首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
    
The advantages of no-tillage (NT) over conventional tillage (CT) systems in improving soil quality are generally accepted, resulting from benefits in soil physical, chemical and biological properties. However, most evaluations have only considered surface soil layers (maximum 0-30 cm depth), and values have not been corrected to account for changes in soil bulk density. The objective of this study was to estimate a more realistic contribution of the NT to soil fertility, by evaluating C- and N-related soil parameters at the 0-60 cm depth in a 20-year experiment established on an oxisol in southern Brazil, with a soybean (summer)/wheat (winter) crop succession under NT and CT. At full flowering of the soybean crop, soil samples were collected at depths of 0-5, 5-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm. For the overall 0-60 cm layer, correcting the values for soil bulk density, NT significantly increased the stocks of C (18%) and N (16%) and microbial biomass C (35%) and N (23%) (MB-C and -N) in comparison to CT. Microbial basal respiration and microbial quotient (qMic) were also significantly increased under NT. When compared with CT, NT resulted in gains of 0.8 Mg C ha−1 yr−1 (67% of which was in the 0-30 cm layer) and 70 kg N ha−1 yr−1 (73% in the 0-30 cm layer). In the 0-5-cm layer, MB-C was 82% higher with NT than with CT; in addition, the 0-30 cm layer accumulated 70% of the MB-C with NT, and 58% with CT. In comparison to CT, the NT system resulted in total inputs of microbial C and N estimated at 38 kg C ha−1 yr−1 and 1.5 kg N ha−1 yr−1, respectively. Apparently, N was the key nutrient limiting C and N stocks, and since adoption of NT resulted in a significant increase of N in soils which were deficient in N, efforts should be focused on increasing N inputs on NT systems.  相似文献   

2.
  总被引:19,自引:0,他引:19  
 The effects of 5 years of continuous grass/clover (Cont grass/clover) or grass (Cont grass) pasture or 5 years of annual grass under conventional (Ann grass CT) or zero tillage (Ann grass ZT) were compared with that of 5 years of continuous barley (LT arable) on a site which had previously been under arable crops for 11 years. For added comparison, a long-term grass/clover pasture site (LT past) nearby was also sampled. Soil organic C (Corg) content followed the order LT arable=Ann grass CT<Ann grass ZT<Cont grass=Cont grass/clover<LTpast. Trends with treatment for microbial biomass C (Cmic), basal respiration, flourescein diacetate (FDA) hydrolytic activity, arginine ammonification rate and the activities of dehydrogenase, protease, histidase, acid phosphatase and arylsulphatase enzymes were broadly similar to those for Corg. For Cmic, FDA hydrolysis, arginine ammonification and the activities of histidase, acid phosphatase and arylsulphatase, the percentage increase caused by 5 years of continuous pasture (in comparison with LT arable) was 100–180%, which was considerably greater than that for organic C (i.e. 60%). The microbial metabolic quotient (qCO2) was higher for the two treatments which were mouldboard ploughed annually (LT arable and Ann grass CT) than for the undisturbed sites. At the undisturbed sites, Corg declined markedly with depth (0–15 cm) and there was a similar stratification in the size and activity of Cmic and enzyme activity. The microbial quotient (Cmic/Corg) declined with depth whilst qCO2 tended to increase, reflecting a decrease in the proportion of readily available substrate with depth. Received: 7 July 1998  相似文献   

3.
The effectiveness of the rehabilitation of mined sand dunes on the northern coast of KwaZulu–Natal, South Africa, was assessed based on measurements of the total and labile organic matter content and the size, activity and metabolic diversity of the soil microflora. Soil was sampled (0–10 cm) after 0, 5, 10, 20 and 25 years of rehabilitation and compared with soil under undisturbed native forest and under long-term commercial pine forest. Following topsoil removal, stockpiling and respreading on reformed dunes, there was a massive loss of organic C such that, at time zero, organic C content was only 24% of that present under native forest. Soil organic C content increased progressively during rehabilitation until, after 25 years, it represented 93% of that present under native forest. The pattern of change in light-fraction C, KMnO4-extractable C, water-soluble C, microbial biomass C, basal respiration and arginine ammonification rate was broadly similar to that for organic C, but the extent of the initial loss and the magnitude of the subsequent increase differed. Microbial biomass C, water-soluble C and KMnO4-extractable C, expressed as a percentage of organic C, declined during rehabilitation as humic substances progressively accumulated. Principal component (PC) analysis of catabolic response profiles to 36 substrates revealed that the catabolic diversity of microbial communities differed greatly between native forest, commercial pine forest, 0 years and 10 years of rehabilitation. On the PC1 axis, values for soils under native forest and after 25 years rehabilitation were similar, but there was still separation on the PC2 axis. The main factor explaining variation in response profiles on the PC1 axis was organic C content; and the greatest catabolic diversity occurred in soils under native forest and after 25 years of rehabilitation.  相似文献   

