共查询到20条相似文献,搜索用时 15 毫秒
1.
Angelika Kölbl Margit von Lützow Cornelia Rumpel Jean Charles Munch Ingrid Kögel‐Knabner 《植物养料与土壤学杂志》2007,170(1):123-133
The application of 13C‐labeled litter enables to study decomposition processes as well as the allocation of litter‐derived carbon to different soil C pools. 13Carbon‐labeled mustard litter was used in order to compare decomposition processes in an agricultural cropland with high‐yield (HY) and low‐yield (LY) areas, the latter being characterized by a finer texture and a lower organic‐C (OC) content. After tracer application, 13C concentrations were monitored in topsoil samples in particulate organic matter (POM) and in fine mineral fractions (silt‐ and clay‐sized fractions). After 568 d, approximately 5% and 10% of the initial 13C amount were found in POM fractions of LY and HY areas, respectively. Higher amounts were found in POM occluded in aggregates than in free POM. Medium‐term (0.5–2 y) storage of the initial 13C in fine silt‐ and clay‐sized fractions amounts to 10% in HY and LY soils, with faster enrichment but also faster disappearance of the 13C signal from LY soils. Amounts of 80%–90% of the added 13C were mineralized or leached in the observed period. Decomposition of free POM was faster in HY than in LY areas during the first year, but the remaining 13C amounts in occluded‐POM fractions were higher in HY soils after 568 d. High‐yield and low‐yield areas showed different 13C dynamics in fine mineral fractions. In LY soils, 13C amounts and concentrations in mineral‐associated fractions increased within 160 d after application and decreased in the following time period. In HY areas, a significant increase in 13C amounts did not occur until after 568 d. The results indicate initially faster decomposition processes in HY than in LY areas due to different soil conditions, such as soil texture and water regime. The higher silt and clay contents of LY areas seem to promote a faster aggregate formation and turnover, leading to a closer contact between POM and mineral surfaces in this area. This favors the OC storage in fine mineral fractions in the medium term. Lower aggregate formation and turnover in the coarser textured HY soil leads to a delayed C stabilization in silt‐ and clay‐sized fractions. 相似文献
2.
Variations in the amount and composition of immobilized nitrogen (N) in major soil organic matter fractions were investigated
in a 730-day soil incubation experiment using 15N-labeled urea and 15N nuclear magnetic resonance spectroscopy with the cross polarization/magic angle spinning (15N CPMAS NMR) method. After 730 days, 24.7% of the applied N was recovered from the soil as organic N. The urea-derived N recovered
from humic acids and humin decreased from 11.2 and 33.8% of the applied amount after 14 days to 1.6 and 20.4% after 730 days,
respectively. When these values were corrected for the microbial biomass (MB) N, they ranged from 9.0 to 1.2% and 28 to 18%,
respectively. The proportion of urea-derived N recovered from fulvic acids was low, ranging between 0.4 and 5.8% (with MB
N) or 5.6% (without MB N) of the applied amount, whereas that from water-soluble nonhumic substances (WS-NHS; NHS in the fulvic
acid fraction) remained high, 28–33% of the applied amount after correction for the contribution of MB N up to day 365, and
decreased to 0.9% thereafter. The 15N CPMAS NMR spectra of humic acids, fulvic acids, and humin showed the largest signal at −254 to −264 ppm, corresponding to
peptide/amide N. The proportions of heterocyclic, peptide/amide, guanidine/aniline, and free amino N in the urea-derived humic
acid N were 3–7, 83–90, 5–7, and 2–4%, respectively. More than 80% loss of the urea-derived humic acid N did not markedly
alter their composition. No time-dependent variations were also observed for the proportions of respective N functional groups
in humin N, which were 3–5, 71–78, 12–17, and 6–10% in the same order as above. These results suggest the greater importance
of physical stability than structural variation for the initial accumulation of organic N in soil. 相似文献
3.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably. 相似文献
4.
