首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the C balance. We studied the decomposition of Scots pine (Pinus sylvestris L.) needle and root litter in boreal peatland sites representing gradients in drainage succession (succession following water level drawdown caused by forest drainage) and soil nutrient level during several years of varying weather conditions. Neither gradient had an unambiguous effect on litter mass loss. Mass loss over 2 years was faster in undrained versus drained sites for both needle litter, incubated in the moss layer, and fine root litter, incubated in 0-10 cm peat layer, suggesting moisture stress in the surface layers of the drained sites limited decomposition. Differences among the drained sites were not consistent. Among years, mass loss correlated positively with precipitation variables, and mostly negatively or not at all with temperature sum. We concluded that a long-term water level drawdown in peatlands does not necessarily enhance decay of fresh organic matter. Instead, the drained site may turn into a ‘large hummock-system’ where several factors, including litter quality, relative moisture deficiency, higher acidity, lower substrate temperature, and in deeper layers also oxygen deficiency, may interact to constrain organic matter decomposition. Further, the decomposition rates may not vary systematically among sites of different soil nutrient levels following water level drawdown. Our results emphasize the importance of annual weather variations on decomposition rates, and demonstrate that single-period incubation studies incorporate an indeterminable amount of temporal variation.  相似文献   

2.
The Zoige alpine peatlands cover approximately 4,605 km2 of the Qinghai–Tibetan Plateau and are considered to constitute the largest plateau peatland on the Eurasian continent. However, the Zoige alpine peatlands are undergoing major degradation because of human activities and climate change, which would cause uncertainty in the budget of greenhouse gases (CH4 and CO2) and carbon (C) storage in global peatlands. This study simultaneously investigates the CH4 and CO2 emission fluxes and C storage at three typical sites with respect to the peatland degradation gradient: peatland, wet meadow and dry meadow. Results show that peatland degradation would increase the CO2 emission and decrease the CH4 emission. Moreover, the average C emission fluxes were 66.05, 165.78 and 326.56 mg C m?2 hr?1 for the peatland, wet meadow and dry meadow, respectively. The C storage of the vegetation does not considerably differ among the three sampling sites. However, when compared with the peatland (1,088.17 t C ha?1), the soil organic C storage decreases by 420 and 570 t C ha?1 in case of wet and dry meadows, respectively. Although the C storage in the degraded peatlands decreases considerably, it can still represent a large capacity of C sink. Therefore, the degraded peatlands in the Zoige alpine area must be protected and restored to mitigate regional climate change.  相似文献   

3.
韩仕星    陈允腾  张懿晴    杨胜勇  王征   《水土保持研究》2022,29(5):391-397,410
若尔盖泥炭地经历了长期人为排水,未来又面临着强烈的变暖干旱,会对泥炭地CH4排放产生复杂影响。在若尔盖选取了近自然和长期人为排水两种泥炭地类型,采集1 m深泥炭柱,采用室内环境控制试验,设定不同的氧气、水分和温度条件,探索这两种典型泥炭地的泥炭CH4排放对增温与干旱双重变化的响应差异。结果表明:(1)由于水位降低和泥炭有机物质量下降,长期排水泥炭地的中下层泥炭(20—80 cm)CH4累积排放量显著低于近自然泥炭地。(2)两种泥炭地的表层和深层泥炭CH4排放都对升温不敏感,而中下层泥炭的CH4累积排放量从5℃到15℃显著增加。(3)模拟增温10℃同时干旱水位降低20 cm条件下,中层泥炭受到了温度、水分和氧气变化的叠加影响,CH4排放变化最剧烈。(4)最终整个1 m深泥炭近自然泥炭地高温低水位的CH4总排放量为(204.29±15.13)μg/gC,比其低温高水位显著升高66.43 μg/gC(约48%); 排水泥炭地高温低水位的CH4总排放量为(75.64±9.41)μg/gC,比其低温高水位升高11.95 μg/gC(约19%)。综上,升温干旱气候会对若尔盖泥炭地的有机碳稳定性造成破坏性影响,会集中导致中层泥炭CH4排放的剧烈变化,可能最终使本区域CH4排放量显著提高。  相似文献   

