首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary An investigation was conducted during the summer months of 1986–1987 and 1987–1988 in Western Australia to evaluate the effect of soil solarization on the control of root rot of gerbera an also on the microbial and nutrient status of the soil. Infested soil cores were sampled from a site where root-rot was a severe problem and were removed to a non-infested site where they were subjected to soil solarization or fumigation. Soil solarization resulted in reduced root rot (root disease index 28.6%) in comparison to the untreated control (52.0%) 8 months after planting. Plants in the fumigated plots had 15.8% less disease than those in solarized plots. Solarization increased the total numbers of bacteria and actinomycetes, and the proportion of bacteria and fungi antogonistic to Fusarium oxysporum, F. solani and Rhizoctonia solani. The proportion of actinomycetes antagonistic to these fungi, however, did not differ between solarized and control soil treatments. There was a significant reduction in disease in plants grown in infested fumigated soil to which a 10% concentration of solarized soil had been added, suggesting the development of microbial suppression in solarized soil. Phytophthora cryptogea was eradicated to 30 cm by solarization as well as by fumigation. Solarization eliminated R. solani but not F. oxysporum to a soil depth of 10 cm. Solarization increased the levels of NO n3 -N and NH4 +-N in soil, but did not affect the concentrations of PO4 3–, K+, Fe2+, organic C and pH. Yield (as number of flowers per plant) was increased by soil solarization and by fumigation.Increased yields and decreased disease severity in the solarized plots could have been caused by (1) a reduction in the infectivity of the infested soils, (2) an increase in the suppressiveness of the soil, and (3) an increased available of plant nutrients.  相似文献   

2.
长期不同施肥对玉米田间杂草种群组成的影响   总被引:6,自引:2,他引:6       下载免费PDF全文
尹力初  蔡祖聪 《土壤》2005,37(1):56-60
通过田间小区试验,研究了长期不同施肥对玉米田间杂草种群组成的影响。结果表明:N、P、K平衡施用时,无论是施用有机肥,或是施用无机化肥,田间杂草的种群组成相似;不施用 P 肥能显著引起杂草种群组成的改变;不施用 N 肥也有一定的影响,但不施用 K 肥却无显著影响。主成分分析表明:土壤速效 P 是影响田间杂草种群组成最为重要的因子,而速效 N 则为第二重要因子。  相似文献   

3.
The field experiments were carried out at Indian Agricultural Research Institute, New Delhi during three crop cycles from 1996-97 to 1998-99 to study the effect of incorporation of wheat and rice residues with and without a culture of cellulolytic fungi Trichrus spiralis on grain and straw yields and NPK uptake of rice-wheat cropping system and organic C, available P and available K content of soil. Incorporation of residue of wheat, rice or both had no significant effect on individual grain and straw yields and N and P uptake of rice and wheat, but significantly increased total grain and straw yields and N and P uptake of rice-wheat cropping system. Cellulolytic culture had no additional advantage over crop residues. Incorporation of residue of wheat, rice or both significantly increased K uptake of both rice and wheat as this practice resulted in recycling of 90% of total K uptake by rice and wheat crops. Incorporation of crop residue also resulted in building up of organic C, available P and available K content in soil.  相似文献   

