首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Many legume plants benefit from the tripartite symbiosis of arbuscular mycorrhizal fungi (AMF) and rhizobia. Beneficial effects for the plant have been assumed to rely on increased P supply through the mycorrhizas. Recently, we demonstrated that P does not regulate the establishment of the tripartite symbiosis. Flavonoids appear to play a role as early signals for both rhizobia and AMF. Four soybean lines known to express different concentrations of the isoflavones genistein, daidzein and glycitein in the seed were used to test three hypotheses: (i) The establishment of the tripartite symbiosis is not dependent of a nutrient mediated effect; (ii) There is a positive correlation between seed isoflavone concentrations of different soybean lines and the progress of the tripartite symbiosis; (iii) Specific flavonoids control the establishment of the tripartite symbiosis in that a change in flavonoid root accumulation resulting from the development of one microbial partner can stimulate colonization of soybean roots by the other. Disturbed versus undisturbed soil treatments were produced to vary the potential for indigenous AMF colonization of soybean. In contrast, the potential for Bradyrhizobium was kept identical in both soil disturbance treatments. The uptake of P and Zn and the concentration of flavonoids in mycorrhizal soybean roots at 10 d after emergence were analysed either separately of Bradyrhizobium or in context of the tripartite symbiosis. Zinc nutrition did not differ between AMF treatments which supports the first hypothesis. The concentration of daidzein was at least four times greater in the root than in the seed reaching 3958±249 μg g−1 dry across soybean lines. Coumestrol, which was absent in the seed, was synthesized to reach 2154±64 μg g−1 dry. Conversely, the concentration of genistein was approximately three times smaller in the root that in the seed (301±15 μg g−1 dry), while glycitein and formononetin were never detected. The establishment of the tripartite symbiosis was identical across soybean lines which does not support the second hypothesis. Concentrations of flavonoids were significantly greater in roots under disturbed soil, for which both symbioses were not as developed as in plants from undisturbed soil. This clearly supports the third hypothesis. This research provides the first data linking the function of different flavonoids to the establishment of the tripartite symbiosis, and suggests that these compounds are produced and released into the rhizosphere as a function of the colonization process.  相似文献   

2.
The influence of inoculation of olive trees with arbuscular mycorrhizal (AM) fungi, Glomus (G) intraradices, on microbial communities and sugar concentrations, were examined in rhizosphere of olive trees (Olea europaea L.). Analyses of phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) were then used to detect changes in microbial community structure in response to inoculation of plantlets with G. intraradices.Microscopic observations studies revealed that the extraradical mycelium of the fungus showed formation of branched absorbing structures (BAS) in rhizosphere of olive tree. Root colonization with the AM fungi G. intraradices induced significant changes in the bacterial community structure of olive tree rhizosphere compared to non-mycorrhizal plants. The largest proportional increase was found for the fatty acid 10Me18:0, which indicated an increase in the number of actinomycetes in mycorrhizal rhizosphere soil, whereas the PLFAs i15:0, a15:0, i16:0, 16:1ω7 and cy17:0 which were used as indicators of bacteria decreased in mycorrhizal treatment compared to non-mycorrhizal control treatment. A highest concentration of glucose and trehalose and a lowest concentration of fructose, galactose, sucrose, raffinose and mannitol were detected in mycorrhizal rhizosphere soil. This mycorrhizal effect on rhizosphere communities may be a consequence of changes in characteristics in the environment close to mycorrhizal roots.  相似文献   

3.
丛枝菌根真菌(AMF)可促进作物营养吸收和提高抗逆性,成为寄主抵御干旱胁迫的有效途径。为探明AMF提高大豆抗旱性的机制,以‘桂春豆103’为材料接种幼套近明囊霉(Claroideoglomus etunicatum,简写为C.e),研究干旱条件下C.e对田间大豆叶抗氧化酶及根围土中C/N/P循环相关酶活性等的影响,并用变性梯度凝胶电泳等方法探索土壤微生物群落结构的变化。结果表明:干旱处理前,接种C.e(+AM)处理大豆SOD、POD活性及游离脯氨酸(FP)含量,磷酸酶、蔗糖酶和脲酶活性,土壤细菌、真菌和放线菌数量及物种多样性、丰富度和群落均匀度指数,大豆生物量和株高均显著高于(-AM)处理(P0.05),MDA含量显著降低(P0.05)。干旱(D)处理后,+AM+D处理的上述各项指标,除MDA含量比-AM+D或+AM处理分别显著降低或升高(P0.05),FP含量比两处理显著提高(P0.05)外,其余指标值及细菌和真菌r DNA条带数均比-AM+D处理显著升高,比+AM处理显著下降(P0.05)。-AM+D与-AM处理的细菌和真菌群落均分别聚类于两不同分支,+AM与+AM+D处理聚于同一分支。可见,+AM+D处理能显著促进大豆抗氧化酶系统活性,维持较强的活性氧清除和渗透调节能力,缓解干旱对土壤酶活性的抑制,保持较高的细胞膜稳定性、土壤微生物数量和群落多样性,有利于C/N/P循环转化,提高抗旱性,最终促进大豆生长。本研究可为促进农业生态系统可持续发展奠定基础。  相似文献   