4.
The effects of crop residue management and fertilizer applications on the size and activity of the microbial community and the activity of exocellular enzymes involved in mineralization of C, N, P and S were examined on a long-term (60 years) field trial under sugarcane situated at Mount Edgecombe, South Africa. Treatments at the site included pre-harvest burning with harvest residues removed (B), burning with harvest residues (unburnt tops) left on the soil surface (Bt) and green cane harvesting with retention of a trash blanket (T). Plots were either fertilized annually with N, P and K or unfertilized. The size and activity of the microbial community and the activity of soil enzymes assayed increased with increasing inputs of crop residues (B < Bt < T) and this effect was evident to a depth of 30 cm. The metabolic quotient was decreased by inputs of both crop residues and fertilizers. Annual fertilizer additions did not affect basal respiration, increased fluorescein diacetate (FDA) hydrolysis rate and acid phosphatase, invertase and protease activities and decreased arginine ammonification rate and dehydrogenase, alkaline phosphatase, arylsulphatase and histidase activities. These effects were attributed to an interaction between the positive effect of fertilizer in increasing the size of the microbial biomass and the negative effect of fertilizer-N-induced soil acidification on microbial activity and on the activity of exocellular enzymes. Such results demonstrate the importance of using a range of measurements of microbial and enzyme activity when determining the effects of management on soil microbial and biochemical properties.  相似文献   

5.
 The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (>60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area. Received: 18 November 1997  相似文献   

6.
Data from a 16-year field experiment conducted in Shanxi, on the Chinese Loess Plateau, were used to compare the long-term effects of no-tillage with straw cover (NTSC) and traditional tillage with straw removal (TTSR) in a winter wheat (Triticum aestivum L.) monoculture. Long-term no-tillage with straw cover increased SOM by 21.7% and TN by 51.0% at 0–10 cm depth and available P by 97.3% at 0–5 cm depth compared to traditional tillage. Soil microbial biomass C and N increased by 135.3% and 104.4% with NTSC compared to TTSR for 0–10 cm depth, respectively. Under NTSC, the metabolic quotient (CO2 evolved per unit of MBC) decreased by 45.1% on average in the top 10 cm soil layer, which suggests that TTSR produced a microbial pool that was more metabolically active than under NTSC. Consequently, winter wheat yield was about 15.5% higher under NTSC than under TTSR. The data collected from our 16-year experiment show that NTSC is a more sustainable farming system which can improve soil chemical properties, microbial biomass and activity, and thus increase crop yield in the rainfed dryland farming areas of northern China. The soil processes responsible for the improved yields and soil quality, in particular soil organic matter, require further research.  相似文献   

7.
  总被引:2,自引:0,他引:2  
To improve soil fertility, efforts need to be made to increase soil organic matter content. Conventional farming practice generally leads to a reduction of soil organic matter. This study compared inorganic and organic fertilisers in a crop rotation system over two cultivation cycles: first crop broad bean (Vicia faba L.) and second crop mixed cropped melon-water melon (Cucumis melo-Citrullus vulgaris) under semi-arid conditions. Total organic carbon (TOC), Kjeldahl-N, available-P, microbial biomass C (Cmic), and N (Nmic), soil respiration and enzymatic activities (protease, urease, and alkaline phosphatase) were determined in soils between the fourth and sixth year of management comparison. The metabolic quotient (qCO2), the Cmic/Nmic ratio, and the Cmic/TOC ratio were also calculated. Organic management resulted in significant increases in TOC and Kjeldahl-N, available-P, soil respiration, microbial biomass, and enzymatic activities compared with those found under conventional management. Crop yield was greater from organic than conventional fertilizer. The qCO2 showed a progressive increase for both treatments during the study, although qCO2 was greater with conventional than organic fertilizer. In both treatments, an increase in the Cmic/Nmic ratio from first to second crop cycle was observed, indicating a change in the microbial populations. Biochemical properties were positively correlated (p < 0.01) with TOC and nutrient content. These results indicated that organic management positively affected soil organic matter content, thus improving soil quality and productivity.  相似文献   

8.
The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable-cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality.  相似文献   

9.
    