4.
Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition chemistry and dissolved organic carbon export in peatlands, a field experiment was conducted to compare the pore water chemistry and peat microbial enzyme activity of mesocosms receiving sulfate amendments to mesocosms receiving no additions. To consider how peatlands respond during recovery from increased inputs of sulfate, samples were also analyzed from an area of the same peatland that was previously amended with sulfate. Current additions of sulfate decreased dissolved organic carbon concentration and increased dissolved organic carbon aromaticity. Total dissolved phosphorus decreased in response to current sulfate amendments but was elevated in the area of the peatland recovering from sulfate amendment. The total dissolved phosphorus increase, which was reflected in microbial enzyme activity, may have shifted the system from P limitation to N limitation. This shift could have important consequences for ecosystem processes related to plant and microbial communities. It also suggests that the recovery from previous sulfate amendments may take longer than may be expected.  相似文献   

5.
Altough peatlands in southern Québec are facing increasing pressure, neither specific nor substantial protection measures have been implemented, partly due to a lack of information on this ecosystem. We determined the contribution of peatlands to bird regional diversity by measuring the difference between peatland and associated regional avifaunas. We sampled 112 peatlands located along the Saint Lawrence River during one breeding season. We used data on regional nesting bird assemblages from the Québec breeding bird atlas. Peatland bird species contrasted increasingly with regional avifauna from north to south or from undisturbed to managed landscapes. Of the 17 bird species found significantly more often in peatlands than in surroundings, some preferred peatlands in the whole study area and others preferred peatlands only in particular regions. Peatland avifaunas within regions were more similar to each other than to their regional avifauna, and differences between regions probably reflected changes in peatland physiognomy. We conclude that peatlands contribute to enrich local and regional avian diversity, particularly in the lowlands of the Saint Lawrence River, where industrial pressure on peatlands is highest.  相似文献   

6.
At the global scale peatlands are an important soil organic carbon (SOC) pool. They sequester, store and emit carbon dioxide and methane and have a large carbon content per unit area. In Ireland, peatlands cover between 17% and 20% of the land area and contain a significant, but poorly quantified amount of SOC. Peatlands may function as a persistent sink for atmospheric CO2. In Ireland the detailed information that is required to calculate the peatland SOC pool, such as peat depth, area and carbon density, is inconsistent in quality and coverage. The objective of this research was to develop an improved method for estimating the depth of blanket peat from elevation, slope and disturbance data to allow more accurate estimations of the SOC pool for blanket peatlands. The model was formulated to predict peat depth at a resolution of 100 ha (1 km2). The model correctly captured the trend and accounted for 58 to 63% of the observed variation in peat depth in the Wicklow Mountains on the east coast of Ireland. Given that the surface of a blanket peatland masks unknown undulations at the mineral/peat interface this was a successful outcome. Using the peat depth model, it was estimated that blanket peatland in the Wicklow Mountains contained 2.30 Mt of carbon. This compares to the previously published values ranging from 0.45 Mt C to 2.18 Mt C.  相似文献   

7.
北方泥炭地甲烷排放研究: 综述   总被引:7,自引:0,他引:7  
D. Y. F. LAI 《土壤圈》2009,19(4):409-421
Northern peatlands store a large amount of carbon and play a significant role in the global carbon cycle. Owing to the presence of waterlogged and anaerobic conditions, peatlands are typically a source of methane (CH4), a very potent greenhouse gas. This paper reviews the key mechanisms of peatland CH4 production, consumption and transport and the major environmental and biotic controls on peatland CH4 emissions. The advantages and disadvantages of micrometeorological and chamber methods in measuring CH4 fluxes from northern peatlands are also discussed. The magnitude of CH4 flux varies considerably among peatland types (bogs and fens) and microtopographic locations (hummocks and hollows). Some anthropogenic activities including forestry, peat harvesting and industrial emission of sulphur dioxide can cause a reduction in CH4 release from northern peatlands. Further research should be conducted to investigate the in fluence of plant growth forms on CH4 flux from northern peatlands, determine the water table threshold at which plant production in peatlands enhances CH4 release, and quantify peatland CH4 exchange at plant community level with a higher temporal resolution using automatic chambers.  相似文献   

