首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Feeding relationships between organisms may be determined by observations of behaviour in manipulative experiments or, as in more recent times, by the use of stable isotope labelling to trace the passage of 13C and 15N through food webs. Here we introduce living bacteria, labelled with both 13C and 15N into intact soil cores to understand further the movement of bacterially sourced C and N into the meso- and macrofauna of a grassland soil. We found that these groups showed a range of isotope levels which relate to their feeding strategies. Some had no label (e.g. dipterous larvae), whilst others were highly labelled which may indicate a preference for the added bacteria. This latter group included Collembola, generally perceived as being predominantly fungal feeders. This work describes a novel technique which has the potential to provide critical information about the dissipation of bacterially derived C and N through the soil food web.  相似文献   

2.
Tannins are purported to be an important factor controlling nitrogen cycling in forest ecosystems, and the ability of tannins to bind proteins in protein-tannin complexes is thought to be the primary mechanism responsible for these effects. In this study, we examined the influence of well-characterized tannins purified from five different plant species on C and N dynamics of a forest soil A horizon. Tannic acid, a commonly used and commercially available hydrolyzable tannin (HT), and cellulose were also included for comparison. With the exception of tannins from huckleberry (Vaccinium ovatum), the amendments increased respiration 1.4-4.0 fold, indicating that they were acting as a microbial C source. Tannic acid was significantly more labile than the five purified tannins examined in this study. All treatments decreased net N mineralization substantially, through greater N immobilization and decreased mineralization. The six tannins inhibited gross ammonification rates significantly more than cellulose. This suggests that added tannins had effects in addition to serving as an alternative C source. Tannins purified from Bishop pine (Pinus muricata) were the only tannins that significantly inhibited potential gross nitrification rates, however, rates were low even in the control soil making it difficult to detect any inhibition. Differences in tannin structure such as condensed versus HTs and the hydroxylation pattern of the condensed tannin B-ring likely explain differences observed among the tannin treatments. Contrary to other studies, we did not find that condensed tannins were more labile and less inhibitory than HTs, nor that shorter chained tannins were more labile than longer chained tannins. In addition to supporting the hypothesis that reduced N availability in the presence of tannins is caused by complexation reactions, our data suggests tannins act as a labile C source leading to increased N immobilization.  相似文献   

3.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   

4.
Turnover of C and N in an arable soil under Free Air Carbon Dioxide (FACE) experiment was studied by the use of 13C natural abundance and 15N-labeled fertilizers. Wheat was kept four growing seasons under ambient and elevated CO2 concentrations and fertilized for three growing seasons. Density fractionation of soil organic matter (SOM) allowed to track 13C and 15N in free particulate organic matter (fPOM; <1.6 g cm−3), particulate organic matter occluded within aggregates with two densities (oPOM 1.6, oPOM 1.6-2.0 g cm−3), and in mineral-associated organic matter (>2.0 g cm−3) fractions. Elevated CO2 and N fertilization did not significantly affect C and N contents in the bulk soil. Calculated mean residence time (MRT) of C and N revealed the qualitative differences of SOM density fractions: (i) the shortest MRTC and MRTN in fPOM confirmed high availability of this fraction to decomposition. Larger C/N ratio of fPOM under elevated vs. ambient CO2 indicated an increasing recalcitrance of FACE-derived plant residues. (ii) There was no difference in MRT of C and N between lighter and heavier oPOMs probably due to short turnover time of soil aggregates which led to oPOM mixing. The increase of MRTC and MRTN in both oPOMs during the experiment confirmed the progressive degradation of organic material within aggregates. (iii) Constant turnover rates of C in the mineral fraction neither confirmed nor rejected the assumed stabilization of SOM to take place in the mineral fraction. Moreover, a trend of decreasing of C and N amounts in the Min fraction throughout the experiment was especially pronounced for C under elevated CO2. Hence, along with the progressive increase of CFACE in the Min fraction the overall losses of C under elevated CO2 may occur at the expense of older “pre-FACE” C.  相似文献   

