首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of excessive addition of excreta from the Great Cormorant Phalacrocorax carbo, a colonial piscivorous bird, on the growth and the ability of fungi to decompose needle litter of Chamaecyparis obtusa were examined by a pure-culture test. Colony growth rate, mass loss of needle litter, and utilization patterns of lignin and carbohydrates were investigated and compared for 22 species in basidiomycetes, ascomycetes, and zygomycetes. Colony growth rate of basidiomycetes decreased on medium supplemented with excreta (excreta medium) as compared to control medium without excreta, whereas such a difference was not found for ascomycetes. Mass loss of needle litter caused by basidiomycetes was generally higher than those caused by ascomycetes and zygomycetes. Basidiomycetes decomposed both lignin and carbohydrates in various proportions, whereas ascomycetes and zygomycetes decomposed carbohydrates selectively. Mass loss of litter caused by basidiomycetes and ascomycetes was lower when incubated on excreta medium than on control medium. Mass loss of lignin and nitrogen caused by basidiomycetes was lower on excreta medium than on control medium, whereas such differences were not found for ascomycetes. Mass loss of carbohydrate was not different between the media for basidiomycetes or ascomycetes.  相似文献   

2.
The present study was designated to evaluate the relative effects of litter depth and decomposition stage of needles on fungal colonization of needle litter in field experiments. The experiment was carried out in coniferous temperate forests in central Japan. Needle litter of Chamaecyparis obtusa and Pinus pentaphylla var. himekomatsu at two decomposition stages (recently dead and partly decomposed) were placed into the organic layer at two depths (on the surface of and beneath the litter layer). Fungal colonization of needles after 1 year was examined in terms of hyphal abundance and frequency of fungal species. Total and live hyphal length on needles were affected by the litter depth and (or) the decomposition stage of needles. Length of darkly pigmented hyphae on needles was 1.7-2.6 times greater beneath the litter layer than on the litter surface regardless of the decomposition stage of needles. Length of clamp-bearing hyphae in Pinus pentaphylla was 5.0-5.2 times greater in partly decomposed needles than in recently dead needles regardless of the litter depth. Frequencies of Pestalotiopsis spp. and Cladosporium cladosporioides were higher on recently dead needles than on partly decomposed needles and (or) were higher on the litter surface than beneath the litter layer. Frequencies of Trichoderma, Penicillium, and Umbelopsis species generally were higher on partly decomposed needles than on recently dead needles and were higher beneath the litter layer than on the surface.  相似文献   

3.
Decomposing needles from a Norway spruce forest in southern Sweden were studied for 559 days under laboratory conditions. Falling needles were collected in control (Co) plots and plots that had received 100 kg N ha−1 yr−1 as (NH4)2SO4 for 9 years under field conditions. One of the aims was to determine whether the previously documented low decomposition rate of the N fertilized (NS) needles could be explained by a lower degradation degree of lignin. The lignin content was studied using the alkaline CuO oxidation method, the Klason lignin method and CPMAS 13C NMR spectroscopy. The amounts of cellulose and hemicellulose were also determined.The fertilized needle litters initially decomposed faster than the unfertilized, but later this reaction reversed, so that at the end the mass loss was 45% initial C in the control and 35% initial C in NS. Klason lignin decreased with time in both treatments and overall, the change of Klason lignin mirrored the litter mass loss. No major difference as regards the decomposition of hemicellulose occurred between the treatments, whereas significantly lower concentrations of cellulose were found in NS needles throughout the incubation. The CuO derived compounds (VSC) were somewhat lower in NS needles throughout the decomposition time. Initially, VSC increased slightly in both treatments, which contradicts the Klason lignin data. There was a weak positive relationship (p>0.05) between VSC and Klason lignin. Both vanillyls compounds (V) and cinnamyl compounds (Ci) increased slightly during decomposition, whereas syringyl compounds (S) vanished entirely. The lignin degradation degree, i.e. the acid-to-aldehyde ratio of the vanillyl compounds expressed as (Ac/Al)v, showed no significant effect of treatment. The 13C NMR analyses of the combined samples showed increased content of aromatic C with increasing decomposition time. The carbohydrate content (O-alkyl C) was lower in the fertilized needle litter throughout the incubation time. The alkyl C content tended to increase with decomposition time and N fertilization. The alkyl C/O-alkyl C ratios increased in both treatments during the incubation. The NMR results were not tested statistically.In conclusion, no major difference concerning lignin degradation could be found between the unfertilized and N fertilized needle litter. Thus, the study contradicts the hypothesis that higher amounts of N reduce lignin degradation. The reduced biological activity is probably due to direct N effects on the microorganisms and their decomposing ability.  相似文献   