8.
The elemental (including silica (Si), calcium (Ca), magnesium (Mg), manganese (Mn) and iron (Fe)) and nutrient composition of peatland surface pools and concentrations of Ca, Mg, Mn, and Fein peat interstitial waters and surface peat concentrations of oxides of Mn and Fe were determined for 15 peatlands sampled along a mineral gradient. Surface pool concentrations of Si wereca. ten fold less in surface pools of mineral-poor peatlands thanin the mineral rich, supporting the use of this element as an indicator of minerotrophic influence in peatlands. Principle component analysis of surface pool water chemistry parametersdifferentiated mineral-poor and moderately-poor peatlands frommineral-rich peatlands based on the concentrations of Ca, Mgand alkalinity of pools. Several lines of evidence indicated that peatland interstitial waters were important contributors to peatland alkalinity and included; (1) maximum interstitial water concentrations of Ca and Mg correlating with overlying surface pool alkalinity, (2) a negative correlation between interstitial water Ca:Mg ratios and surface pool concentrationsof Si and (3) Ca:Mg ratios of moderately-poor to mineral-poorpeatland interstitial waters approaching the Ca:Mg ratio of rainwater rather than those of bedrock. Interstitial water concentrations of dissolved Mn and Fe correlated with amountsof reducible Fe and Mn (oxides of Fe and Mn) recovered from thepeat/water interface indicating that groundwater inputs areimportant sources of these two elements to fens. As a consequence, for peatlands that are not truly ombrotrophic,groundwater inputs of Mn and Fe may interfere with interpretingpeat metal profiles thought to be due to anthropogenic inputs alone.  相似文献   

9.
In this study, we investigated the extent of peatland degradation and development in Peninsular Malaysia and in the islands of Sumatra and Borneo, in the western part of insular Southeast Asia, since 1990. Furthermore, carbon emissions caused by these land cover changes were estimated in order to evaluate their contribution to global climate change. High resolution Landsat (30 m spatial resolution) and Satellite Pour l'Observation de la Terre (SPOT; 10–20 m) satellite images were used to derive information on land cover in 1990 and 2008. Analysis of land cover changes since 1990 revealed remarkable reduction and degradation of peatswamp forest ecosystems. In less than 20 years, 5·1 Mha of the total 15·5 Mha of peatland had been deforested (11·6 Mha → 6·5 Mha; 75 per cent → 42 per cent) and the great majority of the remaining forests had been selectively logged. Simultaneously, area covered by unmanaged secondary growth ecosystems had doubled to nearly a quarter of all peatlands and industrial plantations had expanded dramatically (0·3 Mha → 2·3 Mha; 2 per cent → 15 per cent). It was conservatively estimated that these changes have caused minimum of 1·5 Gt carbon emissions into the atmosphere since 1990. Currently, peatlands of the study area emit at least 81 Mt of carbon (equivalent to 300 Mt of carbon dioxide) on annual basis due to mere peat decomposition. Thereby, it was concluded that peatland degradation and development in insular Southeast Asia during the past two decades have not only put the existence of Southeast Asian peatswamp forest ecosystems in danger but it has also caused globally significant carbon emissions and created a constant source of carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Soil temperature is a major factor affecting organic matter decomposition and thus, global warming may accelerate decomposition processes. However, it remains unclear whether the effects will be similar in climatically different regions. The effects of soil temperatures of 5, 10 and 15 °C on the decomposition of Scots pine (Pinus sylvestris L.) needles were assessed in a 1-year (360 days) growth chamber experiment. Intact peat cores from two climatically different peatland sites (southern and northern Finland) were used as the incubation environments. Needles were incubated in litter bags beneath the living moss layer, and mass loss and nitrogen (N) concentration were determined at 60-day intervals. The rate of mass loss from the needles over time was clearly lower in the 5 °C treatment than at the higher temperatures. Mass loss was strongly related to the accumulated soil temperature sum. In temperatures higher than 5 °C, mass losses were higher in the northern peat. Also, the limit value of decomposition (asymptotic maximum mass loss) was slightly higher in the northern peat (92%), than in the southern peat (87%). The N concentration increased up to a mass loss of 50–60%, whereupon it decreased, while the amount of N (as a percentage of the original amount) remained unchanged until a mass loss of 50–60%, whereupon it decreased linearly. It seems that increasing soil temperatures may result in slightly higher rates of needle litter mass loss and consequent N release in northern peat than in southern peat. The faster decomposition in higher temperatures in the northern peat, together with the slightly higher maximum mass loss value, imply that with climatic warming, susceptibility of boreal peatlands for becoming sources of carbon to the atmosphere may increase towards north.  相似文献   

