首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diagnostic tests for organic production of crops would be useful. In this study, the difference in natural 15N abundances (δ15N) of soils and plants between fertilizer-applied upland (FU) and compost-applied upland (CU) fields was investigated to study using δ15N as a marker of organic produce. Twenty samples each of soils and plants were collected from each field in early summer after applying fertilizer or compost. The δ15N of fertilizers and composts was −1.6±1.5‰ (n=8) and 17.4±1.2‰ (n=10), respectively. The δ15N of total soil-N was significantly (P<0.05) higher in CU fields (8.8±2.0‰) than in FU fields (5.9±0.7‰) due to long-term continuous application of 15N-enriched compost, as indicated by a positive correlation (r=0.62) between N content and δ15N of total soil-N. The NO3 pool of CU soils (11.6±4.5‰) was also significantly (P<0.05) enriched in 15N compared to FU soils (4.7±1.1‰), while the 15N contents of NH4+ pool were not different between both soils. Compost application resulted in 15N enrichment of plants; the δ15N values were 14.6±3.3‰ for CU and 4.1±1.7‰ for FU fields. These results showed that long-term application of compost resulted in a significant 15N-enrichment of soils and plants relative to fertilizer. Therefore, this study suggested that δ15N could serve as promising indicators of organic fertilizers application when used with other independent evidence. However, further studies under many conditions should be conducted to prepare reliable δ15N guidelines for organic produce, since the δ15N of inorganic soil-N and plant-N are influenced by various factors such as soil type, plant species, the rate of N application, and processes such as mineralization, nitrification, and denitrifcation.  相似文献   

2.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

3.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

4.
Legumes increase the plant-available N pool in soil, but might also increase NO3 leaching to groundwater. To minimize NO3 leaching, N-release processes and the contribution of legumes to NO3 concentrations in soil must be known. Our objectives were (1) to quantify NO3-N export to >0.3 m soil depth from three legume monocultures (Medicago x varia Martyn, Onobrychis viciifolia Scop., Lathyrus pratensis L.) and from three bare ground plots. Furthermore, we (2) tested if it is possible to apply a mixing model for NO3 in soil solution based on its dual isotope signals, and (3) estimated the contribution of legume mineralization to NO3 concentrations in soil solution under field conditions. We collected rainfall and soil solution at 0.3 m soil depth during 1 year, and determined NO3 concentrations and δ15N and δ18O of NO3 for >11.5 mg NO3-N l−1. We incubated soil samples to assess potential N release by mineralization and determined δ15N and δ18O signals of NO3 derived from mineralization of non-leguminous and leguminous organic matter.Mean annual N export to >0.3 m soil depth was highest in bare ground plots (9.7 g NO3-N m−2; the SD reflects the spatial variation) followed by Medicago x varia monoculture (6.0 g NO3-N m−2). The O. viciifolia and L. pratensis monocultures had a much lower mean annual N export (0.5 and 0.3 g NO3-N m−2). The averaged NO3-N leaching during 70 days was not significantly different between field estimates and incubation for the Medicago x varia Martyn monoculture.The δ15N and δ18O values in NO3 of rainfall (δ15N: 3.3±0.8‰; δ18O: 30.8±4.7‰), mineralization of non-leguminous SOM (9.3±0.9‰; 6.7±0.8‰), and mineralization of leguminous SOM (1.5±0.6‰; 5.1±0.9‰) were markedly different. Applying a linear mixing model based on these three sources to δ15N and δ18O values in NO3 of soil solution during winter 2003, we calculated 18-41% to originate from rainfall, 38-57% from mineralization of non-leguminous SOM, and 18-40% from mineralization of leguminous SOM.Our results demonstrate that (1) even under legumes NO3-N leaching was reduced compared to bare ground, (2) the application of a three-end-member mixing model for NO3 based on its dual isotope signals produced plausible results and suggests that under particular circumstances such models can be used to estimate the contributions of different NO3 sources in soil solution, and (3) in the 2nd year after establishment of legumes, they contributed approximately one-fourth to NO3-N loss.  相似文献   