We investigated the relationship between soil organic matter (SOM) content and N dynamics in three grassland soils (0-10 and 10-20 cm depth) of different age (6, 14 and 50 y-old) with sandy loam textures. To study the distribution of the total C and N content the SOM was fractionated into light, intermediate and heavy density fractions of particulate macro-organic matter (150-2000 μm) and the 50-150 μm and <50 μm size fractions. The potential gross N transformation rates (mineralisation, nitrification, NH4+ and NO3− immobilization) were determined by means of short-term, fully mirrored 15N isotope dilution experiments (7-d incubations). The long-term potential net N mineralisation and gross N immobilization rates were measured in 70-d incubations. The total C and N contents mainly tended to increase in the 0-10 cm layer with increasing age of the grassland soils. Significant differences in total SOM storage were detected for the long-term (50 y-old) conversion from arable land to permanent grassland. The largest relative increase in C and N contents had occurred in the heavy density fraction of the macro-organic matter, followed by the 50-150 and <50 μm fractions. Our results suggest that the heavy density fraction of the macro-organic matter could serve as a good indicator of early SOM accumulation, induced by converting arable land to permanent grassland. Gross N mineralisation, nitrification, and (long-term) gross N immobilization rates tended to increase with increasing age of the grasslands, and showed strong, positive correlations with the total C and N contents. The calculated gross N mineralisation rates (7-d incubations) and net N mineralisation rates (70-d incubations) corresponded with a gross N mineralisation of 643, 982 and 1876 kg N ha−1 y−1, and a net N mineralisation of 195, 208 and 274 kg N ha−1 y−1 in the upper 20 cm of the 6, 14 and 50 y-old grassland soils, respectively. Linear regression analysis showed that 93% of the variability of the gross N mineralisation rates could be explained by variation in the total N contents, whereas total N contents together with the C-to-N ratios of the <50 μm fraction explained 84% of the variability of the net N mineralisation rates. The relationship between long-term net N mineralisation rates and gross N mineralisation rates could be fitted by means of a logarithmic equation (net m=0.24Ln(gross m)+0.23, R2=0.69, P<0.05), which reflects that the ratio of gross N immobilization-to-gross N mineralisation tended to increase with increasing SOM contents. Microbial demand for N tended to increase with increasing SOM content in the grassland soils, indicating that potential N retention in soils through microbial N immobilization tends to be limited by C availability. 相似文献
5.
Summary The dynamics of basally applied 15N-labeled ammonium sulfate in inorganic and organic soil fractions of five wetland rice soils of the Philippines was studied in a greenhouse experiment. Soil and plant samples were collected and analyzed for 15N at various growth stages. Exchangeable NH4
+ depletion continued after 40 days after transplanting (DAT) and corresponded with increased nitrogen uptake by rice plants. Part of the applied fertilizer was fixed by 2:1 clay minerals, especially in Maligaya silty clay loam, which contained beidellite as the dominant clay mineral. After the initial fixation, nonexchangeable 15N was released from 20 DAT in Maligaya silty clay loam, but fixation delayed fertilizer N uptake from the soil. Part of the applied N was immobilized into the organic fraction. In Guadalupe clay and Maligaya silty clay loam, immobilization increased with time while the three other soils showed significant release of fertilizer N from the organic fraction during crop growth. Most of the immobilized fertilizer N was recovered in the nondistillable acid soluble (alpha-amino acid + hydrolyzable unknown-N) fraction at crop maturity. Between 61% and 66% of applied N was recovered from the plant in four soils while 52% of fertilizer N was recovered from the plant in Maligaya silty loam. Only 20% – 30% of the total N uptake at maturity was derived from fertilizer N. Nmin (mineral N) content of the soil before transplanting significantly correlated with N uptake. Twenty-two to 34% of applied N was unaccounted for possibly due to denitrification and ammonia volatilization. 相似文献
6.
Seok-In Yun 《Soil biology & biochemistry》2009,41(7):1541-1547
To test the hypothesis that N isotope composition can be used as evidence of excessive compost application, we measured variation in patterns of N concentrations and corresponding δ15N values of plants and soil after compost application. To do so, a pot experiment with Chinese cabbage (Brassica campestris L. cv. Maeryok) was conducted for 42 days. Compost was applied at rates of 0 (SC0), 500 (SC1), 1000 (SC2), and 1500 mg N kg−1 soil (SC3). Plant-N uptake linearly increased with compost application (r2 = 0.956, P < 0.05) with an uptake efficiency of 76 g N kg−1 of compost-N at 42 days after application, while dry-mass accumulation did not show such linear increases. Net N mineralized from compost-N increased linearly (r2 = 0.998, P < 0.01) with a slope of 122 g N kg−1 of compost-N. Plant-δ15N increased curvilinearly with increasing compost application, but this increase was insignificant between SC2 and SC3 treatments. The δ15N of soil inorganic-N (particularly NO3−-N) increased with compost application. We found that plant-δ15N reflected the N isotope signal of soil NO3−-N at each measurement during plant growth, and that δ15N of inner leaves and soil NO3−-N was similar when initial NO3− in the compost was abundant. Therefore, we concluded that δ15N of whole plant (more obviously in newer plant parts) and soil NO3−-N could reveal whether compost application was excessive, suggesting a possible use of δ15N in plants and soil as evidence of excess compost application. 相似文献
7.