11.
Peatlands are important ecosystems in the global carbon cycle, serving as both the largest terrestrial soil carbon pool and a significant source of the greenhouse gas methane (CH4). In Sphagnum moss-dominated wetlands, anaerobic decomposition, and in particular the production of CH4, is highly variable and controlling factors are poorly understood. The main objective of this study was to determine if leachates of Sphagnum can explain differences in anaerobic decomposition and CH4 production from three Sphagnum-dominated peatlands.Soils from each peatland were incubated anaerobically for 40 days with Sphagnum-derived organic matter (S-DOM) extracted using distilled water at 25 or 60 °C in a fully-crossed experimental design. S-DOM extracted at 25 °C had a minimal effect on decomposition, but S-DOM extracted at 60 °C increased CO2 production in all soils. The magnitude of the increased CO2 production in response to S-DOM depended on the source site of the S-DOM. The response of CH4 production to additions of S-DOM extracted at 60 °C was more complex. Soils from one peatland produced no CH4 during the incubation, regardless of S-DOM source. The same S-DOM additions led to an increase in CH4 production in a second soil, but a decrease in CH4 production in the third soil. Stable isotopic evidence suggests that these patterns were driven by the selective inhibition or stimulation of acetoclastic methanogenesis. Taken together, these data suggest S-DOM alone does not explain differences in anaerobic decomposition in peatlands, but may play a role in regulating CO2 and CH4 production.  相似文献   

12.
The peatlands of Tierra del Fuego are subject to increased solar ultraviolet-B radiation (UV-B) due to the influence of the Antarctic ‘ozone hole’. Research into the effects of climate change and ozone depletion on peatlands has predominantly focused on the higher plant community and neglected other organisms. In the second 3-year portion of a 6-year experiment, we intensified our investigations of the response of the peatland surface microfaunal community to current and attenuated solar UV-B, and assessed possible links to changes in the microenvironment. Near-ambient UV-B and reduced UV-B treatments were realised by stretching plastic film filters that differentially attenuate UV-B over peatland sample plots. We extracted the microfauna and analysed the dissolved nutrients held within Sphagnum capitula removed from the top 1-cm of the peatland. In line with previous findings in this system, testate amoebae were more abundant under near-ambient UV-B than under reduced UV-B. Populations of the most common genus, Assulina, and other less prominent amoebae species of Heleopera and Euglypha, were consistently increased under near-ambient UV-B. Overall diversity of testate amoebae was also higher under near-ambient UV-B than under reduced UV-B, whereas rotifers, nematodes and mites were less abundant under near-ambient UV-B. Concentrations of DOC and P were generally higher under near-ambient UV-B than under reduced UV-B. These changes, combined with the changes previously reported in the plant and fungal communities, have the potential to influence peatland C storage, and surface nutrient availability. The peatland microfaunal community under near-ambient solar UV-B may be regulated by the plant community through the leaching of nutrients from leaf cells, and changes in Sphagnum morphology that affect the capitulum microenvironment.  相似文献   

13.
Altitudinal gradients are useful to study the potential effects of climate change on ecosystems. Historically, studies on elevation gradients have primarily focused on macro-organisms and ecosystem processes, while microorganisms have been mostly ignored despite their ubiquity and functional importance. We studied the temporal (about every two months from June 2008 until May 2009) variation of testate amoeba communities in four Sphagnum-dominated peatlands along a 1300 m elevation gradient in the Swiss Mountains (580–1880 m) in relation to water table depth and hydrochemistry with special focus on dissolved organic carbon (DOC), a useful proxy for changes in C-cycling in peatlands.The lowest site had significantly (P < 0.01) lowest testate amoeba density, species richness. The highest site had highest testate amoeba density (38 ind mg−1 dry mass of Sphagnum). Seasonal fluctuations in testate amoeba species richness and diversity were not consistent among sites but density tended to peak in spring at all sites, autumn in the three highest sites and mid-winter in the upper two sites. In a redundancy analysis (RDA) community structure was more strongly correlated to altitude (33.8% of variance explained in living community) than to soil hydrological and hydro-chemical variables (together explaining 16.2% of variance). In a partial RDA with altitude used as covariable, the four sites were separated by DOP, DOC, DON, pH and average depth to water table.The abundance of high trophic level testate amoeba species (shell-aperture over their body size >0.20; i.e. primarily predators of protists and micro-metazoa) as well as the community size structure increased from lowest to highest elevation (respectively by 3.7× and 6×) and followed the seasonal patterns of total density, while DOC, DON, and DOC/DON decreased with elevation.These results agree with previously reported alteration of peatland microbial food chains in response to experimental warming, suggesting that climate-induced changes in microbial community structure (here a shortening of microbial food chains) represent a mechanism controlling the carbon balance of peatlands.  相似文献   