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

10.
The effect of tropical forest conversion on soil microbial biomass   总被引:3,自引:0,他引:3  
We investigated the effects of converting forest to savanna and plough land on the microbial biomass in tropical soils of India. Conversion of the forest led to a significant reduction in soil organic C (40–46%), total N (47–53%), and microbial biomass C (52–58%) in the savanna and the plough land. Among forest, savanna, and plough land, basal soil respiration was maximum in the forest, but the microbial metabolic quotient (qCO2 was estimated to be at a minimum in the forest and at a maximum in the plough land.  相似文献   

11.
施用有机肥对土壤生物性状影响的研究进展   总被引:18,自引:1,他引:18       下载免费PDF全文
施肥是农业生态系统中的重要一环,因土壤生物特性如土壤酶活力、微生物量、呼吸以及生物多样性等对外来扰动的灵敏性优于理化特性而在近几年受到了广泛关注。长期配施有机肥能显著调节土壤营养环境,提高微生物碳氮含量,降低代谢呼吸商值并提高多种土壤酶的活力和土壤生物多样性,为作物稳产高产创造良好的土壤生态环境,而化肥施用的效果恰相反。土壤生物特性的变动关系到土壤质量、农业生产的产量以及生态系统的稳定,本文综述了近几年国内外关于施用有机肥对土壤生物性质影响的研究结果。  相似文献   

12.
    
Based on a literature review including 201 surface soils from wet, mild, mid-latitude climates and 290 soils from the Lower Saxony soil monitoring programme (Germany), we investigated the relationship between soil clay content and soil organic matter turnover. The relationship was then used to evaluate the clay modifier for microbial decomposition in the organic matter module of the soil-plant-atmosphere model DAISY. A positive relationship was found between soil clay content and soil microbial biomass (SMB) C. Furthermore, a negative relationship was found between soil clay content and metabolic quotient (qCO2) as an indicator of specific microbial activity. Both findings support the hypothesis of a clay dependent capacity of soils to protect microbial biomass. Under the differing conditions of practical agriculture and forestry, no or only very weak relationships were found between soil clay content and non-living soil organic matter C (humus C). It is concluded that the stabilising effect of clay is much stronger for SMB than for humus. This is in contrast to the DAISY clay modifier assuming the same negative relationship between soil clay content, on the one hand, and turnover of SMB and turnover of soil humus on the other. There is a positive relationship between SMB and microbial decomposition activity under steady-state conditions (microbial growth≈microbial death). The original concept of a biomass-independent simulation of organic matter turnover in the DAISY model must therefore be rejected. In addition to the original modifiers of organic matter turnover, a modifier based on the pool size of decomposing organisms is suggested. Priming effects can be simulated by applying this modifier. When using this approach, the original modifiers are related to specific microbial activity. The DAISY clay modifier is a useful approximation of the relationship between the metabolic quotient (qCO2) as an indicator of specific microbial activity and soil clay content.  相似文献   

13.
  总被引:2,自引:0,他引:2  
The use of annually sown pastures to provide winter forage is common in dairy farming in many regions of the world. Loss of organic matter and soil structural stability due to annual tillage under this management may be contributing to soil degradation. The comparative effects of annual ryegrass pastures (conventionally tilled and resown each year), permanent kikuyu pastures and undisturbed native vegetation on soil organic matter content, microbial size and activity, and aggregate stability were investigated on commercial dairy farms in the Tsitsikamma region of the Eastern Cape, South Africa. In comparison with soils under sparse, native grassy vegetation, those under both annual ryegrass and permanent kikuyu pasture had higher soil organic matter content on the very sandy soils of the eastern end of the region. By contrast, in the higher rainfall, western side, where the native vegetation was coastal forest, there was a loss of organic matter under both types of pasture. Nonetheless, soil organic C, K2SO4-extractable C, microbial biomass C, basal respiration, arginine ammonification and fluorescein diacetate hydrolysis rates and aggregate stability were less under annual than permanent pastures at all the sites. These results reflect the degrading effect of annual tillage on soil organic matter and the positive effect of grazed permanent pasture on soil microbial activity and aggregation. Soil organic C, microbial biomass C, K2SO4-extractable C, basal respiration and aggregate stability were significantly correlated with each other. The metabolic quotient and percentage of organic C present as microbial biomass C were generally poorly correlated with other measured properties but negatively correlated with one another. It was concluded that annual pasture involving conventional tillage results in a substantial loss of soil organic matter, soil microbial activity and soil physical condition under dairy pastures and that a system that avoids tillage needs to be developed.  相似文献   