Kozo Matsushita Nobufumi Miyauchi Shigekazu Yamamuro 《Soil Science and Plant Nutrition》2013,59(2):355-363
In order to produce an effective organic fertilizer, cattle manure was cocomposted with chemical fertilizer. And the kinetics of nitrogen uptake by rice plants from the co-compost was investigated using the 15N labelled co-composts on either cattle manure or chemical fertilizer. As a control, nitrogen kinetics from the mixture of cattle manure and chemical fertilizer without co-composting was investigated. At the early stage, rice growth may have been promoted by co-composting, while, it may have been promoted by the larger N-content of cattle manure at the harvesting stage. The ratios of nitrogen uptake by rice plants and residual nitrogen in soil from the cattle manure and chemical fertilizer were determined by measuring 15N -atom%. The N -uptake ratios by rice plants from the cattle manure in the co-composted plot were about 2–4 times higher than those from the cattle manure without co-composting. However, the N -uptake ratios from the chemical fertilizer in the co-composted plot were lower than those from the chemical fertilizer without co-composting. The N -content of the rice plants derived from chemical fertilizer without co-composting decreased consistently after 28 d. The nitrogen from chemical fertilizer in the co-compost was absorbed again in the latter period of rice growth. The total nitrogen uptake by rice plants from cattle manure and chemical fertilizer was similar regardless of co-composting. However, co-composting would be advantageous at least· in terms of the following aspects: increase of the N -uptake by rice plants from cattle manure, slow-release ability of nitrogen from chemical fertilizer, decrease of nitrogen loss by denitrification. 相似文献
8.
A laboratory soil incubation and a pot experiment with ryegrass were carried out in order to examine the extractability of microbial biomass N by using either 10-mM CaCl2 extraction or the electro-ultrafiltration (EUF) method. The aim of the experiment was to test the hypothesis whether the organic N (Norg) extracted by EUF or CaCl2 from dried soil samples represents a part of the microbial biomass. For the laboratory incubation a 15N-labelled Escherichia coli suspension was mixed with the soil. For the pot experiment a suspension of 15N-labelled bacteria was applied which had previously been isolated from the soil used. Soil samples of both treatments, with and without applied bacterial suspension, were extracted by EUF and CaCl2. The extractability of applied microbial biomass was estimated from the difference in extractable Norg between the two treatments. In addition, the N isotopic composition in the upper plant matter, in the soil, and in organic and inorganic N fractions of EUF and CaCl2 extracts was analysed. Both experiments showed that the applied microbial biomass was highly accessible to mineralization and thus represented potentially mineralizable N. However, this mineralizable N was not extractable by CaCl2 or by the EUF method. It was, therefore, concluded that the organic N released on soil drying and which was thus extractable was derived from the non-biomass soil organic matter. The result suggests that both extraction methods may provide a suitable index for mineralizable N only in cases where the decomposable organic substrates are derived mainly from sources other than the living soil biota.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday 相似文献
9.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions. 相似文献
10.
Paul Dijkstra Ayaka Ishizu Stephen C. Hart Egbert Schwartz Bruce A. Hungate 《Soil biology & biochemistry》2006,38(11):3257-3266
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation. 相似文献
11.
Feike A. Dijkstra Gordon L. Hutchinson Daniel R. LeCain 《Soil biology & biochemistry》2011,43(11):2247-2256
Elevated CO2 and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO2 (720 μl L−1) and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N m−2) in intact mesocosms extracted from a semiarid grassland. Mesocosms were kept inside growth chambers for one growing season, and the experiment was repeated the next year. We added 15N (1 g m−2) to all mesocosms at the start of the growing season. We measured total N and 15N in plant, soil inorganic, microbial and soil organic pools at different times of the growing season. We combined the plant, soil inorganic, and microbial N pools into one pool (PIM-N pool) to separate biotic + inorganic from abiotic N residing in soil organic matter (SOM). With the 15N measurements we were then able to calculate transfer rates of N from the active PIM-N pool into SOM (soil N immobilization) and vice versa (soil N mobilization) throughout the growing season. We observed significant interactive effects of elevated CO2 with N addition and defoliation with N addition on soil N mobilization and immobilization. However, no interactive effects were observed for net transfer rates. Net N transfer from the PIM-N pool into SOM increased under elevated CO2, but was unaffected by defoliation. Elevated CO2 and defoliation effects on the net transfer of N into SOM may not depend on soil N availability in semiarid grasslands, but may depend on the balance of root litter production affecting soil N immobilization and root exudation affecting soil N mobilization. We observed no interactive effects of elevated CO2 with defoliation. We conclude that elevated CO2, but not defoliation, may limit plant productivity in the long-term through increased soil N immobilization. 相似文献
12.