4.
Temperature dependant mineralization dynamics during fire of litter species characteristic of the New Jersey pine barrens was determined. Senescent leaf material of pitch pine (Pinus rigida), white oak (Quercus alba) and black huckleberry (Gaylusssacia baccata) were collected at the time of abscission; sorted, ground and oven-dried at 70 °C. Replicate samples were then heated for 2 h at: 70, 100, 200, 300, 400, and 550 °C. Mass loss and total nitrogen and total phosphorus concentration of the heated material were determined. Additional samples of the residual material were extracted with deionized water, and the filtrate was assayed for the anions: , , ; and cations: , K+, Mg++, and Ca++.By heating leaf litter over a range of temperatures, to simulate the heterogeneous nature of forest litter burning, we identified patterns of nutrient mineralization characteristic of specific temperatures, some of which were common to all three litter species and others unique to individual species. In general, it appears that black huckleberry leaf litter was the most nutrient rich and the most labile. In huckleberry litter, there was a large reserve of soluble nitrogen, sulfur, phosphate, calcium and magnesium that became available upon heating to 200 °C. Pitch pine litter was the most nutrient poor, and the rates of nutrient mineralization were also generally the lowest of the three species studied. White oak litter nutrient concentration and rates of mineralization along the temperature gradient were intermediate. For all three litter species examined organic and inorganic nitrogen losses due to volatilization were >99% upon heating to 550 °C, and soluble magnesium concentrations declined significantly at temperatures of 300 °C, despite having a volatilization temperature greater than 1100 °C. Under the temperature range employed, heating of leaf litter resulted in little volatilization loss of phosphorus; however, the amount of soluble phosphate phosphorus was much lower in all three litter types at temperatures of 300 °C and above. With increasing temperatures, inorganic phosphate ions presumably became bound to cations in the ash, forming insoluble metal phosphates. The dramatic increase of the ratio of total phosphorus to soluble inorganic phosphate at higher temperatures, the loss of soluble magnesium above 300 °C, and the near complete loss of nitrogen at 550 °C suggests that after intense fires availability of these minerals may be dramatically reduced.  相似文献   

5.
Forests cover one-third of the Earth’s land surface and account for 30-40% of soil carbon (C). Despite numerous studies, questions still remain about the factors controlling forest soil C turnover. Present understanding of global C cycle is limited by considerable uncertainty over the potential response of soil C dynamics to rapid nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application. Here, we present a 15-year-long field study and show an average increase of 14.6% in soil C concentration in the 0-5 cm mineral soil layer in N fertilized (defined as N+ hereafter) sub-plots of a second-rotation Pinus radiata plantation in New Zealand compared to control sub-plots. The results of 14C and lignin analyses of soil C indicate that N additions significantly accelerate decomposition of labile and recalcitrant soil C. Using an annual-time step model, we estimated the soil C turnover time. In the N+ sub-plots, soil C in the light (a density < 1.70 g cm−3) and heavy fractions had the mean residence times of 23 and 67 yr, respectively, which are lower than those in the control sub-plots (36 and 133 yr in the light and heavy fractions, respectively). The commonly used lignin oxidation indices (vanillic acid to vanillin and syringic acid to syringaldehyde ratios) were significantly greater in the N+ sub-plots than in the control sub-plots, suggesting increased lignin decomposition due to fertilization. The estimation of C inputs to forest floor and δ13C analysis of soil C fractions indicate that the observed buildup of surface soil C concentrations in the N+ sub-plots can be attributed to increased inputs of C mass from forest debris. We conclude that long-term N additions in productive forests may increase C storage in both living tree biomass and soils despite elevated decomposition of soil organic matter.  相似文献   