4.
Soil solarization is a widespread, nonchemical agricultural practice for disinfesting soils, which is often used in combination with organic amendment, and whose action represents an important factor impacting on soil bacterial communities structure and population dynamics. The present study was conducted to investigate whether and to which extent a 72-day plot-scale soil solarization treatment, either combined or not with organic amendment, could stimulate compositional changes in the genetic structure of indigenous soil bacterial communities. Soil solarization with transparent polyethylene film, in combination or not with farmyard manure addition, was carried out during a summer period on a clay loam agricultural soil located in Southern Italy. Soils from a four-treatment (NS, nonsolarized control soil; S, solarized soil; MA, manure-amended nonsolarized soil; MS, manure-amended and solarized soil) plot block were sampled after 0, 8, 16, 36 and 72 days. Compositional shifts in the genetic structure of indigenous soil bacterial communities were monitored by denaturing gradient gel electrophoresis (DGGE) fingerprinting of 16S rRNA gene fragments amplified from soil-extracted community DNA using primers specific for Bacteria, Actinomycetales, α- and β-Proteobacteria. Changes in soil temperature, pH, and electrical conductivity (EC1:1) were also monitored from 0 to 72 days. Beneath the polyethylene film the average soil temperature at 8-cm depth reached 55 °C compared to 35 °C in nonsolarized soil. In general, without amendment both soil pH and EC1:1 were not significantly affected by solarization, whereas in manured plots either variables were greatly increased (from 7.0 to 8.0 pH and from 271 to 3021 μS cm−1 EC1:1), and both showed long-lasting effects due to soil solar heating. The eubacterial DGGE profiles revealed that soil solarization was the main factor inducing strong time-dependent population shifts in the community structure either in unamended or amended soils. Conversely, the addition of organic amendment resulted in an altered bacterial community, which remained rather stable over time. A similar behaviour was also observed in the DGGE patterns of β-proteobacterial and actinomycete populations, and also, albeit to a lesser extent, in the DGGE profiles of α-Proteobacteria. An increased bacterial richness was evidenced by DGGE fingerprints in 16- and 36-day samplings, followed by a decrease appearing in 72-day samplings. This could be explained, other than by a direct thermal effect on soil microflora, by solarization-induced changes in the physico-chemical properties of soil microbial habitats or by other ecological factors (e.g. decreased competitiveness of dominating bacterial species, reduced grazing pressure of microfaunal predators, increased nutrient availability).  相似文献   

5.
Field experiments were carried out at two different forest nurseries during the summer of 1994 to examine the efficacy of soil solarization for the control of damping-off. Both soils hosted Pythium spp., Fusarium spp. and Rhizoctonia solani as damping-off agents. Soil samples from solarized, steamed, fumigated and untreated plots were periodically collected and assayed for soil infectivity. Solarization with a double layer of polyethylene film was as effective as steaming or fumigation in reducing soil infectivity in the uppermost layer. During July the temperature of covered beds rose as high as 50°C at a soil depth of 5cm. The method achieved good control of Pythium spp., the main cause of damping-off at both nurseries, whereas Fusarium spp. were more tolerant. The association of Trichoderma spp. with a reduction of soil infectivity at the last sampling date strongly suggested that biocontrol processes were induced after solarization. Soil solarization provides a suitable method for control of damping-off. Received: 29 October 1996  相似文献   

6.
Soil solarization is an ecologically friendly method of controlling various plant pathogens and pests, but also affects non-pathogenic members of the soil biota. Here, we studied the impact of soil solarization on the community structure of soil ciliates using a culture-independent molecular approach, namely denaturing gradient gel electrophoresis (DGGE) of targeted 18S rRNA gene fragments. Greenhouse soil with added organic fertilizers was solarized for 33 days at an average temperature of 47–48°C. Solarization caused a drastic change in the ciliate community. The variation between replicates was large, which suggested that the distribution of ciliates was spatially heterogeneous in the soil, probably due to their decreased numbers. In contrast, non-solarized soil had a stable and homogeneous ciliate community during the experimental period. In solarized soil, most of the original ciliate community recovered 76 days after solarization. Sequence analysis of DGGE fragments indicated that both r-selected and K-selected species of ciliates were affected by solarization but recovered with time after solarization. Our results demonstrated both the vulnerability and resilience of the ciliate community to soil solarization and also the utility of using molecular-based analysis of ciliate communities as bioindicators of soil stress caused by solarization.  相似文献   

