首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
We measured soil profile concentrations and emission of CO2, CH4 and N2O from soils along a lakeshore in Garwood Valley, Antarctica, to assess the extent and biogeochemical significance of biogenic gas emission to C and N cycling processes. Simultaneous emission of all three gases from the same site indicated that aerobic and anaerobic processes occurred in different layers or different parts of each soil profile. The day and location of high gas concentrations in the soil profile corresponded to those having high gas emission, but the pattern of concentration with depth in the soil profile was not consistent across sites. That the highest gas concentrations were not always in the deepest soil layer suggests either limited production or gas diffusion in the deeper layers. Emission of CO2 was as high as 47 μmol m−2 min−1 and was strongly related to soil temperature. Soil respiration differed significantly according to location on the lakeshore, suggesting that factors other than environmental variables, such as the amount and availability of O2 and nutrients, play an important role in C mineralization processes in these soils. High surface emission (maximum: 15 μmol m−2 min−1) and profile gas concentration (maximum: 5780 μL L−1) of CH4 were at levels comparable to those in resource-rich temperate ecosystems, indicating an active indigenous population of methanogenic organisms. Emission of N2O was low and highly variable, but the presence of this gas and NO3 in some of the soils suggest that denitrification and nitrification occur there. No significant relationships between N2O emission and environmental variables were found. It appears that considerable C and N turnover occurs in the lakeshore soils, and accurate accounting will require measurements of aerobic and anaerobic mineralization. The production and emission of biogenic gases confirm the importance of these soils as hotspots of biological activity in the dry valleys and probable reservoirs of biological diversity.  相似文献   

2.
The water-soluble organic C in composted manure contains a portion of labile C which can stimulate soil microbial activity. The objective of this experiment was to evaluate the effects of water-soluble organic C extracted from composted dairy manure on C mineralization in soil with different textures. Three soils with textures varying from 3 to 54% clay were amended with 0 to 80 mg water-soluble organic C kg–1 soil extracted from a composted dairy manure and incubated for 16 weeks at 23°C. The total amount of C mineralized was greater than the amount of C added in the three soils. Differences in mineralizable C with and without added water-soluble organic C were approximately 13–16 times, 4.8–8 times, and 7.5–8 times greater than the amount of C added to clay, loam, and sand soils, respectively. The results of this experiment suggest that immediately following composted manure applications, C mineralization rates increase, and that most of the C mineralized comes mainly from the indigenous soil organic C pool.CLBRR contribution No. 94-71  相似文献   

3.
A sandy loam soil was mixed with three different amounts of quartz sand and incubated with (15NH4)2SO4 (60 g N g-1 soil) and fresh or anaerobically stored sheep manure (60 g g-1 soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days of incubation at 20°C. After 7 days, the amount of unlabelled inorganic N in the manure-treated soils was 6–10 g N g-1 soil higher than in soils amended with only (15NH4)2SO4. However, due to immobilization of labelled inorganic N, the resulting net mineralization of N from manure was insignificant or slightly negative in the three soil-sand mixtures (100% soil+0% quartz sand; 50% soil+50% quartz sand; 25% soil+75% quartz sand). After 84 days, the cumulative CO2 evolution and the net mineralization of N from the fresh manure were highest in the soil-sand mixutre with the lowest clay content (4% clay); 28% fo the manure C and 18% of the manure N were net mineralized. There was no significant difference between the soil-sand mixtures containing 8% and 16% clay, in which 24% of the manure C and -1% to 4% of the manure N were net mineralized. The higher net mineralization of N in the soil-sand mixture with the lowest clay content was probably caused by a higher remineralization of immobilized N in this soil-sand mixture. Anaerobic storage of the manure reduced the CO2 evolution rates from the manure C in the three soil-sand mixtures during the initial weeks of decomposition. However, there was no effect of storage on net mineralization of N at the end of the incubation period. Hence, there was no apparent relationship between net mineralization of manure N and C.  相似文献   