6.
Fungi play an important role in litter decomposition in forest ecosystems and studies are needed to follow the changes in hyphal abundance during litter decomposition and examine the factors regulating the ingrowth of hyphae in litter. The purposes of the present study are to demonstrate the patterns of needle decomposition of Chamaecyparis obtusa in terms of the vertical distribution of fungal biomass and chemical properties within litter horizons (L1, L2, F, and H layers) and fungal ingrowth and succession in relation to organic chemical and nitrogen dynamics during needle litter decomposition over a one-year period. A further aim is to assess the effect of moisture and availability of organic matter on live hyphal length, during 1 year of decomposition. Live hyphal length was correlated to holocellulose concentration in four litter horizons. In a litter bag experiment, total (live plus dead) hyphal length increased during decomposition which was correlated to the concentrations of nitrogen, lignin, holocellulose, and soluble carbohydrate in the litter. The 12-month period over which decomposition was measured was divided into four seasons and the correlation between the water content and live hyphal length was evaluated for each period. The length of live hyphae was correlated to the water content of litter in all four periods. The slopes of regression lines between the water content and live hyphal length were positively correlated to the mean concentrations of soluble carbohydrate of each period, suggesting that the growth of live hyphae was highly dependent on the moisture condition of litter, and under moist conditions on the availability of soluble carbohydrate in the litter. The decrease in the slopes during decomposition can be ascribed to ecophysiological traits of fungi responsible for decomposition in these periods.  相似文献   

7.
Initial decomposition rates, changes in organic chemical components (acid-insoluble fraction, holocellulose, polyphenols, soluble carbohydrates) and nutrient dynamics (K, Mg, Ca, P, N) were examined for fine roots and leaves of Japanese cypress (Chamaecyparis obtusa). Litterbag experiments designed to evaluate the relative effects of litter type and position of litter supply in the soil were carried out, considering that root and leaf litter typically occupy different locations and have different substrate qualities. Litterbags of roots and leaves were placed at two positions (on the soil surface and in the humus layer), and collected every 3 months over one year. The mass loss rate and N release were slower during root decomposition in the humus layer than during leaf decomposition on the soil surface. These differences between root and leaf decomposition were mainly caused by the litter type, and the effect of the position on decomposition was relatively small. Root litter was less influenced by position related effects, such as differences in humidity, than leaf litter, and this recalcitrant trait to environmental effects may be responsible for the slower mass loss rate and N release in root decomposition. The results of the present study suggest that fine roots are persistent in the soil and serve an important role in N retention in forest ecosystems because of their litter substrate quality.  相似文献   

8.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

9.
Tannins are purported to be an important factor controlling nitrogen cycling in forest ecosystems, and the ability of tannins to bind proteins in protein-tannin complexes is thought to be the primary mechanism responsible for these effects. In this study, we examined the influence of well-characterized tannins purified from five different plant species on C and N dynamics of a forest soil A horizon. Tannic acid, a commonly used and commercially available hydrolyzable tannin (HT), and cellulose were also included for comparison. With the exception of tannins from huckleberry (Vaccinium ovatum), the amendments increased respiration 1.4-4.0 fold, indicating that they were acting as a microbial C source. Tannic acid was significantly more labile than the five purified tannins examined in this study. All treatments decreased net N mineralization substantially, through greater N immobilization and decreased mineralization. The six tannins inhibited gross ammonification rates significantly more than cellulose. This suggests that added tannins had effects in addition to serving as an alternative C source. Tannins purified from Bishop pine (Pinus muricata) were the only tannins that significantly inhibited potential gross nitrification rates, however, rates were low even in the control soil making it difficult to detect any inhibition. Differences in tannin structure such as condensed versus HTs and the hydroxylation pattern of the condensed tannin B-ring likely explain differences observed among the tannin treatments. Contrary to other studies, we did not find that condensed tannins were more labile and less inhibitory than HTs, nor that shorter chained tannins were more labile than longer chained tannins. In addition to supporting the hypothesis that reduced N availability in the presence of tannins is caused by complexation reactions, our data suggests tannins act as a labile C source leading to increased N immobilization.  相似文献   