7.
Legumes as dry season fallow in upland rice-based systems of West Africa   总被引:4,自引:0,他引:4  
Declining fallow length in traditional upland rice-based cropping systems in West Africa results in a significant yield reduction due mainly to increased weed pressure and declining soil fertility. Promising cropping system alternatives include the use of weed-suppressing legumes as short duration fallows. N accumulation, N derived from the atmosphere (Ndfa), weed suppression, and the effects on rice yield were evaluated in 50 legumes, grown at four sites in Côte d'Ivoire with contrasting climate, soils, and rice production systems. The sites were located in the derived and the Guinea savanna and in the bimodal and the monomodal rainfall forest zones. Legume and weed biomass during the fallow were determined at bimonthly intervals. Percent Ndfa by biological N fixation was determined by 15N natural abundance. Fallow vegetation was cleared and rice seeded according to the practice of local farmers and the cropping calendar. Weed biomass and species composition were monitored at monthly intervals. Legume fallows appear to offer the potential to sustain rice yields under intensified cropping. Biomass was in most instances significantly greater in the legume fallow than in the "weedy" fallow control, and several legume species suppressed weed growth. N accumulation by legumes varied between 1–270?kg N ha–1 with 30–90%?Ndfa. Across sites, Mucuna spp., Canavalia spp., and Stylosanthes guianensis showed consistently high N accumulation. Grain yields of rice which had been preceded by a legume fallow were on average 0.2?Mg ha–1 or about 30% greater than that preceded by a natural weedy fallow control. At the savanna sites where fallow vegetation was incorporated, Mucuna spp. and Canavalia ensiformis significantly increased rice yield. In the bimodal forest zone, the highest rice yield and lowest weed biomass were obtained with Crotalaria anagyroides. In general, the effects of legume fallows on rice yield were most significant in environments with favourable soil and hydrological conditions.  相似文献   

8.
Effects of diverse agricultural land management practices on soil and on root colonizing fungal communities were determined through a PCR-based molecular method and a culture-dependent method, respectively, in a field location with uniform soil type. Initiated in July 2000, the management systems were: conventional tomato production, frequent tillage (disk fallow), undisturbed weed fallow, bahiagrass pasture (Paspalum notatum var. notatum ‘Argentine’), and an organically managed system including cover crops and annual applications of poultry manure and urban plant debris. Culture-dependent colony counting was used to identify and enumerate communities of root colonizing fungi and length heterogeneity polymerase chain reaction (LH-PCR) analysis of internal transcribed spacer-1 (ITS-1) profiles to characterize phylotypes in soil fungal communities. Three years after initiation of land management treatments and midway through tomato cultivation, both methods detected a high degree of similarity in fungal community composition between weed fallow and bahiagrass plots. Soil fungal communities in organically managed plots were similar to each other and distinct from communities in other land management systems while the composition of root colonizing fungal communities in organic plots was divergent. The results demonstrate that the soil fungal communities and root colonizing fungal communities were affected differently depending on land and crop management practices. Fusarium oxysporum was a dominant species in all soil and root colonizing fungal communities except those subjected to organic management practices.  相似文献   

9.
Imbalanced and inadequate use of chemical fertilizers is responsible for low rice- (Oryza sativa L.) wheat (Triticum aestivum L.) productivity in many resource-poor farmers' fields. Wheat yields in post-rice soils are also constrained due to soil conditions created by puddling in rice, especially in fine to medium textured soils. Organic amendments are known to improve soil productivity under rice-wheat cropping by way of improving physical conditions and nutrient status of the soil, but their availability is restricted. There is a need to identify locally available and cost-effective organic materials, which have minimal alternate uses as fodder and fuel. We evaluated lantana (Lantana spp. L.) residues, a fast-growing weed in nearby wastelands, as a potential soil organic amendment. Yield trends, and soil and crop nutrient status in a 12-year rice-wheat experiment at Palampur, India, involving four levels (0, 10, 20, and 30 Mg ha-1 year-1 fresh mass) of lantana addition were investigated. Chopped lantana was incorporated into soil 10–15 days before puddling. Lantana additions at 10, 20 and 30 Mg ha-1 increased rice yields on average by 18%, 23% and 30%, wheat yields by 11%, 14% and 20%, and total system productivity (rice + wheat) by 15%, 20% and 26% over controls, respectively, and at the same time saved NPK fertilizer. Linear regression analyses over 12 years did not show any change in yield trends of rice and wheat at P =0.05. Continuous cultivation of rice-wheat significantly increased total C, labile C, and other C indices of soils. Total N, Olsen's P, and NH4OAc-extractable K in the lantana-amended plots were higher than in the controls. Nutrient concentrations in crop biomass, however, remained generally unaffected by lantana treatments. Results suggest that lantana residues, which improved the nutrient status of soil and system yield, have the potential for resource conservation and sustaining rice-wheat productivity.  相似文献   