5.
Nutrient mobilisation in the rhizosphere is driven by soil microorganisms and controlled by the release of available C compounds from roots. It is not known how the quality of release influences this process in situ. Therefore, the present study was conducted to investigate the amount and turnover of rhizodeposition, in this study defined as root-derived C or N present in the soil after removal of roots and root fragments, released at different growth stages of peas (Pisum sativum L.) and oats (Avena sativa L.). Plants were grown in soil columns placed in a raised bed under outdoor conditions and simultaneously pulse labelled in situ with a 13C-glucose-15N-urea solution using a stem feeding method. After harvest, 13C and 15N was recovered in plant parts and soil pools, including the microbial biomass. Net rhizodeposition of C and N as a percentage of total plant C and N was higher in peas than in oats. Moreover, the C-to-N ratio of the rhizodeposits was lower in peas, and a higher proportion of the microbial biomass and inorganic N was derived from rhizodeposition. These results suggest a positive plant-soil feedback shaping nutrient mobilisation. This process is driven by the C and N supply of roots, which has a higher availability in peas than in oats.  相似文献   

6.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

7.
Forest soils contain about 30% of terrestrial carbon (C) and so knowledge of the influence of forest management on stability of soil C pools is important for understanding the global C cycle. Here we present the changes of soil C pools in the 0-5 cm layer in two second-rotation Pinus radiata (D.Don) plantations which were subjected to three contrasting harvest residue management treatments in New Zealand. These treatments included whole-tree harvest plus forest floor removal (defined as forest floor removal hereafter), whole-tree, and stem-only harvest. Soil samples were collected 5, 10 and 15 years after tree planting at Kinleith Forest (on sandy loam soils) and 4, 12 and 20 years after tree planting at Woodhill Forest (on sandy soils). These soils were then physically divided into light (labile) and heavy (stable) pools based on density fractionation (1.70 g cm−3). At Woodhill, soil C mass in the heavy fraction was significantly greater in the whole-tree and stem-only harvest plots than the forest floor removal plots in all sampling years. At Kinleith, the soil C mass in the heavy fraction was also greater in the stem-only harvest plots than the forest floor removal plots at year 15. The larger stable soil C pools with increased residue return was supported by analyses of the chemical composition and plant biomarkers in the soil organic matter (SOM) heavy fractions using NMR and GC/MS. At Woodhill, alkyl C, cutin-, suberin- and lignin-derived C contents in the SOM heavy fraction were significantly greater in the whole-tree and stem-only harvest plots than in the forest floor removal plots in all sampling years. At Kinleith, alkyl C (year 15), cutin-derived C (year 5 and 15) and lignin-derived C (Year 5 and 10) contents in the SOM heavy fraction were significantly greater in stem-only harvest plots than in plots where the forest floor was removed. The analyses of plant C biomarkers and soil δ13C in the light and heavy fractions of SOM indicate that the increased stable soil C in the heavy fraction with increased residue return might be derived from a greater input of recalcitrant C in the residue substrate.  相似文献   

