首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is still not clear which group of ammonia-oxidizing microorganisms plays the most important roles in nitrification in soils. Change in abundances and community compositions of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under long-term different nitrogen (N) fertilization rates were investigated in an acidic luvisols soil using real-time polymerase chain reaction and denaturing gradient gel electrophoresis, respectively, based on the ammonia monooxygenase a-subunit gene. The experimental plan included the following treatments: control without N fertilization (NCK), low N fertilization rate, middle N fertilization rate, and high N fertilization rate as 0, 100, 150, and 250?kg urea-N?ha?1, respectively. Long-term different N fertilization rates did not significantly alter the total C and N contents of soil while it significantly decreased soil pH, which ranged from 5.60 to 5.20. The AOB abundance was more abundant in the N fertilization treatments than the NCK treatment; the AOA abundance decreased by the increasing N fertilization rates, as did the ratios of AOA/AOB. The large differences in the potential nitrification rates among four treatments depended on the changes in AOA abundance but not to changes in AOB abundance. Phylogenetic analysis showed that the AOB communities were dominated by Nitrosospira clusters 1, 3, and 9 while all AOA sequences were grouped into soil/sediment cluster except for one sequence. Taken together, these results indicated that AOB and AOA preferred different soil N conditions and AOA were functionally more important in the nitrification than AOB in the acidic luvisols soil.  相似文献   

2.
《Applied soil ecology》2010,46(3):131-137
The effects of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition were studied in soil microcosms. Sterilized soils were inoculated with mixed soil bacteria (obtained by filtering) or with bacteria and bacterial-feeding nematodes, after which the dynamic inorganic nitrogen concentration was measured weekly. After 28 days of incubation, denaturing gradient gel electrophoresis (DGGE) based on PCR amplification of the amoA gene was used to analyze the AOB community composition. In addition, a clone library from the amoA gene fragments was established using clones randomly selected and sequenced from the two treatments. The results showed that the presence of bacterial-feeding nematodes led to significantly greater NH4+ and NO3 contents over the entire incubation period, indicating that bacterial-feeding nematodes promoted both N mineralization and nitrification. The results of DGGE showed that the AOB community composition was significantly changed in the presence of bacterial-feeding nematodes. Furthermore, the sequencing results suggested that Nitrosospira sp. was the dominant species in the treatment without nematodes, while Nitrosomonas sp. and Nitrosospira sp. were the dominant species in the treatment with nematodes. Such changes in the AOB community may be one of explanation of the important role that nematodes play in promoting nitrification.  相似文献   

3.
We measured soil microbial biomass nitrogen (MBN), microbial uptake of 15N, potential net mineralization and net nitrification in the laboratory to determine the influence of tree species on nitrogen (N) transformations in soils of the Catskills Mountains, New York, USA. Organic horizon soils were taken from single species plots of beech (Fagus grandifolia), hemlock (Tsuga canadensis), red oak (Quercus rubra), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). 15NH4Cl was added to the soils and N pools were sampled at 1, 3, 10 and 28 days to examine microbial uptake of 15N over time. Soil MBN was about 60% lower in red oak and sugar maple soils than in the other three species. Soil pools of NO3 and rates of net nitrification were significantly greater in soils associated with sugar maple than hemlock, red oak and yellow birch. With the exception of sugar maple soils, microbial recovery of 15N was significantly greater after 10 and 28 days compared to 60 min and 1 day following 15N tracer addition. Microbial 15N recovery declined significantly within sugar maple stands within the first 3 days of incubation. Soil carbon to nitrogen ratio (C:N) was lowest in sugar maple soils and highest in red oak soils. However, correlations between soil C:N and MBN or rates of net mineralization and nitrification were not significant. Soil moisture could account for 22% of the variation in MBN and 36% of the variation in net mineralization. Soil microbial transformations of N vary among tree species stands and may have consequences for forest N retention and loss.  相似文献   

4.
To investigate the effects of stocking rates on nitrification activity and active nitrifying communities in a typical steppe grazing system, we conducted a laboratory incubation study using soil from a 10-year-old grassland gradient grazing experiment with sheep. A combination of molecular methods, such as DNA-based stable-isotope probing (DNA-SIP), real-time quantitative PCR, and high-throughput sequencing, was used to identify changes of nitrification activity and active nitrifying communities under different stocking rates (0 (SR0), 3 (SR3), 6 (SR6), and 9 (SR9) sheep per ha). The nitrification activity of soils was significantly increased by light grazing (SR3), while it was significantly decreased by heavy grazing (SR9). Nitrososphaera viennensis lineage of ammonia-oxidizing archaea (AOA) functionally predominated over ammonia-oxidizing bacteria (AOB) in nitrification in the SR3 soil, while the Nitrosospira cluster 3 of AOB was the major player in the SR9 soil. Therefore, stocking rates altered the distribution of active nitrifying communities by affecting soil chemical and physical conditions.  相似文献   