10.
Abstract

Rice (Oryza sativa L.) research field plots are likely to have nearly complete weed control whereas normal farmer field‐grown rice often have considerably greater weed populations. Consequently, a disparity might exist between nitrogen (N) requirements for producing maximum yields, in weedy (such as in some farmer fields) versus weed‐free rice (such as field research plots). We conducted a 2‐year field study at Keiser, AR. Using paired plots, we compared weed control effects, at several preflood ? rates (0–112 kg ? ha‐1) on yield, yield components, harvest index and weed weights. Rice yield responses to preflood ? fertilization were similar with and without weed pressure. Consequently, ? fertilization recommendations based on research plots with little or no weed pressure are valid for research plots and grower fields with much greater levels of weed pressure.  相似文献   

11.
 Although soil solarization is used to control soil-borne pests, it also results in increased growth response (IGR) of plants, beyond the effect of pest control. IGR is attributed to various abiotic factors (e.g. increased mineral nutrient concentrations) and biotic factors. In this work, we studied the role played by dissolved organic matter (DOM) in soil extracts in the IGR. DOM concentrations were about twice as high in solarized soil than in untreated soil. In two out of three soils, solarization appeared to increase amino acid synthesis, indicating that it had a favorable effect on microbial activity. Elemental composition, carbohydrate levels, E4 : E6 ratios and FTIR spectra did not differentiate between DOM extracted from solarized soils and DOM extracted from untreated soils. Growth of corn plants increased with increasing concentrations of DOM. Addition to the soil of DOM extracted from leonardite increased populations of fluorescent pseudomonads, known as beneficial bacteria, and reduced fungal populations. We conclude that the increase in DOM concentration following soil solarization is a potentially positive plant-growth-enhancement factor. Received: 21 June 1999  相似文献   

12.
长期施钾对作物增产及土壤钾素含量及形态的影响   总被引:45,自引:1,他引:45  
本文以在油稻稻、麦稻和麦棉三种种植制度下进行的长期(10年)施钾田间定位试验的结果为依据,阐述了长期施钾对几种主要农作物增产及施肥效益的影响,对长施钾后供式条件下土壤钾素含量及形态学的变化进行了分析。  相似文献   

13.
尽管基因工程技术可以增加作物产量, 但转基因作物是否对农田生态产生影响受到广泛关注。本研究通过田间定位试验, 应用群落生态学方法研究了转CryIAb基因抗虫水稻"Mfb"连续2年在传统栽培和半野生条件下对稻田杂草群落组成及多样性的影响。调查结果显示: 转CryIAb基因稻"Mfb"与非转基因稻"明恢86"田间杂草种类没有显著差异。稻田杂草的频度和密度与栽培方式有关, 半野生稻田杂草的频度和密度显著高于传统稻田, 但相同栽培条件下, 转基因稻"Mfb"与非转基因稻"明恢86"田间杂草频度和密度在整个生长期内均无显著差异。半野生稻田物种丰富度(Sr)指数明显大于传统稻田; 相同栽培条件下, 相同生长时期抗虫转基因水稻"Mfb"与其非转基因对照"明恢86"对稻田杂草群落丰富度的影响差异不显著。稻田杂草群落优势度(D)、均匀度(J)以及多样性(H)各处理、各生长时期内转基因稻与非转基因稻相比均没有显著差异。稻田杂草Shannon-Wiener多样性指数变化无明显规律, 相同栽培方式相同生长期的抗虫转基因水稻"Mfb"与其非转基因对照"明恢86"的Shannon-wiener指数差异不显著。综合上述分析, 转CryIAb基因抗虫稻对稻田杂草群落的组成及多样性没有显著影响。  相似文献   

14.
Soil suppressiveness against Fusarium was tested using solarized and non-solarized soils combined with composts of three maturation levels, and a non-amended control. The soils were sampled on three dates: after previous year solarization but before current year solarization (0 weeks), at the end of the solarization period of the current year (4 weeks), and 4 weeks later (recovery time). Melon seedlings were inoculated with Fusarium spores and disease severity was assessed. The study showed a reduction of soil suppressiveness capacity against Fusarium oxysporum f. sp. melonis after 1 year of solarization (0 weeks). Fusarium disease severity in artificially inoculated melon plants, expressed by area under the disease progress curve, was higher in solarized soil than in non-solarized soil. Compost addition lowered the disease severity, both in the solarized and in the non-solarized soils. However, suppression was not obtained at the end of the solarization period, whereas compost beneficial effect was found at this time.  相似文献   

