent and recalcitrant. Concerning the spiked soil, removal efficiencies higher than 95% in 6 to 9 weeks have been found for all the pollutants, except for five-rings PAHs; however, these compounds were partly removed in 11 to 13 weeks. Good results have been achieved also for the industrial aged soil with a maximum removal of about 80% in 7–8 weeks. To enhance the pollutants degradation, trying to obtain a faster remediation, the biological treatment has been combined with a chemical oxidation with ozone. The best degradation effectiveness of the combined process has been obtained applying the ozonation after few days of the biological treatment. Therefore, a combined biological and chemical treatment allowed to markedly improve the remediation of contaminated soils.  相似文献   

3.
代先祝  蒋建东  李荣  李顺鹏 《土壤》2008,40(5):754-759
在阿特拉津浓度为50mg/kg干土的黄棕壤、潮土和红壤接种1.5×106CFU/g干土的降解菌Arthrobacter sp. AG1,10天后土壤中的阿特拉津分别降解至1.5、6.6和10mg/kg干土。阿特拉津的降解速率受到土壤性质的影响,但AG1仍能在不满足其生长繁殖要求的pH值的土壤中有效降解酸性土壤中阿特拉津;土壤中水分含量对降解效果影响较大,>20%时降解效果较好;土壤低含水量和低pH值会导致AG1降解阿特拉津的活力下降。不同的接种量对降解效果有一定影响,但105~107CFU/g干土接种量的AG1都能有效发挥降解作用。AG1降解完土壤中的阿特拉津后,在土壤含水量分别为5%和15%的情况下能长期保持降解活性,对60天后第2次施入黄棕壤和潮土中的50mg/kg阿特拉津4天时降解效率在65%以上。  相似文献   

4.
Seven most efficient phytase and phosphatases producing fungi were isolated from the soils of arid and semi-arid regions of India and tested for their efficiency on hydrolysis of two important organic P compounds: phytin and glycerophosphate. The native soil organic P may be exploited after using these organisms as seed inoculants, to help attain higher P nutrition of plants. The identified organisms belong to the three genera: Aspergillus, Emmericella and Penicillium. Penicillium rubrum released the most acid into the medium during growth. Aspergillus niger isolates were found to accumulate biomass the fastest. A significant negative correlation (r=−0.593,n=21, p<0.01) was observed between the development of fungal mat and pH of the media. The extracellular (E) phosphatases released by different fungi were less than their intracellular (I) counterpart, but the trend was reversed in case of phytase production. The E:I ratio of different fungi ranged from 0.39 to 0.86 for acid phosphatase, 0.29 to 0.41 for alkaline phosphatases and 9.4 to 19.9 for phytase. The efficiency of hydrolysis of different organic P compounds of different fungi varied from 2.12-4.85 μg min−1 g−1 for glycerophosphate to 0.92-2.10 μg min−1 g−1 for phytin. The trend of efficiency was as follows: Aspergillus sp.>Emmericella sp.>Penicillium sp. The results indicated that the identified fungi have enough potential to exploit native organic phosphorus to benefit plant nutrition.  相似文献   

5.
Phosphorus deficiency and aluminium toxicity in weathered soils can be amended by applying organic residues. Nitrogen mineralization, changes in P-availability and changes in salt-extractable Al following the incorporation of residues of various green manures (Flemingia congesta, Mucuna pruriens, Pueraria phaseoloides, Tithonia diversifolia) were quantified in a field core incubation experiment. Dried residues were added at an application rate of 45 kg P ha−1 to two soils representative for the main soil groups of the South Vietnamese uplands, set up in incubation cores in an experimental field near Ho Chi Minh City, Vietnam.Decomposition of the residues proceeded at high rates. Mineralized nitrogen from the residues was recovered mainly as ammonium during the first 2 weeks of incubation. Nitrogen release from Tithonia residues with the highest lignin content and lignin:N ratio occurred more gradually compared to the three legumes. Resin-extractable P was significantly increased by residue treatments. Largest and sustained increases in resin-extractable P (0.67 and 2.06 mg P kg−1 in the two soils) were observed in samples amended with Tithonia, which was related to the large P-content (0.37%) and small C:P ratio (110) of the residues. The P-concentration in the residues, rather than the total amount of P applied through the residues, affected the increase in P-availability. The increase in resin-extractable P was correlated to the P-content (R=0.64) and C:P ratio (R=−0.65) of the residues. Salt-extractable Al-concentrations were considerably reduced by the organic amendments, up to 70 and 50% in the two soils. At the rate of 45 kg P ha−1, no significant differences between the residue treatments to reduce soil acidity were observed.As such, the application of high quality residues that are rich in P, in particular T. diversifolia, may enhance crop production by creating favourable soil conditions during the initial stages of plant development of the main crop.  相似文献   