4.
Root colonization, abundance of spores and hyphae, as well as species diversity of arbuscular mycorrhizal (AM) fungi were analyzed in citrus orchards along an altitudinal gradient. The citrus trees were heavily colonized (50.87–77.45%) by native AM fungi. In citrus orchards located at <600 m above sea level (asl), we recorded more extensive hyphal and arbuscular colonization, and higher spore and hyphal length density. AM fungal colonization, spore density, and hyphal length density were closely correlated with edaphic factors such as available phosphorus, pH, and organic matter. A total of 18 AM fungal species belonging to 3 different orders, Archaeosporales (1 species), Diversisporales (7 species) and Glomerales (10 species), were identified on the basis of spore morphological characteristics. In orchards located at higher altitudes (≥700 m asl), we observed a significant decrease in species richness and Shannon–Wiener index values. However, in all of the surveyed orchards, Glomus aggregatum, Funneliformis mosseae and Rhizophagus intraradices were the dominant species. Isolate frequency and relative abundance of AM fungi exhibited clearly distinct distribution patterns among taxonomic families. Canonical correspondence analysis revealed that the AM fungal community structure was significantly influenced by environmental factors, especially altitude, pH, soil moisture, and available nitrogen. Our data indicated that environmental factors are important in determining AM fungal root colonization, propagule numbers, and species diversity in citrus orchards.  相似文献   

5.
Responses of three multipurpose fruit tree species, Parkia biglobosa (Jacq.) Benth, Tamarindus indica L. and Zizyphus mauritiana Lam., to inoculation with five species of arbuscular mycorrhizal fungi, Acaulospora spinosa Walker and Trappe, Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, Glomus intraradices Schenck and Smith, Glomus aggregatum Schenck and Smith emend. Koske and Glomus manihotis Howeler, Sieverding and Schenck, differed markedly with respect to functional compatibility. This was measured as root colonization, mycorrhizal dependence (MD) and phosphorus concentrations in shoots of plants. Root colonization of fruit trees by A. spinosa, G. aggregatum and G. manihotis was high and tree growth increased significantly as a consequence. G. intraradices also colonized well, but provided little growth benefit. G. mosseae colonized poorly and did not stimulate plant growth. The MD of P. biglobosa and T. indica was similar, reaching no more than 36%, while Z. mauritiana showed the highest MD values, reaching a maximum of 78%. The Z. mauritiana A. spinosa combination was the most responsive with respect to total biomass production; phosphorus (P) absorption probably contributed to this more than the absorption of sodium, potassium, magnesium or calcium. The density and length of root hairs were positively correlated with MD, suggesting that root hairs are not indicative of MD. Received: 20 January 1997  相似文献   

6.
 The interaction of plant nutrients, root-soluble carbohydrate availability and arbuscular mycorrhizal (AM) fungi was examined in field grown cowpea [Vigna unguiculata (L.) Walp.]. Plant nutrients were altered through application of farmyard (cow dung, sheep manure) and green (sunnhemp, pongamia) manures. Organic amendments increased plant growth, AM fungal colonization, soluble carbohydrate concentration in roots, and spore numbers. Percent total colonization, root length with vesicles and spore numbers in soil were negatively correlated with the concentration of soluble carbohydrates within roots, which in turn were related to tissue nutrient levels. However, a positive correlation existed between soluble carbohydrate concentrations within root and root length with arbuscules. But the mycorrhizal parameters were related more to plant nutrient level and their ratios, indicating that tissue nutrients have another level of control in addition to their effect on soluble carbohydrate concentration in roots. Increased AM colonization due to organic amendment significantly reduced nutrient imbalances. The strong relationship between colonization and root-soluble carbohydrate concentration levels validates the basic assumption that mycorrhizal fungi act as a 'strong sink' for photosynthates. This study indicates that the host influences AM colonization by regulating the formation of AM fungal structures and spore formation via availability of root carbohydrates. Received: 15 January 1999  相似文献   

7.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

8.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

9.
丛枝菌根真菌对玉米和续断菊间作镉吸收和累积的影响   总被引:2,自引:0,他引:2  
卢鑫  胡文友  黄标  李元  祖艳群  湛方栋  邝荣禧  何跃 《土壤》2017,49(1):111-117
通过盆栽试验,利用分室隔网培养方法,模拟研究接种丛枝菌根真菌(AMF)对玉米-续断菊(Sonchus asper L.Hill)间作体系Cd吸收和累积的影响。结果表明:1无论Cd添加到A室还是B室,玉米的侵染率都要比续断菊高出6.3%~38.35%。接种AMF之后,都不同程度地提高了玉米和续断菊的生物量,但对玉米和续断菊吸收Cd的影响有所不同。2Cd添加到A或者B室,AMF均会促进该侧植物对Cd的吸收,降低另一侧植物对Cd的吸收。3接种AMF后,续断菊对Cd的转运系数降低,玉米对Cd的转运系数有的升高有的降低。总之,AMF改变了间作条件下玉米和续断菊对Cd的吸收,菌丝在两者之间可能起着非常重要的作用。  相似文献   

10.
Greenhouse experiments were conducted using potted soil (Fe-deficient Typic Ustochrept) to study the influence of the vesicular-arbuscular mycorrhizal fungi (VAM), Glomus macrocarpum and G. fasciculatum, on the mobilisation of Fe in broccoli (Brassica oleracea L. var. italica Plenck) in the presence of pyrite and farmyard manure (FYM). Individual applications of either VAM or pyrite with NPK fertiliser significantly enhanced both the Fe2+ content in leaf tissue and total uptake of Fe and resulted in increased curd and straw yields of broccoli compared to those observed with NPK alone. Though the application of FYM decreased the Fe2+ content in leaf tissue relative to plants supplied NPK alone, this result was not statistically significant. The available Fe content in soil, after harvest of broccoli, was found to be lower in the presence of VAM than in the control. Received: 18 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号