5.
Rice (Oryza sativa) was grown in sunlit, semi-closed growth chambers (4×3×2 m, L×W×H) at 650 μl l−1 CO2 (elevated CO2) to determine: (1) rice root-derived carbon (C) input into the soil under elevated CO2 in one growing season, and (2) the effect of the newly input C on decomposition of the more recalcitrant native soil organic C. The initial δ13C value of the experimental soil was −25.8‰, which was 6‰ less depleted in 13C than the plants grown under elevated CO2. Significant changes in δ13C of the soil organic C were detected after one growing season. The amount of new soil C input was estimated to be 0.9 t ha−1 (or 2.1%) at 30 kg N ha−1 and 1.8 t ha−1 (4.1%) at 90 kg N ha−1. Changes in soil δ13C suggested that the surface 5 cm of soil received more C input from plants than soils below. Laboratory incubation (25 °C) of soils from different horizons indicated that increased availability of the labile plant-derived C in the soil reduced decomposition of the native soil organic C. Provided the retardant effect of the new C on old soil organic C holds in the field in the longer-term, paddy soils will likely sequester more C from the atmosphere if more plant C enters the soil under elevated atmospheric CO2.  相似文献   

6.
Bioenergy production from renewable organic material is known to be a clean energy source and therefore its use is currently much promoted in many countries. Biogas by-products also called biogas residues (BGR) are rich in partially stable organic carbon and can be used as an organic fertilizer for crop production. However so far, many environmental issues relevant when BGR are applied to agricultural land (soil C sequestration, increased denitrification and nutrient leaching) still have to be studied. Therefore a field experiment was set up to investigate the degradation of BGR and its impact on the decomposition of native soil organic matter based on a natural abundance stable isotope approach. Maize, a C4 plant has been used as bioenergy crop, therefore the δ13C of total C in BGR was −16.0‰PDB and soil organic matter was mostly derived from C3 plant based detritus, SOM thus showed a δ13C of −28.4‰PDB. Immediately after BGR application, soil-emitted CO2 showed unexpectedly high δ13C of up to +23.6‰PDB, which has never been reported earlier. A subsequent laboratory scale experiment confirmed the positive δ13C of soil-emitted CO2 after BGR addition and showed that obviously, the added BGR led to a consumption of dissolved inorganic C in soils. Additionally, it was observed that the δ13C of CO2 driven from inorganic C of BGR (BGR-IC) by acid treatment was +35.6‰PDB. Therefore, we suggest that also under field conditions the transformation of BGR-IC into CO2 contributed largely to CO2 emissions in addition to the decomposition of organic matter, which affected both the amount and the carbon isotope signature of emitted CO2 in the initial period after BGR application. Positive δ13C of inorganic C contained in BGR was attributed to processes with strong fractionation of C isotopes during anaerobic fermentation in the biogas formation process.  相似文献   

7.
Natural variations of the 13C/12C ratio have been frequently used over the last three decades to trace C sources and fluxes between plants, microorganisms, and soil. Many of these studies have used the natural-13C-labelling approach, i.e. natural δ13C variation after C3-C4 vegetation changes. In this review, we focus on 13C fractionation in main processes at the interface between roots, microorganisms, and soil: root respiration, microbial respiration, formation of dissolved organic carbon, as well as microbial uptake and utilization of soil organic matter (SOM). Based on literature data and our own studies, we estimated that, on average, the roots of C3 and C4 plants are 13C enriched compared to shoots by +1.2 ± 0.6‰ and +0.3 ± 0.4‰, respectively. The CO2 released by root respiration was 13C depleted by about −2.1 ± 2.2‰ for C3 plants and −1.3 ± 2.4‰ for C4 plants compared to root tissue. However, only a very few studies investigated 13C fractionation by root respiration. This urgently calls for further research. In soils developed under C3 vegetation, the microbial biomass was 13C enriched by +1.2 ± 2.6‰ and microbial CO2 was also 13C enriched by +0.7 ± 2.8‰ compared to SOM. This discrimination pattern suggests preferential utilization of 13C-enriched substances by microorganisms, but a respiration of lighter compounds from this fraction. The δ13C signature of the microbial pool is composed of metabolically active and dormant microorganisms; the respired CO2, however, derives mainly from active organisms. This discrepancy and the preferential substrate utilization explain the δ13C differences between microorganisms and CO2 by an ‘apparent’ 13C discrimination. Preferential consumption of easily decomposable substrates and less negative δ13C values were common for substances with low C/N ratios. Preferential substrate utilization was more important for C3 soils because, in C4 soils, microbial respiration strictly followed kinetics, i.e. microorganisms incorporated heavier C (? = +1.1‰) and respired lighter C (? = −1.1‰) than SOM. Temperature and precipitation had no significant effect on the 13C fractionation in these processes in C3 soils. Increasing temperature and decreasing precipitation led, however, to increasing δ13C of soil C pools.Based on these 13C fractionations we developed a number of consequences for C partitioning studies using 13C natural abundance. In the framework of standard isotope mixing models, we calculated CO2 partitioning using the natural-13C-labelling approach at a vegetation change from C3 to C4 plants assuming a root-derived fraction between 0% and 100% to total soil CO2. Disregarding any 13C fractionation processes, the calculated results deviated by up to 10% from the assumed fractions. Accounting for 13C fractionation in the standard deviations of the C4 source and the mixing pool did not improve the exactness of the partitioning results; rather, it doubled the standard errors of the CO2 pools. Including 13C fractionations directly into the mass balance equations reproduced the assumed CO2 partitioning exactly. At the end, we therefore give recommendations on how to consider 13C fractionations in research on carbon flows between plants, microorganisms, and soil.  相似文献   