6.
Ecosystem and biogeochemical responses to anthropogenic stressors are the result of complex interactions between plants and microbes. A mechanistic understanding of how plant traits influence microbial processes is needed in order to predict the ecosystem-level effects of natural or anthropogenic change. This is particularly true in wetland ecosystems, where plants alter the availability of both electron donors (e.g., organic carbon) and electron acceptors (e.g., oxygen and ferric iron), thereby regulating the total amount of anaerobic respiration and the production of methane, a highly potent greenhouse gas. In this study, we examined how plant traits associated with plant inputs of carbon (photosynthesis and biomass) and oxygen (root porosity and ferric iron on roots) to mineral soils relate to microbial competition for organic carbon and, ultimately, methane production. Plant productivity was positively correlated with microbial respiration and negatively correlated to methane production. Root porosity was relatively constant across plant species, but belowground biomass, total biomass, and the concentration of oxidized (ferric) iron on roots varied significantly between species. As a result the size of the total root oxidized iron pool varied considerably across plant species, scaling with plant productivity. Large pools of oxidized iron were related to high CO2:CH4 ratios during microbial respiration, indicating that as plant productivity and biomass increased, microbes used non-methanogenic respiration pathways, most likely including the reduction of iron oxides. Taken together these results suggest that increased oxygen input from plants with greater biomass can offset any potential stimulation of methanogenic microbes from additional carbon inputs. Because the species composition of plant communities influences both electron donor and acceptor availability in wetland soils, changes in plant species as a consequence of anthropogenic disturbance have the potential to trigger profound effects on microbial processes, including changes in anaerobic decomposition rates and the proportion of mineralized carbon emitted as the greenhouse gas methane.  相似文献   

7.
Allelopathy as a mechanism of invasion in plant communities remains a debated topic, partly due to lack of techniques to measure allelochemical output and stability in the field. Evidence has arisen to support allelopathic mechanisms in several invasive knapweeds, including Russian knapweed. Previous studies have shown that a phytotoxin, 7,8-benzoflavone, is produced by Russian knapweed roots under soil-free conditions. Here we describe a high performance liquid chromatography (HPLC) method to detect this compound in soil and we present the first observations of this compound from Russian knapweed infested soils.  相似文献   

8.
A collection of 299 isolates of rhizobia nodulating Medicago truncatula was isolated from 10 Tunisian soils and was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR/RFLP) of 16S rRNA gene. Results showed that 227 and 72 isolates were assigned, respectively, to Sinorhizobium meliloti and Sinorhizobium medicae. In 9 out of 10 soils S. meliloti was detected, whereas S. medicae was recovered from only 5 out of 10 soils. The cross-nodulation of three populations of M. truncatula grown on Bulla Regia soil, which contained naturally the two Sinorhizobium species, showed that M. truncatula population collected from Amra site was selective to S. meliloti at least in soil conditions. Forty-eight isolates of each Sinorhizobium species trapped by M. truncatula populations collected from Bulla Regia, Soliman and Rhayet sites on Bulla Regia soil were characterized by repetitive extragenic palindromic-PCR (REP-PCR) and showed a clear distinction between the two Sinorhizobium species and a higher diversity for S. meliloti.  相似文献   