10.
The objective of this investigation was to assess the changes in chemical composition (lignin, cellulose, hemicelluloses, non-structural compounds, N, and ash) of decomposing litter. Standard Pinus sylvestris needle litter, originating from southern Sweden, was incubated in litterbags at 15 sites selected from the Netherlands to south Spain. The changes in chemical composition of this litter were determined using near infrared reflectance spectroscopy. The hypothesis was that standard (chemically uniform) litter decomposing under a range of climates would show different dynamics of accumulation and loss of C-fractions, N, and ash, relative to mass loss. It was shown that, for a given mass-loss value (10, 20, 30, 40, or 50%), the proportion of lignin, cellulose, hemicelluloses, non-structural compounds, N, and ash in the decomposing pine needles differed between sites. Lignin concentration in the litter residue at 50% mass loss ranged from approximately 26 to 43%, cellulose from 19 to 27%, hemicelluloses from 7 to 11%, non-structural compounds from 19 to 25%, N from 0.7 to 1.3%, and ash content from 1.4 to 10.1%. Lignin concentrations showed the highest range of variation. Lignin concentrations during decomposition were positively related to moisture factors as significant correlations were found with actual evapotranspiration and were improved in multiple regressions by the mean annual precipitation or the water surplus. Cellulose was degraded further at sites with high precipitation whereas hemicellulose degradation was related to temperature. This leads to the conclusion that the remaining organic matter produced by standard litter decomposition within the studied climatic range of variations tended to be more recalcitrant under wet and warm climatic conditions than under cold or dry climate.  相似文献   

11.
The objective of this work was to investigate the usefulness of near infrared reflectance spectroscopy (NIRS) in determining some C and N fractions of soils: labile compounds, microbial biomass, compounds derived from added 13C- and 15N-labelled straw. Soil samples were obtained from a previous experiment where soils were labelled by addition of 13C- and 15N-labelled wheat straw and incubated in coniferous forests in northern Sweden (64-60°N) and south France (43°N). The incubation lasted three years with 7-9 samplings at regular time steps and four replicates at each sampling (204 samples). Samples were scanned using a near infrared reflectance spectrophotometer (NIRSystem 6500). Calibrations were obtained by using a modified partial least squares regression technique with reference data on total C and N, 13C, 15N, control extract-C, -N, -13C and -15N, fumigated extract-C, -N, -13C and -15N, biomass-C, -N, -13C and -15N contents. Mathematical treatments of the absorbance data were first or second derivative with a gap from 4 to 10 nm. The standard error of calibration (SEC)-to-standard deviation of the reference measurements ratio was ≤0.2 for 10 models, namely total C and N, 13C, 15N, control extract-C, fumigated extract-C and -N, biomass-C and -N and biomass-15N models and therefore considered as very good. With an R2=0.955, the fumigated extract-15N model is also good. The standard error of performance calculated on the independent set of data and SEC were within 20% of each other for all the best equations except for the biomass-15N model. The ability of NIRS to detect 13C and 15N in total C and N and in the extracts is noteworthy, not because of its predictive function that is not really of interest in this case, but because it indicates that the spectra kept the signature of the properties of the organic matter derived from the straw even after two- or three-year decomposition. The incorporation of the 13C in the biomass was less well predicted than that of the 15N. This could indicate that the biomass derived from the straw was characterised by a particular protein or amino acid composition compared to the total biomass that includes a large proportion of dormant micro-organisms. The predictive ability of NIRS for microbial biomass-C and -N is particularly interesting because the conventional analyses are time consuming. In addition, NIRS allows detecting analytical errors.  相似文献   