Physical degradation of the soil increases its susceptibility to erosion by water action. However, relatively few studies have evaluated the opposite, i.e., the impact of water erosion on soil erodibility. This study was conducted in a corn field in Ohio. Some sites within the field have experienced water-induced soil erosion following heavy rainstorms. Physical characteristics of the soil were compared between eroded (ER) and un-eroded sites (UN). Compared with ER, the soil in UN had lower penetration resistance (4.87 vs. 4.53 MPa), bulk density (1.45 vs. 1.33 Mg m?3), and sand content (17.4 vs. 14.2%), and higher shear strength (80.1 vs. 125.3 KPa), hydraulic conductivity (3.0 vs. 3.4 cm h?1), intrinsic permeability (31.9 vs. 36.4 × 10?10 cm2), and contents of soil organic carbon (36.1 vs. 32.1 g kg?1), total nitrogen (3.3 vs. 3.1 g kg?1), clay (25.2 vs. 24.2%), silt (60.5 vs. 58.4%), and very fine sand (3.4 vs. 1.1%). Also Munsell's variables differed between ER and UN (1.24 vs. 0.54 for hue, 4.59 vs. 4.35 for value, and 1.99 vs. 1.79 for chroma, respectively). The erodibility factor (K) was lower in UN than in ER (0.00327 vs. 0.00354 Mg ha h ha?1 MJ?1 mm?1, respectively). Hence, it is suggested the ER sites within the corn field agroecosystem are more susceptible to accelerated erosion as compared with UN sites. 相似文献
13.
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa. 相似文献
14.
Annual grasses are stronger competitors for available soil N than blue oak seedlings and soil microorganisms. However, little is known about the dynamics of N competition during annual grass senescence. We conducted a field experiment in a California oak woodland to study effects of annual grass senescence on N uptake by grasses, blue oak seedlings and soil microorganisms. Labeled N was applied at the beginning of April, May and of June in the form of 15NH4+ or 15N-glycine. Plants and soils were harvested after 5 days (15NH4+ and 15N-glycine treatments) and after 26 days (15NH4+ treatment only). We evaluated effects of N form, season and labeling period on N competition among oak seedlings, annual grasses and soil microorganisms. N forms did not affect competition among grasses, oak seedlings and soil microorganisms, but more 15N was incorporated into the soil organic N pool in the 15N-glycine treatments than in the 15NH4+ treatments. There were no seasonal (May vs June) effects on 15N recovery in blue oak seedlings and soil microorganisms. Plant samples from April harvest were lost. In June, when grasses were senescing, more 15N was found in the soil inorganic pool than in May. Extremely dry soils in June may have limited inorganic N availability to oak seedlings and soil microorganisms. After 26-day labeling period, 15N recovery in blue oak seedlings and the soil organic N pool significantly increased, while 15N recovery in both the soil microbial and inorganic N pools decreased compared to the 5-day labeling period. Although blue oak seedling biomass changed little from early May to late June, N concentrations in oak roots increased 53%. In contrast, annual grass biomass peaked in May, and then decreased rapidly. Our results suggest that blue oak seedlings and annual grasses have different temporal competitive abilities. Blue oak seedlings appear to have a long-term strategy for N competition. Blue oaks take up N slowly but steadily, increasing N uptake from 5 to 26 days. This extended time period has a greater positive effect on N uptake than does reduced grass uptake caused by senescence. 相似文献
15.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):2719-2731
Abstract Nitrogen (N) concentrations and stable N isotope abundances (δ15N) of common reed (Phragmites australis) planted in a constructed wetland were measured periodically between July 2001 and May 2002 to examine their seasonal variations in relation to N uptake and N translocation within common reed. Nitrogen concentrations in P. australis shoots were higher in the growing stage (7.5 to 24.8 g N kg?1) than in the senescence stage (4.2 to 6.8 g N kg?1), indicating N translocation from shoots to rhizomes. Meanwhile, the corresponding δ15N values were higher in the senescence stage (+12.2 to +22.4‰) than in the growing stage (+5.1 to +11.3‰). Coupled with the negative correlation (R2=0.24, P<0.05, n=18) between N concentrations and δ15N values of shoots in the senescence stage, our results suggested that shoot N became enriched in 15N due to N isotopic fractionation (with an isotopic fractionation factor, αs/p, of 1.012) during N translocation to rhizomes. However, the positive correlation between N concentrations and δ15N values in the growing stage (R2=0.19, P<0.001, n=54) suggested that P. australis relies on N re‐translocated from rhizome in the early growing stage and on mineral N in the sediment during the active growing stage. Therefore, seasonal δ15N variations provide N‐isotopic evidence of N translocation within and N uptake from external N sources by common reed. 相似文献
16.
Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions 总被引:1,自引:0,他引:1
Soil aggregation is influenced by the tillage system used, which in turn affects the amount of C and N in the different aggregate fractions. This study assessed the impact of different tillage systems on soil aggregates by measuring the aggregate stability, the organic carbon (Corg) and the total nitrogen (Ntot) contents within different aggregate fractions, and their release of dissolved organic carbon (DOC). Soil samples were collected from the top 0 to 10 cm of a long-term tillage experiment at Fuchsenbigl (Marchfeld, Austria) where conventional tillage (CT), reduced tillage (RT), and minimum tillage (MT) treatments were applied to a Chernozem fine sandy loam. The stable aggregates (1000–2000 μm) were subject to dispersion by the soil aggregate stability (SAS or wet sieving) method after Kemper and Rosenau (1986), and the ultrasonic method of Mayer et al. (2002). Chemical analysis of the soil was obtained for the aggregate fractions 630–1000, 250–630 and 63–250 μm gathered from the ultrasonic method. Using the SAS method, CT and RT had the least amounts of stable aggregates (18.2% and 18.9%, respectively), whereas MT had twice as much stable aggregates (37.6%). Using the ultrasonic method, MT also had the highest amount of water stable aggregates in all three fractions (1.5%, 3.7%, and 35%, respectively), followed by RT (1%, 2.3%, 32.3%), and CT (0.8%, 1.7%, 29.1%). For comparison, a reference soil, EUROSOIL 7 (ES-7) was also analysed (40%, 6.7%, and 12.1%). The highest amounts of Corg and Ntot were measured under MT in all three fractions, with 8.9%, 3.8%, and 1.3% for Corg, and 0.4%, 0.3%, and 0.1% for Ntot. Apart from the fraction 630–1000 μm, the aggregates of RT and CT contained <50% of the Corg and Ntot values of MT. The C/N ratio was least favourable for CT (42.6) in the aggregate fraction 630–1000 μm. The DOC release from stable aggregates after 10 min of ultrasonic dispersion was highest from MT soil (86.7 mg l−1). The values for RT and CT were 21% and 25% below this value. The results demonstrate that tillage type influences both aggregate stability and aggregate chemical composition. This research confirms that CT interferes more with the natural soil properties than RT and MT. Furthermore, MT has the highest potential to sequester C and N in this agriculturally used soil. 相似文献
17.
The impact of rising atmospheric carbon dioxide (CO2) may be mitigated, in part, by enhanced rates of net primary production and greater C storage in plant biomass and soil organic matter (SOM). However, C sequestration in forest soils may be offset by other environmental changes such as increasing tropospheric ozone (O3) or vary based on species-specific growth responses to elevated CO2. To understand how projected increases in atmospheric CO2 and O3 alter SOM formation, we used physical fractionation to characterize soil C and N at the Rhinelander Free Air CO2-O3 Enrichment (FACE) experiment. Tracer amounts of 15NH4+ were applied to the forest floor of Populus tremuloides, P. tremuloides-Betula papyrifera and P. tremuloides-Acer saccharum communities exposed to factorial CO2 and O3 treatments. The 15N tracer and strongly depleted 13C-CO2 were traced into SOM fractions over four years. Over time, C and N increased in coarse particulate organic matter (cPOM) and decreased in mineral-associated organic matter (MAOM) under elevated CO2 relative to ambient CO2. As main effects, neither CO2 nor O3 significantly altered 15N recovery in SOM. Elevated CO2 significantly increased new C in all SOM fractions, and significantly decreased old C in fine POM (fPOM) and MAOM over the duration of our study. Overall, our observations indicate that elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Elevated O3 had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response. 相似文献
18.