8.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

9.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

10.
Soil inorganic carbon (C) represents a substantial C pool in arid ecosystems, yet little data exist on the contribution of this pool to ecosystem C fluxes. A closed jar incubation study was carried out to test the hypothesis that CO2-13C production and response to sterilization would differ in a calcareous (Mojave Desert) soil and a non-calcareous (Oklahoma Prairie) soil due to contributions of carbonate-derived CO2. In addition to non-sterilized controls, soils were subjected to sterilization treatments (unbuffered HgCl2 addition for Oklahoma soil and unbuffered HgCl2 addition, buffered HgCl2 addition, and autoclaving for Mojave Desert soil) to decrease biotic respiration and more readily measure abiotic CO2 flux. Temperature and moisture treatments were also included with sterilization treatments in a factorial design.The rate of CO2 production in both soils was significantly decreased (36-87%) by sterilization, but sterilization treatments differed in effectiveness. Sterilization had no significant effect on effluxed CO2-13C values in the non-calcareous Oklahoma Prairie soil and autoclaved Mojave Desert soil as compared to their respective non-sterilized controls. However, sterilization significantly altered CO2-13C values in Mojave Desert soil HgCl2 sterilization treatments (both buffered and non-buffered). Plots of 1/CO2 versus CO213C (similar to Keeling plots) indicated that the source CO213C value of the Oklahoma Prairie soil treatments was similar to the δ13C value of soil organic matter [(SOM); −17.76‰ VPDB] whereas the source for the (acidic) unbuffered-HgCl2 sterilized Mojave Desert soil was similar to the δ13C value of carbonates (−0.93‰ VPDB). The source CO213C value of non-sterilized and autoclaved (−18.4‰ VPDB) Mojave Desert soil treatments was intermediate between SOM (−21.43‰ VPDB) and carbonates and indicates up to 13% of total C efflux may be from abiotic sources in calcareous soils.  相似文献   

11.
Patchy distribution of vegetation within semi-arid shrublands is normally mirrored in the soil beneath perennial shrubs (macrophytic patches), compared to inter-shrub areas (microphytic patches). To determine impacts of (1) litterfall inputs within vegetation patches and (2) rainfall distribution on soil C and N, we investigated soil C and N pools and associated soil properties in two semi-arid shrublands, in the Negev Desert of Israel (Lehavim), which receives >90% of annual rainfall during winter and in the Chihuahuan Desert, USA (FHMR) that experiences a bimodal (Summer-Winter) annual rainfall pattern. We also evaluated grazing effects on soil C and N pools at Lehavim. More distinct differences in soil properties existed between patch types at the Negev site, where the soils contained higher soil organic C and N, amino acids and sugars, asparaginase activity and plant-available N than those at FHMR. Soil organic C (0-5 cm) in macrophytic patches was 39 g/kg at Lehavim and 13 g/kg at FHMR, and asparaginase activity was as high as 70 μg N/g 2 h in macrophytic patches at Lehavim, two times higher than at FHMR. The soil (0-5 cm) δ13C was −15 to −18‰ at Lehavim and −18 to −19‰ at FHMR, with significantly lower δ13C in macrophytic patches at both sites. The δ13C suggested that considerable macrophytic patch soil C was derived from cyanobacteria at Lehavim and C4 grasses at FHMR. Plant litter δ15N was 0.9‰ at Lehavim and 0.6‰ at FHMR, suggesting that much plant N was derived from N fixation. Concentrations of inorganic soil N (NH4++NO3) were up to 37 mg N/kg at Lehavim and <9 mg N/kg at FHMR. Grazing at Lehavim resulted in lower soil CH, AA, and AS. We conclude that differences between the sites are due largely to (i) higher amounts of litterfall C and N inputs within macrophytic patches at Lehavim and (ii) the different precipitation patterns, with summer precipitation at FHMR promoting increased organic matter mineralization compared to Lehavim, which experiences Winter precipitation only. Furthermore, greater differences in soil properties between patch types at Lehavim compared to FHMR can likely be attributed to the increasing importance of physical processes of resource dispersion at the more humid site in Arizona.  相似文献   