8.
Amino sugars have been used as biomarker to indicate microorganism contribution to soil organic matter turnover and sequestration. However, there is no direct gas chromatograph mass spectrometry (GC/MS) approach to assess microbial synthesis of amino sugars in soil. We developed a novel method which combines laboratory incubation of substrate containing 15N or 13C and a GC/MS technique to trace 15N or 13C isotope changes in three amino sugars, glucosamine, galactosamine, and muramic acid. Sample preparation followed the procedure of Zhang and Amelung (1996) [Zhang, X., Amelung, W., 1996. Gas chromatographic determination of muramic acid, glucosamine, galactosamine, and mannosamine in soils. Soil Biology and Biochemistry 28, 1201-1206.]. The GC/MS determination was conducted using a full scan mode with both electronic ionization (EI) and chemical ionization (CI) sources. The CI source was suitable for all of the three amino sugars, while the EI source was not applicable to muramic acid due to its low sensitivity in the determination as well as low concentration of muramic acid in soil. The enrichment of 15N or 13C in amino sugars during incubation was estimated by calculating the atom percentage excess (APE). 15N incorporation was evaluated according to fragment (F) abundance ratio of mass F+1 to F, whilst 13C incorporation was estimated according to the ratio of mass F+n to F (n is skeleton carbon number in the fragment). This novel method was assessed by using two soil samples (a Kandiudult and a Udoll) incubated with either 15N-amonium or U-13C-glucose. The results indicate that the GC/MS determination is reproducible, thus this technique is useful in detecting the microbial synthesis of amino sugars in soil, and especially it should be possible when looking at the position or how much labeled carbon and nitrogen atoms have been incorporated.  相似文献   

9.
Direct plant uptake of organic nitrogen (N) is often studied using the dual-labeling approach (15N + 13C or 15N + 14C). However, the method might be hampered by uptake of labeled inorganic carbon (C) produced by mineralization of labeled organic compounds. Here we report the results from a triple labeling experiment (15N + 13C + 14C) investigating whether root uptake of labeled inorganic C can bias the results obtained in studies of organic N uptake using dual-labeled amino acids (15N, 13C). In a rhizosphere tube experiment we investigated 13C and 14C uptake by maize either supplied with labeled glycine or , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced by mineralization of amino acids can significantly bias the interpretations of organic N uptake studies using dual-labeling.  相似文献   

10.
Forests cover one-third of the Earth’s land surface and account for 30-40% of soil carbon (C). Despite numerous studies, questions still remain about the factors controlling forest soil C turnover. Present understanding of global C cycle is limited by considerable uncertainty over the potential response of soil C dynamics to rapid nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application. Here, we present a 15-year-long field study and show an average increase of 14.6% in soil C concentration in the 0-5 cm mineral soil layer in N fertilized (defined as N+ hereafter) sub-plots of a second-rotation Pinus radiata plantation in New Zealand compared to control sub-plots. The results of 14C and lignin analyses of soil C indicate that N additions significantly accelerate decomposition of labile and recalcitrant soil C. Using an annual-time step model, we estimated the soil C turnover time. In the N+ sub-plots, soil C in the light (a density < 1.70 g cm−3) and heavy fractions had the mean residence times of 23 and 67 yr, respectively, which are lower than those in the control sub-plots (36 and 133 yr in the light and heavy fractions, respectively). The commonly used lignin oxidation indices (vanillic acid to vanillin and syringic acid to syringaldehyde ratios) were significantly greater in the N+ sub-plots than in the control sub-plots, suggesting increased lignin decomposition due to fertilization. The estimation of C inputs to forest floor and δ13C analysis of soil C fractions indicate that the observed buildup of surface soil C concentrations in the N+ sub-plots can be attributed to increased inputs of C mass from forest debris. We conclude that long-term N additions in productive forests may increase C storage in both living tree biomass and soils despite elevated decomposition of soil organic matter.  相似文献   

11.
The abundance of 13C was determined over a period of nine years in two soils (LUN, coarse sand; ASK, sandy loam) following their conversion from C3-crops and to the C4-crop silage maize (Zea mays L.). The soils were exposed to identical management and climatic conditions, and were sampled every second year. The aboveground maize biomass was either removed (stubbles and roots left), chopped and added to the soil, or fed to sheep and the faeces then added to the soil. Annual inputs of maize biomass and sheep faeces were similar (0.8 kg DM m−2). The study included soils maintained under C3-crops (beet roots, Beta vulgaris L.). After nine years of maize cropping, soil C from stubbles and roots accounted for 12 and 16% of the total-C in the LUN and ASK soil, respectively. Without additional organic amendment the content of total-C in the ASK soil remained constant and similar to that of soil retained under C3-crops whereas total-C tended to decrease in the LUN soil. When maize biomass and sheep faeces were added, soil total-C increased and C from these C4-sources averaged 14% and 21% of the soil total-C, respectively. Following nine annual additions, retention of C added in aboveground maize biomass averaged 19% while the retention of C added in maize-derived faeces was 30%. Our study infers that that ruminant manure C contributes about 50% more to soil C sequestration than C applied in crop residues.  相似文献   