4.
Soils with greater levels of microbial biomass may be able to release nutrients more rapidly from applied plant material. We tested the hypothesis that the indigenous soil microbial biomass affects the rate of decomposition of added green manure. Cowpea (Vigna unguiculata L.) Walp.] leaves were added to four soils with widely differing microbial biomass C levels. C and N mineralization of the added plant material was followed during incubation at 30°C for 60 days. Low levels of soil microbial biomass resulted in an initially slower rate of decomposition of soil-incorporated green manure. The microbial biomass appeared to adjust rapidly to the new substrate, so that at 60 days of incubation the cumulative C loss and net N mineralization from decomposing cowpea leaves were not significantly affected by the level of the indigenous soil microbial biomass.  相似文献   

5.
The thermodynamic parameters of the enzymes catalase, dehydrogenase, casein-protease, α-N-benzoyl-l-argininamide (BAA)-protease, urease, Carboxymethyl (CM)-cellulase, invertase, β-glucosidase and arylsulphatase, were investigated in grassland soils from a European temperate-humid zone (Galicia, NW Spain). The effect of temperature on enzyme activity was determined at 5, 18, 27, 37, 57 and 70 °C. The temperature-dependence of the rate of substrate hydrolysis varied depending on the enzyme and soil. In general, the soil containing the least amount of organic matter (OM) showed the lowest enzyme activity for all temperatures and enzymes, whereas soils with similar OM contents showed similar levels of activity for the entire temperature range. Temperature had a noteworthy effect on the activity of oxidoreductases. Product formation in the reaction catalyzed by dehydrogenase increased with increasing temperature until 70 °C, which was attributed to chemical reduction of iodonitrotetrazolium violet (INT) at high temperatures. Catalase activity was not affected above 37 °C, which may be explained either by non-enzymatic decomposition of hydrogen peroxide or by the fact that catalase has reached kinetic perfection, and is therefore not saturated with substrate.The Arrhenius equation was used to determine the activation energy (Ea) and the temperature coefficient (Q10) for all enzymes. The values of Ea and Q10 for each enzyme differed among soils, although in general the differences were small, especially for those enzymes that act on substrates of low molecular weight. In terms of the values of Ea and Q10 and the differences established among soils, the results obtained for those enzymes that act on substrates of high molecular weight differed most from those corresponding to the other enzymes. Thus the lowest Ea and Q10 values corresponded to BAA-protease, and the highest values to CM-cellulase and casein-protease. Except for catalase in one of the soils, the values of Ea and Q10 for the oxidoreductases were similar to those of most of the hydrolases. In general, the effect of temperature appeared to be more dependent on the type of enzyme than on the characteristics of the soil.  相似文献   

6.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   

7.
Summary A study was conducted to determine the effects of grinding, added N, and the absence of soil on C mineralization from agricultural plant residues with a high C:N ratio. The evolution of CO2 from ground and unground wheat straw, lentil straw, and lentil green manure, with C:N ratios of 80, 36, and 9, respectively, was determined over a period of 98 days. Treatments with added N were included with the wheat and lentil straw. Although the CO2 evolution was initially much faster from the lentil green manure than from the lentil or wheat straw, by 98 days similar amounts of CO2 had evolved from all residues incubated in soil with no added N. Incubation of plant residues in the absence of soil had little effect on CO2 evolution from the lentil green manure or lentil straw but strongly reduced CO2 evolution from the wheat straw. Grinding did not affect CO2 evolution from the lentil green manure but increased CO2 evolution from the lentil straw with no added N and from the wheat straw. The addition of N increased the rate of CO2 evolution from ground wheat straw between days 4 and 14 but not from unground wheat straw, and only slightly increased the rate of CO2 evolution from lentil straw during the initial decomposition. Over 98 days, the added N reduced the amounts of CO2 evolved from both lentil and wheat straw, due to reduced rates of CO2 evolution after ca. 17 days. The lack of an N response during the early stages of decomposition may be attributed to the low C:N ratio of the soluble straw component and to microbial adaptations to an N deficiency, while the inhibitory effect of N on CO2 evolution during the later stages of decomposition may be attributed to effects of high mineral N concentrations on lignocellulolytic microorganisms and enzymes.  相似文献   