12.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

13.
Tracking the movement of soil-living herbivores is difficult, albeit important for understanding their spatial ecology as well as for pest management. In this study the movement of Agriotes obscurus larvae between plots harbouring isotopically different plants was examined. Neither between maize and wheat nor between maize and grassland movement could be detected. These data suggest that Agriotes larvae rarely disperse between crops as long as local food supply is sufficient. Moreover, the current approach provides a new means to study the dispersal of soil invertebrates in situ.  相似文献   

14.
The aims of this study were to determine the degree of lignin degradation and to investigate changes in the chemical composition of the organic matter in the forest floor in an N fertilized Norway spruce forest soil. Needle litter and mor humus were collected from the field experiment at Skogaby in southern Sweden (56°33′N; 13°13′E). The spruce stand had been fertilized for 11 years with 100 kg N ha−1 yr−1 as (NH4)2SO4. The degree of lignin degradation was determined with alkaline CuO oxidation followed by HPLC analysis. The chemical composition of the organic matter was characterized by CPMAS 13C NMR. Tannin was specifically analyzed using dipolar dephasing CPMAS 13C NMR and the N distribution was studied by CPMAS 15N NMR.The C-to-N ratios in the fertilized Oi and Oe layers were significantly lower than in the unfertilized layers (24 compared to 34 and 23 compared to 27, respectively). Neither the sum of the CuO oxidation products (Vanillyls+Syringyls+Cinnamyls expressed as VSC) nor the acid-to-aldehyde ratio ((Ac/Al)V) showed any significant treatment effects. The content of aromatic C (including phenolic C) was significantly lower in the unfertilized than in the fertilized Oi layer (18 versus 21%). In the unfertilized soil, VSC was positively correlated (r=+0.63, p<0.05) with the C-to-N ratio, whereas the phenolic C content was negatively correlated (r=−0.61, p<0.05). The tannin index showed a tendency of increasing from Oi to Oe layers in both treatments. Most of the organic N was found as amide-N, whereas no heterocyclic N was detected. We have not been able to show any major C structural changes due to N fertilization. We suggest that the significantly higher content of aromatic and phenolic C in the fertilized Oi layer is due to an initial stimulation of the microbial community.  相似文献   

15.
In peatlands the reduced decomposition rate of plant litter is the fundamental mechanism making these peat-accumulating ecosystems effective carbon sinks. A better knowledge of litter decomposition and nutrient cycling is thus crucial to improve our predictions of the effects of anthropogenic perturbation on the capacity of peatlands to continue to behave as carbon sinks. We investigated patterns of plant litter decomposition and nutrient release along a minerotrophic-ombrotrophic gradient in a bog on the south-eastern Alps of Italy. We determined mass loss as well as P, N, K, and C release of seven vascular plant species and four moss species after 1 year in both native and transplanted habitats. Hence, differences in litter decay were supposed to reflect the degree of adaptability of microbial communities to litter quality. Polyphenols/nutrient and C/nutrient quotients appeared as the main parameters accounting for decomposition rates of Sphagnum litter. In particular, litter of minerotrophic Sphagnum species decomposed always faster than litter of ombrotrophic Sphagnum species, both in native and transplanted habitats. Decomposition rates of vascular plant litter in native habitats were always higher than the corresponding mass loss rates of Sphagnum litter. Minerotrophic forbs showed the fastest decomposition both in native and transplanted habitats in accordance with low C/P and C/N litter quotients. On the other hand, C/P quotient seems to play a primary role also in controlling decomposition of graminoids. Decomposition of deciduous and evergreen shrubs was negatively related to their high lignin content. Nitrogen release from Sphagnum litter was primarily controlled by C/N quotient, so that minerotrophic Sphagnum litter released more N than ombrotrophic Sphagnum litter. Overall, we observed slower N release from litter of ombrotrophic vascular plant species compared to minerotrophic vascular plant species. No single chemical parameter could predict the variability associated with different functional groups. The release of K was very high compared to all the other nutrients and rather similar between ombrotrophic and minerotrophic litter types. In Sphagnum litter, a higher C/P quotient was associated with a slower P mineralisation, whereas a faster P release from vascular plant litter seems primarily associated with lower C/P and polyphenols/P quotients.  相似文献   