12.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

13.
A 13C natural abundance experiment including GC-c-IRMS analysis of phospholipid fatty acids (PLFAs) was conducted to assess the temporal dynamics of the soil microbial community and carbon incorporation during the mineralization of plant residues under the impact of heavy metals and acid rain. Maize straw was incorporated into (i) control soil, (ii) soil irrigated with acid rain, (iii) soil amended with heavy metal-polluted filter dust and (iv) soil with both, heavy metal and acid rain treatment, over a period of 74 weeks. The mineralization of maize straw carbon was significantly reduced by heavy metal impact. Reduced mineralization rate of the added carbon likely resulted from a reduction of the microbial biomass due to heavy metal stress, while the efficiency of 13C incorporation into microbial PLFAs was hardly affected. Since acid rain did not significantly change soil pH, little impact on soil microorganisms and mineralization rate was found. Temporal dynamics of labelling of microbial PLFAs were different between bacterial and fungal PLFA biomarkers. Utilization of maize straw by bacterial PLFAs peaked immediately after the application (2 weeks), while labelling of the fungal biomarker 18:2ω6,9 was most pronounced 5 weeks after the application. In general, 13C labelling of microbial PLFAs was closely linked to the amounts of maize carbon present in the soil. The distinct higher labelling of microbial PLFAs in the heavy metal-polluted soils 74 weeks after application indicated a large fraction of available maize straw carbon still present in the soil.  相似文献   

14.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

15.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

16.
Sustainable agriculture requires the formation of new humus from the crops. We utilized 13C and 15N signatures of soil organic matter to assess how rapidly wheat/maize cropping contributed to the humus formation in coarse-textured savanna soils of the South African Highveld. Composite samples were taken from the top 20 cm of soils (Plinthustalfs) cropped for lengths of time varying from 0 to 98 years, after conversion from native grassland savanna (C4). We performed natural 13C and 15N abundance measurements on bulk and particle-size fractions. The bulk soil δ13C values steadily decreased from −14.6 in (C4 dominated) grassland to −16.5‰ after 90 years of arable cropping. This δ13C shift was attributable to increasing replacement of savanna-derived C by wheat crop (C3) C which dominated over maize (C4) inputs. After calculating the annual C input from the crop yields and the output from literature data, by using a stepwise C replacement model, we were able to correct the soil δ13C data for the irregular maize inputs for a period of about one century. Within 90 years of cropping 41-89% of the remaining soil organic matter was crop-derived in the three studied agroecosystems. The surface soil C stocks after 90 years of the wheat/maize crop rotation could accurately be described with the Rothamsted Carbon Model, but modelled C inputs to the soil were very low. The coarse sand fraction reflected temporal fluctuations in 13C of the last C3 or C4 cropping and the silt fraction evidenced selective erosion loss of old savanna-derived C. Bulk soil 15N did not change with increasing cropping length. Decreasing δ15N values caused by fertilizer N inputs with prolonged arable cropping were only detected for the coarse sand fraction. This indicated that the present N fertilization was not retained in stable soil C pool. Clearly, conventional cropping practices on the South African highlands neither contribute to the preservation of old savanna C and N, nor the effective humus reformation by the crops.  相似文献   