14.
在苏北滩涂围垦区的轻度和中度盐渍土上,通过田间试验,研究了不同农田管理措施(传统耕作、施用有机肥、氮肥增施、秸秆还田和免耕)对土壤盐分、呼吸和有机碳等的影响。结果表明,0~40cm土层平均电导率在玉米种植季明显升高,小麦种植季出现小幅降低,轻度盐渍土的电导率为4.57~8.20 d S m~(~(-1)) ,中度盐渍土为4.89~10.13 d S m~(~(-1)) ,处理之间秸秆还田最低,免耕最高,秸秆还田和施用有机肥有效减少了土壤盐分含量。与中度盐渍土相比,轻度盐渍土的呼吸强度较高,在夏玉米和冬小麦种植季节分别高约16%和18%。有机肥、氮肥增施、秸秆还田处理的土壤呼吸均高于对照,而免耕较低。两组试验的土壤有机碳和微生物生物量碳均有缓慢增加,其中施用有机肥和秸秆还田可以大幅提高其含量。轻度盐渍土壤代谢熵高于中度盐渍土,总体上对照最高,免耕最低。  相似文献   

15.
The effects of burning a native grassland on soil organic matter status was investigated on a long-term (50 years) field experiment where different times and frequencies of burning were compared. Significant decreases in organic C were observed only in the surface 0-2 cm layer and only under annual and biennial winter burning and biennial and triennial autumn burning. Burning in spring did not significantly affect organic C content presumably because substantial amounts of litter decomposed and/or were incorporated into the soil by faunal activity prior to burning. Total N content was decreased substantially to a depth of 6 cm by all burning treatments and as a result, the C:N ratio of soil organic matter was widened. In addition, the amount of potentially mineralizable N, as measured by either aerobic incubation or plant N uptake in a pot experiment, was much reduced. Burning also induced a decrease in light fraction and hot water-extractable C in the 0-2 cm layer but an increase in these parameters, and in microbial biomass C and root density, in the 4-10 cm layer. This was attributed to burning causing a decrease in above-ground litter inputs but increased turnover of root material below the surface. Despite the decrease in organic C and total N content with increasing soil depth, potentially mineralizable N showed the opposite trend. This unexpected finding was confirmed at a nearby site under native grassland and contrasted with decreasing potentially mineralizable N with depth which was measured under a fertilized kikuyu grass dairy pasture. The wide C:N ratio of litter from native grassland, in association with the decreasing size and activity of the microbial biomass with depth results in greater N immobilization (thus less net mineralization) occurring in soil samples taken from close to the soil surface.  相似文献   

16.
    
Endogeic earthworms play an important role in mobilisation and stabilisation of carbon and nitrogen in forest and arable soils. Soil organic matter is the major food resource for endogeic earthworms, but little is known about the size and origin of the organic matter pool on which the earthworms actually live. We measured changes in body mass of juvenile endogeic earthworms, Octolasion tyrtaeum (Savigny), in soils with different C and N contents resulting from different fertiliser treatments. The soil was taken from a long-term experiment (Statischer Düngungsversuch, Bad Lauchstädt, Germany). The treatments included (1) non-fertilised soil, (2) NPK fertilised soil, (3) farmyard manure fertilised soil and (4) NPK + farmyard manure fertilised soil. The soil was incubated in microcosms with and without one juvenile O. tyrtaeum for 80 days.Earthworm biomass decreased in non-fertilised soil by 48.6%, in NPK soil by 9.4%, but increased in farmyard manure soil by 19.7% and 42.8% (soil with additional NPK application). In farmyard manure treatments the biomass of bigger individuals decreased, but in smaller individuals it increased. In NPK fertilised soil without farmyard manure only small O. tyrtaeum increased in body mass, whereas in the non-fertilised soil all individuals decreased in body mass. Generally, soil respiration correlated positively with soil carbon content. Earthworms significantly increased soil respiration and nitrogen leaching and this was most pronounced in farmyard manure treatments. Microbial activity was generally higher in farmyard manure soil indicating that farmyard manure increases labile organic matter pools in soil. Also, biomass of earthworms and microorganisms was increased in farmyard manure soil. The presence of earthworms reduced microbial biomass, suggesting that earthworms feed on microorganisms or/and that earthworms and soil microorganisms competed for similar organic matter pools in soil. The results demonstrate that NPK fertilisation only is insufficient to sustain O. tyrtaeum, whereas long-term fertilisation with farmyard manure enables survival of endogeic species due to an increased pool of utilisable soil organic matter in arable soil.  相似文献   

17.
    