9.
The behaviour of Rhizobium strains introduced separately into soil from a contaminated site with high concentrations of heavy metals (mainly Zn and Hg), and the role of plasmids in the ecology of these rhizobia strains were studied. Six Rhizobium leguminosarum biovar trifolii strains, from different sources and with different plasmid contents, were selected. Two of them were isolated from nodules of subterranean clover plants (Trifolium subterraneum) grown in the contaminated soil and four were from an uncontaminated soil. After inoculation with approximately 107 cells g−1 soil, of each strain, survival and plasmid stability were assessed over a period of 12-18 months. Differences in survival of Rhizobium strains were only detected more than 12 months after inoculation. After 18 months it was clear that survival in contaminated soil was greatest in the two strains originally isolated from that contaminated soil, and also by two of the strains originally isolated from uncontaminated soil. The latter two strains were also the only ones that showed changes in their plasmid profiles. The remaining isolates had the lowest populations, and their plasmid profiles were unchanged and similar to the parent strains.  相似文献   

10.
Bacteria capable of utilising oxamyl as the sole carbon source were isolated from seven different agricultural soils that had previously demonstrated enhanced oxamyl degradation in a soil incubation study. Partial sequencing and alignment of the 16S rRNA gene showed little diversity amongst isolates, with 26 of the 27 isolates demonstrating similarity to the genus Aminobacter. The most common species isolated was Aminobacter aminovorans, while a number of the isolates demonstrated an equal degree of similarity to the species Aminobacter niigataensis and Chelatobacter heintzii. One isolate was identified as Mesorhizobium sp. This is the first time that organisms involved in the degradation of oxamyl have been isolated and identified.  相似文献   

11.
Phaseolus vulgaris is a legume extensively cultivated in Spain, León province being the most important producer. This province produces selected varieties of common bean highly appreciated by their quality that warrants a Protected Geographic Indication (PGI). In this work we analysed the rhizobia present in nodules of the variety “Riñón” in several soils from León province in order to select native rhizobial strains to be used as biofertilizers. The analysis of rrs and housekeeping genes of these strains showed that they belong to two phylogenetic groups within Rhizobium leguminosarum (I and II). Although the group II strains were most abundant in nodules, very effective strains were also found in group I. Strains LCS0306 from group I and LBM1123 from group II were the best nitrogen fixers among all strains isolated and were selected for field experiments. The field research showed that the biofertilization of common bean with native and selected rhizobial strains can completely replace the fertilization with chemical N fertilizers. The biofertiliser designed in such way, was valid for the whole agroecological area, regardless the specific properties of each soil and microclimatic conditions. This conclusion can be generalised as a strategy for the development of biofertilisers in different agroecological conditions worldwide.  相似文献   

12.
13.
The knowledge of the survival of inoculated beneficial fungal and bacterial strains in the field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developing. The aim of this study was to monitor, 4 years after plantation into the field site, the effects of Douglas fir (Pseudotsuga menziesii) co-inoculation with the mycorrhiza helper bacterial strain Pseudomonas fluorescens BBc6R8 and/or the fungal strain Laccaria bicolor S238N on seedling growth and on the indigenous bacterial and ectomycorrhizal communities using quantitative and qualitative approaches. The field persistence of the inoculated strains was also monitored. The seedling shoot volume estimate was statistically significantly higher in the fungal inoculated plots in comparison to the non-inoculated plots but no treatment-related changes in the quantitave or qualitative microbial measurements were observed and the inoculated strains could not be detected after 4 years.  相似文献   