14.
The total area of boreal peatlands is about 3.5 million km2 and they are estimated to contain 15–30% of the global soil carbon (C) storage. In Finland, about 60 000 km2, or 60% of the original peatland area, has been drained, mainly for forestry improvement. We have studied C inventory changes on forestry‐drained peatlands by re‐sampling the peat stratum in 2009 at the precise locations of quantitative peat mass analyses conducted as part of peatland transect surveys during the 1980s. The old and new profiles were correlated mainly by their ignition residue stratigraphies; at each site we determined a reference level, identifiable in both profiles, and calculated the cumulative dry mass and C inventories above it. Comparison of a total of 37 locations revealed broad variation, from slight increase to marked decrease; on average the 2009 results indicate a loss of 7.4 (SE ± 2.5) kg m?2 dry peat mass when compared with the 1980s values. Expressed on an annual basis, the results indicate an average net loss of 150 g C m?2 year?1 from the soil of drained forestry peatlands in the central parts of Finland. The C balance appeared not to correlate with site fertility (fertility classes according to original vegetation type), nor with post‐drainage timber growth.  相似文献   

15.
Climate warming may promote soil organic carbon(SOC) decomposition and alter SOC stocks in terrestrial ecosystems, which would in turn affect climate warming. We manipulated a warming experiment using open-top chambers to investigate the effect of warming on SOC stock and chemical composition in an alpine peatland in Zoigê on the eastern Tibetan Plateau, China. Results showed that 5 years of warming soil temperatures enhanced ecosystem respiration during the growing season, promoted above-and be...  相似文献   

16.
Cutover peatlands are often rapidly colonised by pioneer plant species, which have the potential to affect key ecosystem processes such as carbon (C) turnover. The aim of this study was to investigate how plant cover and litter type affect fungal community structure and litter decomposition in a cutover peatland. Intact cores containing Eriophorum vaginatum, Eriophorum angustifolium, Calluna vulgaris and bare soil were removed and a mesh bag with litter from only one of each of these species or fragments of the moss Sphagnum auriculatum was added to each core in a factorial design. The presence or absence of live plants, regardless of the species, had no effect on mass loss, C, nitrogen (N) or phosphorus (P) concentrations of the litter following 12 months of incubation. However, there was a very strong effect of litter type on mass loss and concentrations of C, N and P between most combinations of litter. Similarly, plant species did not affect fungal community structure but litter type had a strong effect, with significant differences between most pairs of litter types. The data suggest that labile C inputs via rhizodeposition from a range of plant functional types that have colonised cutover bogs for 10-15 years have little direct effect on nutrient turnover from plant litter and in shaping litter fungal community structure. In contrast, the chemistry of the litter they produce has much stronger and varied effects on decomposition and fungal community composition. Thus it appears that there is distinct niche differentiation between the fungal communities involved in turnover of litter versus rhizodeposits in the early phases of plant succession on regenerating cutover peatlands.  相似文献   

17.
Extensive areas of European peatlands have been drained by digging ditches in an attempt to improve the land, resulting in increased carbon dioxide fluxes to the atmosphere and enhanced fluvial dissolved organic carbon (DOC) concentrations. Numerous peatland restoration projects have been initiated which aim to raise water tables by ditch blocking, thus reversing drainage‐induced carbon losses. It has been suggested that extracellular hydrolase and phenol oxidase enzymes are partly responsible for controlling peatland carbon dynamics and that these enzymes are affected by environmental change. The aim of this study was to investigate how drainage and ditch blocking affect enzyme activities and water chemistry in a Welsh blanket bog, and to study the relationship between enzyme activity and water chemistry. A comparison of a drained and undrained site showed that the drained site had higher phenol oxidase and hydrolase activities, and lower concentrations of phenolic compounds which inhibit hydrolase enzymes. Ditch blocking had little impact upon enzyme activities; although hydrolase activities were lowered 4–9 months after restoration, the only significant difference was for arylsulphatase. Finally, we noted a negative correlation between β‐glucosidase activity and DOC concentrations, and a positive correlation between arylsulphatase activity and sulphate concentration. Phenol oxidase activity was negatively correlated with DOC concentrations in pore water, but for ditch water phenol oxidase correlated negatively with the ratio of phenolics to DOC. Our results imply that drainage could exacerbate gaseous and fluvial carbon losses and that peatland restoration may not reverse the effects, at least in the short term.  相似文献   