8.
The aim of our studies was to determine the relation between temperature and the respiration rate of the forest soil organic layer along an altitudinal gradient while controlling the effects of the soil characteristics. The respiration rate was measured in laboratory conditions at different temperatures, 0, 10, 20, and 30°C, in samples collected in the Polish part of the Western Carpathians at 600, 800, 1,000, and 1,200 m above sea level from four different mountains, which were later treated as replicates. The increase in the average respiration rate between two consecutive temperatures was expressed as Q 10 coefficients. Among the nutrients measured in the soil organic layer, only the total organic N concentration significantly increased with elevation. The temperature effect was significant for both the respiration rate and the Q 10 values. The calculated Q 10 values were highest for the temperature range between 10 and 20°C, and the lowest values were obtained from the highest temperature range (20–30°C). The altitude effect was significant for the respiration rate but not for the Q 10 values, indicating that the temperature sensitivity of the soil respiration did not change much along the studied altitudinal gradient.  相似文献   

9.
Submerged rice paddies are a major source of methane (CH4) which is the second most important greenhouse gas after carbon dioxide (CO2). Accelerating rice straw decomposition during the off-rice season could help to reduce CH4 emission from rice paddies during the single rice-growth season in cold temperate regions. For understanding how both temperature and moisture can affect the rate of rice straw decomposition during the off-rice season in the cold temperate region of Tohoku district, Japan, a modeling incubation experiment was carried out in the laboratory. Bulk soil and soil mixed with 2% of δ13C-labeled rice straw with a full factorial combination of four temperature levels (?5 to 5, 5, 15, 25°C) and two moisture levels (60% and 100% WFPS) were incubated for 24 weeks. The daily change from ?5 to 5°C was used to model the freezing–thawing cycles occurring during the winter season. The rates of rice straw decomposition were calculated by (i) CO2 production; (ii) change in the soil organic carbon (SOC) content; and (iii) change in the δ13C value of SOC. The results indicated that both temperature and moisture affected the rate of rice straw decomposition during the 24-week aerobic incubation period. Rates of rice straw decomposition increased not only with high temperature, but also with high moisture conditions. The rates of rice straw decomposition were more accurately calculated by CO2 production compared to those calculated by the change in the SOC content, or in its δ13C value. Under high moisture at 100% WFPS condition, the rates of rice straw decomposition were 14.0, 22.2, 33.5 and 46.2% at ?5 to 5, 5, 15 and 25°C temperature treatments, respectively. While under low moisture at 60% WFPS condition, these rates were 12.7, 18.3, 31.2 and 38.4%, respectively. The Q10 of rice straw decomposition was higher between ?5 to 5 and 5°C than that between 5 and 15°C and that between 15 and 25°C. Daily freezing–thawing cycles (from ?5 to 5°C) did not stimulate rice straw decomposition compared with low temperature at 5°C. This study implies that to reduce CH4 emission from rice paddies during the single rice-growth season in the cold temperate regions, enhancing rice straw decomposition during the high temperature period is very important.  相似文献   