We compared gross N fluxes by 15N pool dilution in a coarse-textured agricultural soil when 15N was applied to the soil NH4+ pool by either: (i) mixing a 15NH4NO3 solution into disturbed soil or (ii) injection of 15NH3 gas into intact soil cores. The two techniques produced similar results for gross N mineralization rates indicating that NH4+ production in soil was not altered by soil disturbance, method of application (gas vs. solution), or amount of N applied. This was not the case for immobilization rates, which were twofold higher when 15N label was applied to the soil NH4+ pool with the mixing technique compared to the injection technique. This was attributed to the fact that more NH4+ was applied with the mixing technique. Estimates of gross nitrification were accompanied by large error terms meaning differences between 15N labeling methods could not be accurately assessed for this process rate. 相似文献
19.
Understanding how elevated atmospheric CO2 alters the formation and decomposition of soil organic carbon (SOC) is important but challenging. If elevated CO2 induces even small changes in rates of formation or decay of SOC, there could be substantial feedbacks on the atmosphere's concentration of CO2. However, the long turnover times of many SOC pools - decades to centuries - make the detection of changes in the soil's pool size difficult. Long-term CO2 enrichment experiments have offered unprecedented opportunities to explore these issues in intact ecosystems for more than a decade. Increased NPP with elevated CO2 has prompted the hypothesis that SOC may increase at the same time that increased vegetation nitrogen (N) uptake and accumulation indicates probable declines in SON. Varying investigators thus have hypothesized that SOC will increase and SON will decline to explain increased NPP with elevated CO2; researchers also invoke biogeochemical theory and stoichiometric constraints to argue for strong limitations on the co-occurrence of these phenomena. We call for researchers to investigate two broad research questions to elucidate the drivers of these processes. First, we ask how elevated CO2 influences compound structure and stoichiometry of that proportion of NPP retained by soil profiles for relatively long time periods. We also call for investigations of the mechanisms underlying the decomposition of mineralizable organic matter with elevated CO2. Specifically, we need to understand how elevated CO2 influences microbial priming (driven by enhanced microbial energy needs associated with increases in biomass or activity) and microbial mining of N (driven by enhanced microbial N demand associated with greater vegetative N uptake), two processes that necessarily will be constrained by the stoichiometry of both substrates and microbial demands. Applying technologies such as nuclear magnetic resonance and the detection of biomarkers that reveal organic matter structure and origins, and studying microbial stoichiometric constraints, will dramatically improve our ability to predict future patterns of ecosystem C and N cycling. 相似文献
20.
To accurately predict the potential environmental benefits of energy crops, the sequestration of carbon in soil needs to be quantified. The aim of this study was to investigate the mineralisation rate of the perennial C4 grass Miscanthus giganteus and Miscanthus-derived soil organic matter under contrasting nitrogen supply. Soils were collected from sites where Miscanthus had been grown for 11 and 18 years, respectively, and where a C3-grass (Lolium spp.) had been grown for 7 years. The soils were incubated for 4 months at two levels of soil inorganic nitrogen with or without dead root material of Miscanthus.Addition of root material (residues) increased carbon mineralisation of indigenous organic matter when no nitrogen was added. Added inorganic nitrogen decreased carbon mineralisation in all soils. Nitrogen addition did not affect carbon mineralisation of the residues. Using the 13C fraction to calculate the proportion of respiratory CO2 derived from Miscanthus showed that nitrogen addition decreased carbon mineralisation in soils, but it did not affect carbon mineralisation of the residues. Nitrogen mineralisation was highest in the C3 grass soil without added residues. Nitrification decreased pH, especially in the treatments where nitrogen was added. The Miscanthus-derived organic matter is at least as stable as C3 grassland-derived organic matter. Furthermore, the turnover time of the organic matter increases with time under Miscanthus cultivation.The CENTURY soil organic matter sub-model was used to simulate the organic matter decomposition in the experiment. Carbon mineralisation was accurately simulated but there were unexplained discrepancies in the simulation of the δ13C in the respiration from the treatment with residues. The δ13C in respiration did not decrease with time as predicted, indicating that lignin accumulation did not influence the measurements. 相似文献