The biogas production process generates as side-products biogas residues containing microbial biomass which could contribute to soil organic matter formation or induce CO2 emissions when applied to arable soil as fertilizer. Using an isotope labelling approach, we labelled the microbial biomass in biogas residues, mainly G+ bacteria and methanogenic archaea via KH13CO3, and traced the fate of microbial biomass carbon in soil with an incubation experiment lasting 378 days. Within the first seven days, 40% of the carbon was rapidly mineralized and after that point mineralization continued, reaching 65% by the end of the experiment. Carbon mineralization data with 93% recovery could be fitted to a two-pool degradation model which estimated proportions and degradation rate constants of readily and slowly degrading pools. About 49% of the carbon was in the slowly degrading pool with a half-life of 1.9 years, suggesting mid-term contribution to living and non-living soil organic matter formation. Biogas residues caused a priming effect at the beginning, thus their intensive application should be avoided.  相似文献   

18.
    
The dynamics of the soil organic carbon pool and soil fertility were studied in soils with different number of growing years of alfalfa (Medicago sativa L.) in the semiarid Loess Plateau of China. The soil water content and soil water potential decreased and the depth of desiccated layers grew with the number of growing years of alfalfa. The soil organic C (SOC) cannot be enhanced on short timescales in these unfertilized and mowed-alfalfa grasslands in the topsoil, but the light fraction of organic C (LFOC), soil microbial biomass C (MBC) and microbial biomass N (MBN) all increased with the number of growing years. When alfalfa had been growing for more than 13 yr, the soil MBC increased slowly, suggesting that the MBC value is likely to reach a constant level. SOC, soil total P (STP), available P (AvaiP) and the ratio of SOC to soil total N (C/N) all decreased monotonically with the growing years of alfalfa up to 13 yr and then increased. SOC was significantly positively correlated with STP, AvaiP, soil total C (STC) and soil total N (STN) (R=0.627**, 0.691**, 0.497*, 0.546*, respectively). MBC and LFOC were significantly positively correlated with the number of growing years of alfalfa (R=0.873*** and 0.521*, respectively), and LFOC was more sensitive to vegetation components, degree of cover and landform than to the number of years of growth. SOC showed a significant negative correlation with LFOC/SOC and MBC/SOC (R=−0.689**, −0.693**, respectively). A significant positive correlation exists between MBC and soil inorganic C (SIC). LFOC, MBC, LFOC/SOC and MBC/SOC were all significantly positively correlated with each other. Therefore, practices that involve water-harvesting technologies and add residues and phosphate fertilizer to soils should be promoted to improve soil nutrients and hydration and to postpone the degradation of alfalfa grasslands under long-term alfalfa production.  相似文献   

19.
Tillage choices affect biochemical properties in the soil profile   总被引:1,自引:0,他引:1  
Intensive conventional farming and continuous use of land resources can lead to agro-ecosystem decline and increased releases of CO2 to the atmosphere as soil organic matter (OM) decays. The aim of this research was to evaluate the influence of varying types and depths of tillage on microbial biomass, C content, and humification in the profile of a loamy-sandy soil in the Mugello valley, close to the Apennine Mountains, in Italy. Soil samples were collected to depths of 0–10, 10–20, 20–30 and 30–40 cm, in the ninth year following introduction of tillage practices. Highest content of all C forms examined (total, extractable and humified) was found at the 0–10 cm depth with minimum tillage (MT) and ripper subsoiling (RS) and at the 30–40 cm depth with conventional tillage (CT). Humified C decreased with depth in soils under MT and RS. None of the tillage systems showed any difference in total N and microbial biomass C in the upper depths, but concentrations were greater below 20 cm in soils subjected to CT, than other tillage systems. Crop production was similar in all tillage systems. Stratification and redistribution of nutrients were consistent with the well known effects of tillage reduction. Total organic C and its distribution in the profile depended on the tillage system employed. MT and RS can be regarded as excellent conservation tillage systems, because they also sequester C.  相似文献   

20.
Variations in the microbial biomass and the in situ metabolic quotient (qCO2) due to climatic conditions were determined in a typical soil from the Argentine Rolling Pampa. Microbial C was evaluated by fumigation-incubation and qCO2 was calculated using soil respiration in the field. An inverse relationship between microbial C and soil temperature was fitted to a model (r 2=0.90, P=0.01). No significant association with the soil water content was detected because the soil was generally near field capacity and thus water availability did not limited microbial growth and activity. Values of qCO2 increased (r 2=0.89, P=0.01) as the result of metabolic activatìon, likely induced by a higher maintenance energy requirement at high temperatures. The highest values of qCO2 were obtained when microbial C was the lowest, which was attributed to self consumption of microbial C in the presence of high temperatures. Consequently, microbial C was generally higher (P=0.05) in winter than in summer. Therefore, when microbial C is used as an index of soil biological activity, the influence of temperature should be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号