15.
浮萍覆盖对稻田杂草群落组成及多样性的影响   总被引:1,自引:0,他引:1  
在农业可持续发展的背景下,稻田杂草防控需要兼顾生物多样性的保护。为了解浮萍覆盖对稻田杂草群落组成及物种多样性的影响,运用群落生态学的方法,研究了多根紫萍覆盖(SP)、少根紫萍覆盖(LP)和不投放浮萍(CK)3种处理下稻田杂草发生量和群落多样性在水稻4个生育期(分蘖期、孕穗期、扬花期和成熟期)的动态变化,并对水稻产量进行分析。结果表明:SP和LP处理在前两生育期分别比CK显著降低杂草密度60.3%~75.8%和81.1%~90.4%,在整个水稻生育期能分别降低杂草鲜重生物量48.0%以上和81.3%以上,杂草群落中阔叶类杂草比例明显下降。不同处理下,稻田最主要杂草类别均是莎草科杂草;不同处理的杂草群落中重要杂草的种类和相对重要程度都有较大差异,SP和LP处理重要值较高的杂草均为莎草科的萤蔺和碎米莎草,CK处理重要值较高的杂草则为阔叶类的鸭舌草;在多数生育期,两种浮萍覆盖下的杂草群落的Margalef丰富度指数、Shannon-Wiener多样性指数和Simpson优势度指数均与CK无显著差异。SP和LP处理水稻的每穗粒数和穗重均有不同程度显著提高, SP处理的水稻产量显著提高28.0%。综合上述分析,稻田投放初始覆盖面积70.0%的多根紫萍和少根紫萍都能在降低稻田杂草密度和生物量的同时维持杂草群落的多样性,且多根紫萍覆盖能促进水稻产量增长,对保护稻田生物多样性和促进农业可持续发展有重要意义。  相似文献   

16.
The structure of fungal communities was examined in soil subjected to 5 years of different agricultural land management and tomato production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of fungal rDNA internal transcribed spacer-1 (ITS-1) regions was used to create genomic fingerprints of the soil fungal communities. Three years after initiation of land management practices, univariate analysis of genetic diversity failed to detect differences among soil fungal communities in plots managed organically, conventionally or maintained free of vegetation by continuous tillage (disk fallow). Genetic diversity was significantly higher in plots maintained as a perennial pasture grass (Paspalum notatum var Argentine bahiagrass) or as an undisturbed weed fallow. The composition of soil fungal communities within organic, pasture grass or disk fallow plots were separated into unique clusters by non-parametric multivariate analysis of their Bray-Curtis similarity matrices, computed from the relative abundance of ITS-1 amplicons, while the composition of communities within disk fallow and conventional plots could not be distinguished from each other. Diversity of soil fungal communities was significantly reduced following the cultivation of tomato in year four when compared to the diversity in plots where tomato was not cultivated. Divergence in the composition of soil fungal communities was observed following the cultivation of tomato under all land management regimes except organic, where communities continued to remained clustered based upon similarities among their ITS-1 amplicons. Divergence in the composition of fungal communities became more pronounced following two major hurricanes (Francis and Jeanne, September 2004) except for communities in the organic and pasture grass plots. Following the completion of a second tomato crop in year 5, genetic diversity and richness was similar under all land management regimes except the pasture grass, where it remained significantly higher. By contrast, following two consecutive years of tomato production, unique but mutually similar compositions of fungal communities were detected only in plots subjected to the organic land management regime. This was supported by observations that fungal communities were dominated by a 341 bp rDNA amplicon fragment in all land management regimes except the organic. Cloning and sequencing indicated that the 341 bp fragment generated by LH-PCR had a sequencing size of 343 bp, which was most closely related to Fusarium oxysporum. Thus, land management practices that disturb or disrupt soil fungal communities will significantly reduce their diversity. However, the composition of soil fungal communities is more strongly influenced by land management practices and communities within an organically management system were more resistant to anthropogenic and meteorological disturbances.  相似文献   