14.
We investigated the taxonomic position and symbiotic capabilities of two root-nodule bacterial strains isolated from the South African herbaceous, papilionoid legume Rhynchosia ferulifolia. The 16S rRNA gene sequence of the two strains was determined along with intragenic sequences of nodA and nifH, together with their symbiotic capabilities when inoculated onto the papilionoid legumes R. ferulifolia, Rhynchosia caribaea, Rhynchosia minima and Macroptilium atropurpureum (Siratro). Burkholderia phymatum STM815T, Cupriavidus taiwanensis LMG 19424T and root-nodule bacteria isolated from R. minima and Rhynchosia totta were included in the study. Root-nodule bacteria isolated from R. ferulifolia, WSM3937 and WSM3930, belong to the genus Burkholderia and are most closely related to Burkholderia terricola (98.8% similarity). The phylogenetic analysis of nodA and nifH revealed substantial similarity of the novel strains with Burkholderia tuberum STM678T, a β-rhizobium also originated from South Africa, and only a distant relationship with South American Mimosa-nodulating β-rhizobia. R. ferulifolia was effectively nodulated only by Burkholderia sp. WSM3937 and WSM3930 and not by bradyrhizobia isolated from Rhynchosia minima and Rhynchosia totta or STM815 and LMG 19924. Nodules induced by the novel strains were determinate and hosted well organized symbiosomes within infected cells. In this study we describe a new symbiotic N-fixing relationship between Burkholderia sp. and the South African legume R. ferulifolia. This is the first report of N-fixation between β-rhizobia and an herbaceous, papilionoid legume from which the strains were originally isolated. The level of N-fixation in this symbiosis approached that achieved by effectively nodulated Medicago sativa and suggests that the β-rhizobia may have a role in N-fixation in agricultural systems.  相似文献   

15.
For optimum production, the use of commercial rhizobial inoculant on pea (Pisum sativum L.) at seeding is necessary in the absence of compatible rhizobial strains or when rhizobial soil populations are low or symbiotically ineffective. Multiple site experiments were conducted to characterize the abundance and effectiveness of resident populations of Rhizobium leguminosarum bv. viciae (Rlv) in eastern Canadian prairie soils. A survey of 20 sites across a broad geographical range of southern Manitoba was carried out in 1998 and was followed by more intensive study of five of the sites in 1999 and 2000. Appreciable nodulation of uninoculated pea was observed at all sites which had previously grown inoculated pea. However, uninoculated pea grown at two sites, which had not previously grown pea, had negligible nodulation. Likewise, wild Lathyrus sp. and Vicia sp. plants collected from uncultivated areas adjacent to agricultural sites were poorly nodulated. In the more intensively studied sites, there was a tendency towards higher nodulation in pea plants receiving commercial inoculant containing Rlv strain PBC108 across all site-years (e.g., 4.7% in nodulation and 22% in nodule mass), but the effect was significant at only 2 of 10 site-years. Despite a relatively high range of soil pH (6-8), regression analysis indicated that decreasing soil pH resulted in lower nodulation rates. Likewise, electrical conductivity (EC) was correlated to nodulation levels, however the effect of EC was likely more indicative of the influence of soil texture and organic matter than salinity. As with nodulation, commercial inoculation tended to increase above-ground dry matter (DM) and fixed-N (estimated by the difference method) at the early pod-filling stage, but again the effects were significant at only 2 of 10 site-years. Specifically, above-ground DM and fixed-N levels were up to 29 and 51% greater, respectively, in inoculated compared to non-inoculated treatments at these sites. Addition of N-fertilizer at a rate of 100 kg N ha−1 decreased nodulation at almost all site-years (by as much as 70% at one site), but rarely resulted in increases in above-ground DM compared to inoculated plots. The study indicates for the first time that populations of infective, and generally effective strains of Rlv occur broadly in agricultural soils across the eastern Canadian prairie, but that there is a tendency for increased symbiotic efficiency with the use of commercial inoculant.  相似文献   

16.
The release of endocrine disrupting chemicals into the environment is of increasing concern due to the formation of an intersex state in freshwater organisms and potential risks to human health. The aim of this study was to investigate the persistence of the naturally occurring hormones, estrone and 17 β-estradiol in three agricultural grassland soils in the presence and absence of cattle and sheep wastes (urine and manure). Biodegradation was investigated using 14C-labelled hormones which were applied to soil in three different solvents (water, artificial urine and natural sheep urine). When applied directly to soil the two hormones degraded at a similar rate, however, the speed of mineralization was soil type and solvent dependant. The half-life (t1/2) of the hormones in soils ranged from 5 to 25 d. The hormones were also applied to the soils in sheep and cattle manure of different ages (7 d to 2 yr). Generally, the rate of degradation in the animal manure amended soils was more rapid than in the unamended soils (t1/2=1-9 d), with mineralization being largely independent of manure age and type. We conclude that in comparison to many xenobiotics, estrogens are not persistent in agricultural soils. However, our calculations suggest that if they are lost to freshwater via runoff or leaching then they may have an appreciable effect on freshwater organisms. Assuming normal landspreading rates our results suggest that the risk of estrogen contamination of freshwater associated with manure spreading is very low.  相似文献   