12.
Abstract

Long-term temporal changes in natural 15N abundance (δ15N value) in paddy soils from long-term field experiments with livestock manure and rice straw composts, and in the composts used for the experiments, were investigated. These field experiments using livestock manure and rice straw composts had been conducted since 1973 and 1968, respectively. In both experiments, control plots to which no compost had been applied were also maintained. The δ15N values of livestock manure compost reflected the composting method. Composting period had no significant effect on the δ15N value of rice straw compost. The δ15N values increased in soils to which livestock manure compost was successively applied, and tended to decrease in soils without compost. In soils to which rice straw compost was successively applied, the δ15N values of the soils remained constant. Conversely, δ15N values in soils without rice straw compost decreased. The downward trend in δ15N values observed in soils to which compost and chemical N fertilizer were not applied could be attributed to the natural input of N, which had a lower δ15N value than the soils. Thus, the transition of the δ15N values in soils observed in long-term paddy field experiments indicated that the δ15N values of paddy soils could be affected by natural N input in addition to extraneous N that was applied in the form of chemical N fertilizers and organic materials.  相似文献   

13.
Applying pig slurry (PS) on agricultural soils is a common practice. However, its impact on soil organic C dynamics is not clear. This experiment investigated the use of natural 13C abundance to study the short-term C mineralization of anaerobically stored PS under field conditions. Measurements of δ13C-CO2 were made on soil air samples obtained from a bare sandy loam during 22 d following incorporation of either PS alone, PS+barley straw, or barley straw alone; an unamended treatment was used as a control. Slurry C was enriched in 13C (−20.0‰) because of the high corn (Zea mays L.) content of the animal diet. This value contrasted with δ13C of −28.4‰ for the soil organic matter and of −29.0‰ for the barley straw. A peak of high δ13CO2 values (average of −9.2‰) was observed on the day of PS application and was attributed to the dissociation of PS carbonates when mixed with the relatively acidic soil. After this initial burst, 36% of the evolved CO2 originated from the decomposing PS. After 22 d of incubation, approx. 20% of the PS-C had been lost as CO2. This short-term field study did not show any priming effect of PS on the mineralization of straw or native soil C. Due to its heterogeneity, the use of the isotopic composition of the evolved CO2 for estimating PS decomposition requires precaution either through the use of a specific experimental design involving comparable C3 and C4 treatments, or calculations to account for the presence of 13C-enriched inorganic C in the PS.  相似文献   

14.
The use of composts in agricultural soils is a widespread practice and the positive effects on soil and plants are known from numerous studies. However, there have been few attempts to compare the effects of different kinds of composts in one single study. The aim of this paper is to investigate to what extent and to which soil depth four major types of composts would affect the soil and its microbiota.In a crop-rotation field experiment, composts produced from (i) urban organic wastes, (ii) green wastes, (iii) manure and (iv) sewage sludge were applied at a rate equivalent to 175 kg N ha−1 yr−1 for 12 years. General (total organic C (Corg), total N (Nt), microbial biomass C (Cmic), and basal respiration), specific (enzyme activities related to C, N and P cycles), biochemical properties and bacterial genetic diversity (based on DGGE analysis of 16S rDNA) were analyzed at different depths (0-10, 10-20 and 20-30 cm).Compost treatment increased Corg at all depths from 11 g kg−1 for control soil to 16.7 g kg−1 for the case of sewage sludge compost. Total N increased with compost treatment at 0-10 cm and 10-20 cm depths, but not at 20-30 cm. Basal respiration and Cmic declined with depth, and the composts resulted in an increase of Cmic and basal respiration. Enzyme activities were different depend on the enzyme and among compost treatments, but in general, the enzyme activities were higher in the upper layers (0-10 and 10-20 cm) than in the 20-30 cm layer. Diversity of ammonia oxidizers and bacteria was lower in the control than in the compost soils. The type of compost had less influence on the composition of the microbial communities than did soil depth.Some of the properties were sensitive enough to distinguish between different compost, while others were not. This stresses the need of multi-parameter approaches when investigating treatment effects on the soil microbial community. In general, with respect to measures of activity, biomass and community diversity, differences down the soil profile were more pronounced than those due to the compost treatments.  相似文献   