16.
Changes in the soil water regime, predicted as a consequence of global climate change, might influence the N cycle in temperate forest soils. We investigated the effect of decreasing soil water potentials on gross ammonification and nitrification in different soil horizons of a Norway spruce forest and tested the hypotheses that i) gross rates are more sensitive to desiccation in the Oa and EA horizon as compared to the uppermost Oi/Oe horizon and ii) that gross nitrification is more sensitive than gross ammonification. Soil samples were adjusted by air drying to water potentials from about field capacity to around −1.0 MPa, a range that is often observed under field conditions at our site. Gross rates were measured using the 15N pool dilution technique. To ensure that the addition of solute label to dry soils and the local rewetting does not affect the results by re-mineralization or preferential consumption of 15N, we compared different extraction and incubation times.T0 times ranging from 10 to 300 min and incubation times of 48 h and 72 h did not influence the rates of gross ammonification and nitrification. Even small changes of water potential decreased gross ammonification and nitrification in the O horizon. In the EA horizon, gross nitrification was below detection limit and the response of the generally low rates of gross ammonification to decreasing water potentials was minor. In the Oi/Oe horizon gross ammonification and nitrification decreased from 37.5 to 18.3 mg N kg−1 soil d−1 and from 15.4 to 5.6 mg N kg−1 soil d−1 when the water potential decreased from field capacity to −0.8 MPa. In the Oa horizon gross ammonification decreased from 7.4 to 4.0 mg N kg−1 soil d−1 when the water potential reached −0.6 MPa. At such water potential nitrification almost ceased, while in the Oi/Oe horizon nitrification continued at a rather high level. Hence, only in the Oa horizon nitrification was more sensitive to desiccation than ammonification. Extended drought periods that might result from climate change will cause a reduction in gross N turnover rates in forest soils even at moderate levels of soil desiccation.  相似文献   

17.
Fate of inorganic 15N in the profile of different coniferous forest soils   总被引:3,自引:0,他引:3  
The fate of inorganic 15N added to different coniferous forest soils was traced throughout the soil profile (0–25 cm) in a laboratory experiment under controlled conditions of temperature and water content. Six soils with different chemical climates were compared. The sequestration of labelled N was significantly explained by the clay content but the correlation was improved when C and N content were included. The level of acidification, even in soil with a fine texture, reduced the immobilization. For a similar N input, sandy soils with low C content or high acidification showed a reduced N storage capacity, so that N excess would be able to pollute the ground-water.  相似文献   

18.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

19.
1
The stoichiometry of resources is increasingly acknowledged as a major control of consumer activity and abundance. Chemical properties of litter, the main source of food for decomposers, are likely to be important drivers of decomposer activity.
2
Theory predicts a high control of resource stoichiometry on the abundance of consumer organisms that maintain strict homeostasis, due to costs associated with the regulation of nutrient balance in their body tissue. Decomposer efforts in nutrient acquisition should be related to imbalances in resource stoichiometry.
3
A 21 year old experimental plantation of monospecific plots of trees with leaves of contrasting chemistry was used to test four hypotheses: (i) soil and litter nutrient stoichiometry (C, N, P) are linked; (ii); soil enzyme activity ratios and stoichiometry are linked; (iii) earthworms’ tissue stoichiometry does not depend on soil and litter stoichiometry (homeostasis); (iv) earthworm density is dependent upon phosphorus availability, the most limiting nutrient in soils at this site, and, to a lesser extent, to nitrogen availability.
4
We found (i) no relationship between litter and soil stoichiometry, (ii) microbial activity was linked to soil stoichiometry, (iii) earthworms showed strict homeostasis in their tissue and (iv) earthworm abundance increased with P availability.
5
We discuss the mechanisms that might lead to these patterns.
  相似文献   

20.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号