17.
Soil populations of Rhizobium leguminosarum bv. viciae (Rlv) that are infective and symbiotically effective on pea (Pisum sativum L.) have recently been shown to be quite widespread in agricultural soils of the eastern Canadian prairie. Here we report on studies carried out to assess the genetic diversity amongst these endemic Rlv strains and to attempt to determine if the endemic strains arose from previously used commercial rhizobial inoculants. Isolates of Rlv were collected from nodules of uninoculated pea plants from 20 sites across southern Manitoba and analyzed by plasmid profiling and PCR-RFLP of the 16S-23S rDNA internally transcribed spacer (ITS) region. Of 214 field isolates analyzed, 67 different plasmid profiles were identified, indicating a relatively high degree of variability among the isolates. Plasmid profiling of isolates from proximal nodules (near the base of the stem) and distal nodules (on lateral roots further from the root crown) from individual plants from one site suggested that the endemic strains were quite competitive relative to a commercial inoculant, occupying 78% of the proximal nodules and 96% of the distal nodules. PCR-RFLP of the 16S-23S rDNA ITS also suggested a relatively high degree of genetic variability among the field isolates. Analysis of the PCR-RFLP patterns of 15 selected isolates by UPGMA indicated two clusters of three field isolates each, with simple matching coefficients (SMCs) ≥0.95. However, to group all field isolates together, the SMC has to be reduced to 0.70. Regarding the origin of the endemic Rlv strains, there were few occurrences of the plasmid profiles of field isolates being identical to the profiles of inoculant Rlv strains commonly used in the region. Likewise, the plasmid profiles of isolates from nodules of wild Lathyrus plants located near some of the sites were all different from those of the field isolates. However, comparison of PCR-RFLP patterns suggested an influence of some inoculant strains on the chromosomal composition of some of the field isolates with SMCs of ≥0.92. Overall, plasmid profiles and PCR-RFLP patterns of the isolates from endemic Rlv populations from across southern Manitoba indicate a relatively high degree of genetic diversity among both plasmid and chromosomal components of endemic strains, but also suggest some influence of chromosomal information from previously used inoculant strains on the endemic soil strains.  相似文献   