15.
Two field experiments were conducted on Andisols in Japan to evaluate the changes in the natural 15N and 13C abundance in the soil profile and to determine whether the values of δ15N could be used as an indicator of fertilizer sources or fertilizer fate. The 6-year experiment conducted at the National Agricultural Research Center (NARC) consisted of the following treatments: application of swine compost (COMPOST), slow-release nitrogen fertilizer (SRNF), readily available nitrogen fertilizer (RANF), and absence of fertilization (CONTROL). Experimental plots located at the Nippon Agricultural Research Institute (NARI) received cattle compost at different rates for 12 years; a forest soil at this site was sampled for comparison. Swine compost application led to a considerable change in the δ15N distribution pattern in the soil profile, with the highest δ15N values recorded in the top 20 cm layers of the COMPOST plot, decreasing in the sequence of CONTROL >- RANF > SRNF, mainly due to the relatively high δ15N value of swine compost and its subsequent decomposition. In contrast, SRNF application resulted in the lowest δ15N values in soil, indicating the presence of negligible nitrogen losses relative to input and low nitrogen cycling rates. Values of δ15N increased with compost application rates at NARI. In the leachate collected at 1-m depth, the δ15N values decreased in the sequence of COMPOST > RANF ≥ CONTROL > SRNF. The δ13C values in soil peaked in the 40–60 cm layers for all the fertilizers. The δ13C value was lowest in forest soil due to the presence of plant residues in soil organic matter. These results indicated that the δ15N values in the upper soil layers or leachate may enable to detect pollution sources of organic or inorganic nitrogen qualitatively in Andisols.  相似文献   

16.
Human activity has increased the amount of N entering terrestrial ecosystems from atmospheric NO3 deposition. High levels of inorganic N are known to suppress the expression of phenol oxidase, an important lignin-degrading enzyme produced by white-rot fungi. We hypothesized that chronic NO3 additions would decrease the flow of C through the heterotrophic soil food web by inhibiting phenol oxidase and the depolymerization of lignocellulose. This would likely reduce the availability of C from lignocellulose for metabolism by the microbial community. We tested this hypothesis in a mature northern hardwood forest in northern Michigan, which has received experimental atmospheric N deposition (30 kg NO3-N ha−1 y−1) for nine years. In a laboratory study, we amended soils with 13C-labeled vanillin, a monophenolic product of lignin depolymerization, and 13C-labeled cellobiose, a disaccharide product of cellulose degradation. We then traced the flow of 13C through the microbial community and into soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial respiration. We simultaneously measured the activity of enzymes responsible for lignin (phenol oxidase and peroxidase) and cellobiose (β-glucosidase) degradation. Nitrogen deposition reduced phenol oxidase activity by 83% and peroxidase activity by 74% when compared to control soils. In addition, soil C increased by 76%, whereas microbial biomass decreased by 68% in NO3 amended soils. 13C cellobiose in bacterial or fungal PLFAs was unaffected by NO3 deposition; however, the incorporation of 13C vanillin in fungal PLFAs extracted from NO3 amended soil was 82% higher than in the control treatment. The recovery of 13C vanillin and 13C cellobiose in SOC, DOC, microbial biomass, and respiration was not different between control and NO3 amended treatments. Chronic NO3 deposition has stemmed the flow of C through the heterotrophic soil food web by inhibiting the activity of ligninolytic enzymes, but it increased the assimilation of vanillin into fungal PLFAs.  相似文献   

17.
We used a continuous labeling method of naturally 13C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric CO2 concentration at 400±5 ppm and δ13C signature at −24.4‰ by regulating the flow of naturally 13C-depleted CO2 and CO2-free air into the growth chamber, which allowed us to separate new plant-derived CO2-C from original soil-derived CO2-C in soil respiration. Rhizosphere priming effects on SOM decomposition, i.e., differences in soil-derived CO2-C between planted and non-planted treatments, were significantly different between the two soils, but not between the two plant species. Soil-derived CO2-C efflux in the organically farmed soil increased up to 61% compared to the no-plant control, while the annual grassland soil showed a negligible increase (up to 5% increase), despite an overall larger efflux of soil-derived CO2-C and total soil C content. Differences in rhizosphere priming effects on SOM decomposition between the two soils could be largely explained by differences in plant biomass, and in particular leaf biomass, explaining 49% and 74% of the variation in primed soil C among soils and plant species, respectively. Nitrogen uptake rates by soybean and sunflower was relatively high compared to soil C respiration and associated N mineralization, while inorganic N pools were significantly depleted in the organic farm soil by the end of the experiment. Despite relatively large increases in SOM decomposition caused by rhizosphere effects in the organic farm soil, the fast-growing soybean and sunflower plants gained little extra N from the increase in SOM decomposition caused by rhizosphere effects. We conclude that rhizosphere priming effects of annual plants on SOM decomposition are largely driven by plant biomass, especially in soils of high fertility that can sustain high plant productivity.  相似文献   