18.
Thirty-one peatlands from two areas of central Ontario were sampled to assess the influence of acid deposition on peatland water chemistry. Factor analysis differentiated peatland water chemistry along three major axes of chemical variation, interpreted as axes of organic concentration, mineral concentration, and deposition influence. Water from the surface mats had a higher organic concentration than water from open pools. Mineral influence in peatland waters was reflected by higher concentrations of Ca, Mg, Na, and silica in fen pools compared to bog pools. The influence of high acid deposition in the Wanapitei study area was indicated by high concentrations of sulphate, Ni, Mn, and Cu, and lower pH compared to an area that has received less acidic deposition (Ranger). Regression analyses indicated that H+ variation in bogs could be largely explained by organic C concentration, but that sulphate concentration was also positively associated with acidity, while Ca was negatively associated with acidity.  相似文献   

19.
Peatland restoration via rewetting aims to recover biological communities and biogeochemical processes typical to pristine peatlands. While rewetting promotes recovery of C accumulation favorable for climate mitigation, it also promotes methane (CH4) emissions. The potential for exceptionally high emissions after rewetting has been measured for Central European peatland sites previously grazed by cattle. We addressed the hypothesis that these exceptionally high CH4 emissions result from the previous land use. We analyzed the effects of cattle dung application to peat soils in a short- (2 weeks), a medium- (1 year) and a long-term (grazing) approach. We measured the CH4 production potentials, determined the numbers of methanogens by mcrA qPCR, and analyzed the methanogen community by mcrA T-RFLP-cloning-sequencing. Dung application significantly increased the CH4 production potential in the short- and the medium-term approach and non-significantly at the cattle-grazed site. The number of methanogens correlated with the CH4 production in the short- and the long-term approach. At all three time horizons, we found a shift in methanogen community due to dung application and a transfer of rumen methanogen sequences (Methanobrevibacter spp.) to the peatland soil that seemed related to increased CH4 production potential. Our findings indicate that cattle grazing of drained peatlands changes their methanogenic microbial community, may introduce rumen-associated methanogens and leads to increased CH4 production. Consequently, rewetting of previously cattle-grazed peatlands has the potential to lead to increased CH4 emissions. Careful consideration of land use history is crucial for successful climate mitigation with peatland rewetting.  相似文献   

20.
A recent study on nitrogen (N) and phosphorus (P) exports from drained peatland forests reported increasing concentrations over long time since their initial drainage. Concurrently, some other studies have suggested decreasing trends from drained peatland forests, particularly for P. To evaluate these contradictory findings, we re-analyzed past data and reviewed the literature related to temporal N and P concentration trends in runoff from drained peatland forests. Review of literature indicated that decreasing trends are found particularly in sites where initial P concentrations are high (>?50 μg P l?1), plausibly because of relatively recent fertilization and drainage operations. Decreasing N trends have been found in sites where ditch cleaning temporarily decreased concentrations. Increasing N trends have occurred in sites, where initial concentrations have been low, close to the levels found in pristine peatlands. Complementing past published data with additional data from sites with no recent forestry operations indicated that N concentrations correlated positively with drainage age (years since initial drainage), percentage of drained peatlands in the catchment (drainage proportion), and southern location of the study site. P concentrations correlated most strongly with drainage age. Our study indicated that four factors, in particular, need to be considered when interpreting nutrient concentration trends in runoff from drained peatlands: 1) management history, 2) drainage age, 3) drainage proportion, and 4) site location. Our results supported earlier conclusions in that the estimates which ignore the legacy effect of drainage remarkably underestimate the true impact of forestry on water courses in intensively drained regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号