10.
Elevated atmospheric carbon dioxide (CO2) levels generally stimulate carbon (C) uptake by plants, but the fate of this additional C largely remains unknown. This uncertainty is due in part to the difficulty in detecting small changes in soil carbon pools. We conducted a series of long-term (170-330 days) laboratory incubation experiments to examine changes in soil organic matter pool sizes and turnover rates in soil collected from an open-top chamber (OTC) elevated CO2 study in Colorado shortgrass steppe. We measured concentration and isotopic composition of respired CO2 and applied a two-pool exponential decay model to estimate pool sizes and turnover rates of active and slow C pools. The active and slow C pools of surface soils (5-10 cm depth) were increased by elevated CO2, but turnover rates of these pools were not consistently altered. These findings indicate a potential for C accumulation in near-surface soil C pools under elevated CO2. Stable isotopes provided evidence that elevated CO2 did not alter the decomposition rate of new C inputs. Temporal variations in measured δ13C of respired CO2 during incubation probably resulted mainly from the decomposition of changing mixtures of fresh residue and older organic matter. Lignin decomposition may have contributed to declining δ13C values late in the experiments. Isotopic dynamics during decomposition should be taken into account when interpreting δ13C measurements of soil respiration. Our study provides new understanding of soil C dynamics under elevated CO2 through the use of stable C isotope measurements during microbial organic matter mineralization.  相似文献   

11.
为定量揭示温度和秸秆还田对贵州喀斯特黄色石灰土土壤有机碳矿化、激发效应和温度敏感性的影响。以贵州喀斯特地区典型黄色石灰土为研究对象,采用13C稳定性同位素标记的水稻秸秆和土壤培养试验研究了15,25,35 ℃培养温度下土壤原有有机碳矿化速率、累积矿化量、激发效应和温度系数Q10对水稻秸秆输入和温度的响应。结果表明:15~35 ℃温度范围和0~60天培养时间内,贵州喀斯特黄色石灰土土壤有机碳、总有机碳、水稻秸秆有机碳和土壤原有有机碳矿化速率均培养1天达到峰值,培养1~30天土壤总有机碳、水稻秸秆有机碳和土壤原有有机碳矿化速率快速下降,30~60天逐渐趋于平缓。温度升高显著增加土壤有机碳、水稻秸秆输入土壤总有机碳、土壤原有有机碳和输入的水稻秸秆有机碳的矿化速率和累积矿化量。培养期间水稻秸秆对土壤有机碳矿化均产生显著正激发效应,且正激发效应随温度升高而强化。培养结束时15,25,35 ℃下其对土壤原有有机碳矿化速率激发效应表现为随温度升高激发效应升高、降低、升高和先升高后降低的温度响应规律,因表征方法不同而不同。15,25,35 ℃培养温度下水稻秸秆对土壤总有机碳矿化速率和累积矿化量的贡献率均随培养时间延长先减小后增大再减小,但2种表征方法和3个培养温度拐点发生时间不同;培养1天时水稻秸秆对土壤总有机碳矿化速率和累积矿化量的贡献率15,25 ℃基本相同且显著高于35 ℃,5天时25,35 ℃基本相当且显著大于15 ℃,其他时间均是25 ℃显著大于35 ℃和35 ℃显著大于15 ℃。15~25 ℃和25~35 ℃ 2个温度体系中水稻秸秆不输入石灰土土壤有机碳矿化速率温度敏感系数Q10,V分别为1.01~2.60和1.39~3.12,Q10,F分别为1.50~2.60和1.39~2.17;水稻秸秆输入石灰土土壤总有机碳矿化速率温度敏感系数Q10,V分别为1.09~2.18和1.05~1.90,Q10,F分别为1.09~1.73和1.05~1.49;水稻秸秆输入抑制土壤原有有机碳矿化的温度敏感性,水稻秸秆输入导致土壤原有有机碳矿化温度敏感性随温度升高而升高转变为总体上随温度升高而降低在一定程度上可缓冲全球变暖所致的CO2排放增加。温度对土壤有机碳矿化温度敏感性的影响因表征温度敏感性指标和培养时间长短不同而不同,建立不同培养时间的矿化速率和累积矿化量温度敏感系数的温度函数可精确表征其对温度的响应。研究结果对贵州喀斯特农田土壤秸秆还田、土壤固碳减排、土壤有机碳管理和土壤有机碳库预测等提供参考和借鉴,对丰富土壤有机碳激发效应和温度系数Q10的表征和深入理解具有重要意义。  相似文献   