18.
Sustainable agriculture requires the formation of new humus from the crops. We utilized 13C and 15N signatures of soil organic matter to assess how rapidly wheat/maize cropping contributed to the humus formation in coarse-textured savanna soils of the South African Highveld. Composite samples were taken from the top 20 cm of soils (Plinthustalfs) cropped for lengths of time varying from 0 to 98 years, after conversion from native grassland savanna (C4). We performed natural 13C and 15N abundance measurements on bulk and particle-size fractions. The bulk soil δ13C values steadily decreased from −14.6 in (C4 dominated) grassland to −16.5‰ after 90 years of arable cropping. This δ13C shift was attributable to increasing replacement of savanna-derived C by wheat crop (C3) C which dominated over maize (C4) inputs. After calculating the annual C input from the crop yields and the output from literature data, by using a stepwise C replacement model, we were able to correct the soil δ13C data for the irregular maize inputs for a period of about one century. Within 90 years of cropping 41-89% of the remaining soil organic matter was crop-derived in the three studied agroecosystems. The surface soil C stocks after 90 years of the wheat/maize crop rotation could accurately be described with the Rothamsted Carbon Model, but modelled C inputs to the soil were very low. The coarse sand fraction reflected temporal fluctuations in 13C of the last C3 or C4 cropping and the silt fraction evidenced selective erosion loss of old savanna-derived C. Bulk soil 15N did not change with increasing cropping length. Decreasing δ15N values caused by fertilizer N inputs with prolonged arable cropping were only detected for the coarse sand fraction. This indicated that the present N fertilization was not retained in stable soil C pool. Clearly, conventional cropping practices on the South African highlands neither contribute to the preservation of old savanna C and N, nor the effective humus reformation by the crops.  相似文献   

19.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

20.
Bulking agents and bedding materials used on farms for composting manures affect the time required for composts to mature. The effects of these materials on guidelines for the use of composted manures in potting mixes are not fully known. Several chemical and biological compost characteristics were mentioned and a cucumber plant growth greenhouse bioassay was performed on samples removed from windrows during composting of: (i) dairy manure amended with wheat straw; (ii) dairy manure amended with sawdust (mostly Quercus spp.); and (iii) pig manure amended with sawdust and shredded wood (mostly Quercus spp.). Dry weights of cucumber seedlings grown in fertilized and unfertilized potting mixes amended with composts (30%, v/v) having stability values of <1 mg CO2-C g-1 dw d−1, did not differ significantly from those in a control peat mix. Only the most mature dairy manure-wheat straw compost samples consistently established sufficient N concentrations in cucumber shoots in unfertilized treatments. For the dairy manure-wheat straw compost, all possible subset regression analyses of compost characteristics versus cucumber plant dry weight revealed that any of several compost characteristics (electrical conductivity-EC, compost age, total N, organic C, C-to-N ratio, ash content, CO2 respirometry, Solvita CO2 index and the Solvita® Compost Maturity Index) predicted growth of cucumber in the unfertilized treatments, and thus maturity. In contrast, at least two characteristics of the dairy manure-sawdust compost were required to predict growth of cucumber in the unfertilized treatments. Effective combinations were EC with compost age and the Solvita® maturity index with total N. Even five compost characteristics did not satisfactorily predict growth of cucumber in the non-fertilized pig manure-wood compost. Nutrient analysis of cucumber shoots indicated N availability was the principal factor limiting growth in potting mixes amended with the dairy manure-sawdust compost, and even more so in the pig manure-wood compost even though the compost had been stabilized to a high degree (<1 mg CO2-C g−1 dw d−1). Maturity of the composted manures, which implies a positive initial plant growth response of plants grown without fertilization, could not be predicted by compost characteristics alone unless the bulking agent or bedding type used for the production of the composts was also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号