17.
Knowledge of K-dynamics in soils can help devise practices for efficient K management in intensive rice-wheat systems. We studied the effect of long-term application of rice straw, farmyard manure (FYM) and inorganic fertilizer on total K and its distribution among different forms in 60-cm soil profile after 14 years of rice-wheat cropping. The exchangeable, the non-exchangeable and the lattice K respectively comprised 1%, 3–10% and 89–95% of total K in surface soil under different treatments. Application of rice straw and FYM positively impacted total K status of soil and its distribution among different forms. The greatest concentrations of total K, lattice K, exchangeable K and NH4OAc-extractable K were observed in plots receiving both rice straw and FYM together and the lowest in inorganic fertilizer treated plots. On the contrary, the non-exchangeable K was the highest in inorganically fertilized plots and the lowest in rice straw amended plots. The exchangeable, the water soluble and the NH4OAc-extractable K decreased with soil depth and did not indicate K movement beyond the rooting zone of the crops. The results showed that incorporation of rice residue in soil, instead of burning, besides reducing environmental pollution led to improved K-fertility of soils.  相似文献   

18.
《Soil Use and Management》2018,34(3):404-417
In South‐East Asia, rapid land use changes in recent decades have raised concerns for biodiversity and soil conservation. Weeds provide many ecosystemic services for soil protection and support biodiversity, and could mitigate the negative effects of intensification. We investigated the changes in weed assemblages and weed–soil interactions on a chronosequence from annual crops to mature rubber tree plantations. We sampled five fields for each of four land uses in mountainous northern Thailand (rainfed upland rice, maize, young rubber tree (RT ) intercropped with maize, and mature RT ). We characterized weed assemblages (abundance, richness) and soil properties (bulk density, water, carbon and nitrogen content). Rice had the most diverse and abundant weed assemblages. Weed assemblages differed between (i) rice, (ii) maize and young RT with maize and (iii) mature RT . Soil water content was the highest in mature RT . Other soil properties varied strongly within and among fields, and did not vary significantly among land uses. Water and nitrogen content increased overall with living soil cover but decreased with weed species richness in mature RT . Such interactions could provide a basis for sustainable weeding practices favourable to soil and biodiversity conservation.  相似文献   

19.
稻秸对土壤细菌群落分子多态性的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
卜元卿  黄为一 《土壤学报》2005,42(2):270-277
模拟稻秸原位还田条件,分别在水稻土和红壤中添加水稻秸秆培养70d ,第0、5、2 5、4 5、70天采集土样。采用非机械破壁法直接提取水稻土和红壤细菌总DNA ,水稻土细菌总DNA经过二次纯化;红壤细菌总DNA经过一次纯化后,PCR扩增其16SrDNAV3可变区,均可获得清晰的目的条带,对扩增产物进行DGGE分析,结果显示:水稻土和红壤样品的DGGE条带增加,说明稻秸能够增加土壤细菌群落分子多态性的丰富度,随着培养期的延长,施有稻秸的处理中土壤细菌群落多态性的变化远远复杂于空白对照土壤中的细菌群落变化;同时发现在稻秸刺激下不同土壤细菌群落多态性高峰期出现时间不同  相似文献   

20.
To assess the effect of rice straw mulching on changes of antagonistic bacteria and the incidence of wheat sharp eyespot, a multi-year field study was performed to compare unmulched plots and the plots mulched with rice straw for two or three years. Bacterial and fungal populations were evaluated in the cultures prepared from the wheat rhizosphere and bulk soils. Rice straw mulching increased the number of pseudomonas colony forming units in wheat rhizosphere and bulk soils. The proportion of total bacteria that were fluorescent pseudomonads was higher in mulched than in unmulched soil. Bacterial isolates antagonistic to Rhizoctonia cerealis were identified using an inhibition zone test. A series of these isolates were typed by partial sequencing of the 16S rRNA gene. Pseudomonads had higher antagonistic activity against R. cerealis than other species, and more than 80% of rhizosphere fluorescent pseudomonads were antagonistic to R. cerealis. The disease indices were lower in the mulched plots than in the unmulched control. These results suggest that rice straw mulching in a rice-wheat rotation increases the number of fluorescent pseudomonads. Additionally, these fluorescent pseudomonads may contribute to the control of wheat sharp eyespot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号