12.
The effects of a range of fertilizer applications and of repeated low-intensity prescribed fires on microbial biomass C and N, and in situ N mineralization were studied in an acid soil under subalpine Eucalyptus pauciflora forest near Canberra, Australia. Fertilizer treatments (N, P, N+P, line + P, sucrose + P), and P in particular, tended to lower biomass N. The fertilizer effects were greatest in spring and smaller in summer and late actumn. Low-intensity prescribed fire lowered biomass N at a soil depth of 0–5 cm with the effect being greater in the most frequently burnt soils. No interactions between fire treatments, season, and depth were significant. Only the lime + P and N+P treatments significantly affected soil microbial biomass C contents. The N+P treatment increased biomass C only at 0–2.5 cm in depth, but the soil depth of entire 0–10 cm had much higher (>doubled) biomass C values in the line + P treatment. Frequent (two or three times a year) burning reduced microbial boomass C, but the reverse was true in soils under forest burn at intervals of 7 years. Soil N mineralization was increased by the addition of N and P (alone or in combination), line + P, and sucrose + P to the soil. The same was true for the ratio of N mineralization to biomass N. Soil N mineralization was retarded by repeated fire treatments, especially the more frequent fire treatment where rates were only about half those measured in unburnt soils. There was no relationship between microbial biomass N (kg N ha-1) and the field rates of soil N mineralization (kg N ha-1 month-1). The results suggest that although soil microbial biomass N represents a distinct pool of N, it is not a useful measure of N turnover.  相似文献   

13.
Soil heterotrophic respiration and its temperature sensitivity are affected by various climatic and environmental factors.However,little is known about the combined effects of concurrent climatic and environmental changes,such as climatic warming,changing precipitation regimes,and increasing nitrogen(N)deposition.Therefore,in this study,we investigated the individual and combined effects of warming,wetting,and N addition on soil heterotrophic respiration and temperature sensitivity.We incubated soils collected from a temperate forest in South Korea for 60 d at two temperature levels(15 and 20℃,representing the annual mean temperature of the study site and 5℃warming,respectively),three moisture levels(10%,28%,and 50%water-filled pore space(WFPS),representing dry,moist,and wet conditions,respectively),and two N levels(without N and with N addition equivalent to 50 kg N ha-1year-1).On day 30,soils were distributed across five different temperatures(10,15,20,25,and 30℃)for 24 h to determine short-term changes in temperature sensitivity(Q10,change in respiration with 10℃increase in temperature)of soil heterotrophic respiration.After completing the incubation on day 60,we measured substrate-induced respiration(SIR)by adding six labile substrates to the three types of treatments.Wetting treatment(increase from 28%to 50%WFPS)reduced SIR by 40.8%(3.77 to 2.23μg CO2-C g-1h-1),but warming(increase from 15 to 20℃)and N addition increased SIR by 47.7%(3.77 to 5.57μg CO2-C g-1h-1)and 42.0%(3.77 to 5.35μg CO2-C g-1h-1),respectively.A combination of any two treatments did not affect SIR,but the combination of three treatments reduced SIR by 42.4%(3.70 to 2.20μg CO2-C g-1h-1).Wetting treatment increased Q10by 25.0%(2.4 to 3.0).However,warming and N addition reduced Q10by 37.5%(2.4 to 1.5)and 16.7%(2.4 to 2.0),respectively.Warming coupled with wetting did not significantly change Q10,while warming coupled with N addition reduced Q10by 33.3%(2.4 to 1.6).The combination of three treatments increased Q10by 12.5%(2.4 to 2.7).Our results demonstrated that among the three factors,soil moisture is the most important one controlling SIR and Q10.The results suggest that the effect of warming on SIR and Q10can be modified significantly by rainfall variability and elevated N availability.Therefore,this study emphasizes that concurrent climatic and environmental changes,such as increasing rainfall variability and N deposition,should be considered when predicting changes induced by warming in soil respiration and its temperature sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号