18.
The antimicrobial metabolites 2,4-diacetylphloroglucinol (2,4-DAPG) and pyoluteorin contribute to the ability of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogens. P. fluorescens strain CHA0 and its derivatives CHA89 (antibiotics-deficient) and CHA0/pME3424 (antibiotics overproducing) were investigated as potential biocontrol agents against Meloidogyne javanica the root-knot nematode. Exposure of root-knot nematode to culture filtrates of P. fluorescens under in vitro conditions significantly reduced egg hatch and caused substantial mortality of M. javanica juveniles. Nutrient broth yeast extract (NBY) medium amended with 2% (w/v) glucose or 1 mM EDTA markedly repressed hatch inhibition activity of the strain CHA0 but not that of CHA0/pME3424 or CHA89. On the other hand, NBY medium amended with glucose significantly enhanced nematicidal activity of the strain CHA0/pME3424. Neither glucose nor EDTA had an influence on the nematicidal activity of the strains CHA0 and CHA89. Under in vitro conditions, antibiotic overproducing strain CHA0/pME3424 and CHA0 expressed phl‘-’lacZ reporter gene but strain CHA89 did not. Expression of the reporter gene reflects actual production of DAPG. In general, CHA0/pME3424 expressed reporter gene to a greater extent compared to its wild type counterpart CHA0. Regardless of the bacterial strains, reporter gene expression was markedly enhanced when NBY medium was amended with glucose but EDTA had no such effect. A positive correlation between the degree of juvenile mortality and extent of phl‘-’lacZ reporter gene expression was also observed in vitro. Strain CHA0 produced zones of 4-6 mm on MM medium containing gelatin while strain CHA0/pME3424 and CHA89 did not. When MM medium containing gelatin was amended with 2% glucose of 1 mM EDTA size of haloes produced by the strain CHA0 reduced to 2 mm. Under glasshouse conditions aqueous cell suspension of the strains CHA0 or CHA0/pME3424 at various inoculum levels (107, 108 or 109 cfu ml−1) significantly reduced root-knot development. CHA89 caused significant reduction in galling when applied at 109 cfu ml−1. To better understand the mechanism of nematode suppression, split root bioassay was performed. Split-root experiments, that guarantee a spatial separation of inducing agent and a challenging pathogen, showed that soil treatment of one half of the root system with cell suspension of CHA0 or CHA0/pME3424 resulted in a significant systemic induced resistance leading to reduction of M. javanica infection of tomato roots in the non-baterized nematode treated half. The results clearly suggest that the antibiotic 2,4-DAPG from P. fluorescens CHA0 act as the inducing agents of systemic resistance in tomato roots. Populations of CHA0 and its derivatives declined progressively by 10-fold between first and fourth harvests (0-21 days after inoculation). However, bacterial populations increased at final harvest (28 days after application).  相似文献   

19.
竹炭固定化微生物对土壤中阿特拉津的降解研究   总被引:1,自引:0,他引:1  
范玉超  刘文文  司友斌  崔红标 《土壤》2011,43(6):954-960
采用环境友好材料竹炭为主要载体,壳聚糖和海藻酸钠为辅助载体,固定从污泥中分离出的阿特拉津降解菌株,研究不同固定材料对降解菌生长的影响,以及固定化微生物对土壤中阿特拉津的降解效果.结果表明,竹炭对阿特拉津降解菌具有较强的吸附固定能力,且竹炭粒径越小,固定化效果越好.利用壳聚糖和海藻酸钠交联并加固阿特拉津降解菌,增大了固定化空间,显著增加了降解菌的生物量,并提高了阿特拉津的降解效率.1%壳聚糖+5%海藻酸钠+竹炭+降解菌颗粒对阿特拉津降解菌的固定化效果最佳,施用该微生物固定化颗粒28天后,砂姜黑土及红壤中阿特拉津残留率分别为48.07%和47.23%.  相似文献   

20.
Sprays of commercial insecticidal preparations of the bacterium, Bacillus thuringiensis subsp. kurstaki (Btk), usually a mixture of cells, spores and parasporal crystals, have been used for the last 10 yr in Sardinia (Italy) to protect cork oak forests against the gypsy moth (Lymantria dispar L.). Until now, the protective antilepidopteran efficacies of each of the various spray treatments rather than their effects on the environment have been evaluated. Consequently, the persistence of Btk and its toxin, released in sprays (FORAY 48B®), in soils of cork oak stands, located in Orotelli, Tempio Pausania and Calangianus (Sardinia), were investigated. In the Calangianus soil, the numbers of Btk remained essentially constant for 28 months (the longest time studied) after spraying, indicating that Btk was able to compete with the indigenous microbial community; the toxin was detected 28 months after spraying by immunological assay, but at a reduced concentration; and the larvicidal activity decreased essentially linearly to 14 months and then decreased markedly between 14 and 28 months. In the Tempio Pausania and Orotelli soils, cells of Btk were detected, whereas the toxin was not detected by immunological and larvicidal assays, 52 and 88 months (the longest times studied) after spraying, respectively. The numbers of Btk cells detected were probably too low to account for the presence of the toxin in all of the soils studied, as there was no correlation between numbers of Btk and toxin detected by immunological assays (correlation coefficient of −0.66) in the Calangianus soil. Our results indicated that Btk and its toxin introduced into soils in sprays can persist for long periods (at least 88 months for Btk and at least 28 months for its toxin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号