17.
Summary Degradation of the herbicide phosphinothricin (L-homoalanine-4-yl-(methyl)-phosphinic acid) in a phaeozem was investigated by monitoring the 14CO2 release from [1-14C] and [3,4-14C]phosphinothricin. The degradation was largely due to microbial activity, since the rate decreased by more than 95% when the soil was sterilized by -radiation. Data obtained with both labels suggested that decarboxylation of phosphinothricin preceded oxidation of its C-atoms 3 and 4, since a metabolite, probably 3-methylphosphinico-propanoic acid, was only labelled when [3,4-14C]phosphinothricin was used as the substrate. Maximum rates of 14CO2 production from both the 1- and 3,4-label positions occurred without a lag phase during the breakdown of phosphinothricin as monitored for a total of 30 days at 5-day intervals. This result indicated that a phosphinothricin-degrading microbial community was already present in the soil. With low concentrations of [1-14C]phosphinothricin (10.7 mg kg-1 soil), complete decarboxylation at 25°C was observed within 30 days of incubation, compared to 15.9% 14CO2 release from [3,4-14C]phosphinothricin. Increasing the quantity of the herbicide in the soil (10.7–1372 mg kg-1) resulted in increased degradation rates, irrespective of whether the herbicide was labelled in the positions 1 or 3 and 4. Addition of glucose and other carbohydrates stimulated 14CO2 release while addition of a yeast extract had a negative effect. Glucose stimulation was reversed by ammonium nitrate, suggesting that the microorganisms were using the herbicide as a source of N.  相似文献   

18.
Compounds released by plant roots during growth can make up a high proportion of below-ground plant (BGP) carbon and nitrogen, and therefore influence soil organic matter turnover and plant nutrient availability by stimulating the soil microorganisms. The present study was conducted to examine the amount and fate of C (CdfR) and N rhizodeposits (NdfR), in this study defined as root-derived C or N present in the soil after removal of roots and root fragments, released during reproductive growth. BGP biomass of peas (Pisum sativum L.) and oats (Avena sativa L.) was successfully labelled in situ with a 13C-glucose-15N-urea mixture under field conditions using a stem feeding method. Pea plants were labelled at the beginning of flowering and harvested 36 and 52 days after labelling at pod filling (PP) and maturity (PM), respectively. Oat plants were labelled at grain filling and harvested 42 days after labelling at maturity (OM). CdfR was 24.2% (PP), 29.6% (PM) and 30.8% (OM) of total recovered plant C. NdfR was 32.1% (PP), 36.4% (PM) and 30.0% (OM) of total plant N. Due to higher N assimilation, amounts of NdfR were four times higher in peas in comparison with oats. The results for NdfR in peas were higher than results from other studies. The C-to-N ratio of rhizodeposits was lower under peas (17.3) than under oats (41.9) at maturity. At maturity, microbial CdfR at 0-30 cm soil depth was 37% of the microbial biomass C in peas and 59% in oats. Microbial NdfR was 15% of microbial N in peas and 5% in oats. Furthermore, inorganic NdfR was 34% in peas and 9% in oats at 0-30 cm at maturity. These results show that rhizodeposits of peas provide a more easily available substrate to soil microorganisms, which are incorporated to a greater extent and turned over faster in comparison with oats. Beside the higher amounts of N released from pea roots, this process contributes to the higher N-availability for subsequent crops.  相似文献   

19.
The decline of N from 15N-labelled mature pea residues was followed in unplanted soil over 16.5 yr. Eight years after residue incorporation, 24% of the residue 15N input was still present in the soil and, after 16.5 yr, 16% of the residue 15N input remained. A double exponential model successfully described the decay of N from 15N-labelled pea residues. The total residual 15N declined with average decay constants of 1.45 yr−1 for the 30 d to 1 yr period and of 0.07 yr−1 for the 1-16 yr period. Sixteen years following incorporation of the residues, indicator plants growing in residues-amended soils were obtaining 1.7% of their N from residue N. This is, to our knowledge, the longest study on decay of N in soils from 15N-labelled crop residues. The current study thus provides a unique data set for our empirical understanding of N-dynamics in agricultural systems, which is a prerequisite to parameterize and validate N-simulation models.  相似文献   

20.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号