5.
The effects of long-term (19 years) different land use and fertilization on activity and composition of ammonia-oxidizing bacteria (AOB) in an aquic brown soil were investigated in a field experiment in Liaoning Province, China. The 19-year experiment conducted from 1990 to 2008 involved seven treatments designed: cropping rotation of soybean-corn-corn with no fertilizer (control, CK), recycled manure (RM), fertilizer nitrogen (N), phosphorous (P) and potassium (K) (NPK), NPK+RM, and no-crop bare land, mowed fallow, and non-mowed fallow. The results showed that the potential nitrification rates of the RM, NPK+RM, mowed fallow, and non-mowed fallow treatments were significantly higher (P < 0.05) than those of the CK and NPK treatments, indicating that the long-term applications of recycled manure and return of plant residues both significantly increased the activity of AOB. Although the application of NPK did not enhance soil potential nitrification because of decreased pH, available K had an important effect on potential nitrification. Denaturing gradient gel electrophoresis (DGGE) fingerprint profiles showed that no-crop treatments had an increase in the diversity of the AOB community compared to the CK, RM, and NPK treatments, implying that agricultural practices, especially tillage, had an adverse effect on the soil AOB community. The NPK+RM treatment had the most diverse DGGE patterns possibly because of the increased available P in this treatment. A phylogenetic analysis showed that most of the DGGE bands derived belonged to Nitrosospira cluster 3, not Nitrosospira cluster 2. These demonstrated that different land use and fertilization significantly influenced the activity and composition of the AOB community by altering the soil properties, mainly including pH, total C, available K, and available P.  相似文献   

6.
Nitrification is essential to the nitrogen cycle in paddy soils. However, it is still not clear which group of ammonia-oxidizing microorganisms plays more important roles in nitrification in the paddy soils. The changes in the abundance and composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated by real-time PCR, terminal restriction fragment length polymorphism, and clone library approaches in an acid red paddy soil subjected to long-term fertilization treatments, including treatment without fertilizers (CT); chemical fertilizer nitrogen (N); N and potassium (NK); N and phosphorus (NP); N, P, and K (NPK); and NPK plus recycled crop residues (NPK+C). The AOA population size in NPK+C was higher than those in CT, while minor changes in AOB population sizes were detected among the treatments. There were also some changes in AOA community composition responding to different fertilization treatments. Still few differences were detected in AOB community composition among the treatments. Phylogenetic analysis showed that the AOA sequences fell into two main clusters: cluster A and cluster soil/sediment. The AOB composition in this paddy soil was dominated by Nitrosospira cluster 12. These results suggested that the AOA were more sensitive than AOB to different fertilization treatments in the acid red paddy soil.  相似文献   

7.
Microbial activity in Arctic tundra ecosystems continues through the winter and is an important component of the annual C budget. This activity is sensitive to climatic variation, particularly snow depth because that regulates soil temperature. The influence of winter conditions on soil N cycling is poorly understood. In this study, we used intact core incubations sampled periodically through the winter and following growing season to measure net N mineralization and nitrification in dry heath and in moist tussock tundra under ambient and experimentally increased snow depths (by use of a snowfence). In dry heath, we sampled soils under Dryas octopetela or Arctostaphylos alpine, while in tussock tundra, we sampled Eriophorum vaginatum tussocks and Sphagnum dominated areas between tussocks. Our objectives were to: (1) examine how different winter snow regimes influenced year-round N dynamics in the two tundra types, and (2) evaluate how these responses are affected by dominant species present in each system. In tussock tundra, soils with increased winter snow cover had high net N mineralization rates during the fall and winter, followed by immobilization during thaw. In contrast, N mineralization only occurred during the autumn in soils with ambient snow cover. During the growing season when N immobilization dominated in areas with ambient snow cover, soils with increased winter snow cover had positive net mineralization and nitrification rates. In dry heath tundra, soils with increased snow depth had high late winter net N mineralization rates, but these rates were: (a) comparable to early winter rates in soils under Arctostaphylos plants with ambient snow cover; (b) greater in soils under Arctostaphylos plants than in soils under Dryas plants; and (c) less than the rates found in tussock tundra. Our findings suggest under ambient snow conditions, low soil temperatures limit soil N mineralization, but that deeper snow conditions with the associated warmer winter soil temperatures dramatically increase over-winter N mineralization and thereby alter the amount and timing of plant-available N in tundra ecosystems.  相似文献   

8.
Ammonia-oxidizing bacteria (AOB) are key organisms in the N cycle, as they control the first, rate-limiting step of the nitrification process. The question whether current environmental disturbances, such as climate warming and plant diversity losses, select for a particular community structure of AOB and/or influence their activity remains open. The purpose of this research was to study the impact of a 3 °C warming and of plant species richness (S) on microbial activity and diversity in synthesized grasslands, with emphasis on the nitrification process and on the diversity (community structure and richness) of ammonia-oxidizing bacteria (AOB). We measured soil chemical characteristics, basal respiration, potential nitrification and AOB diversity in soils under increasing plant species richness (S = 1, S = 3, S = 9) at ambient and (ambient +3 °C) temperature. Species were drawn from a 9-species pool, belonging to three functional groups: forbs, legumes and grasses. Mixtures comprised species from each of the three functional groups. Warming did not affect AOB diversity and increased potential nitrification at S = 3 only. Under warmed conditions, higher plant species richness resulted in increased potential nitrification rates. AOB richness increased with plant species richness. AOB community structure of monocultures under legumes differed from those under forbs and grasses. Clustering analysis revealed that AOB community structure under legume monocultures and mixtures of three and nine species grouped together. These results indicate that functional group identity rather than plant species richness influenced AOB community structure, especially through the presence of legumes. No clear relationship emerged between AOB richness and potential nitrification whatever plant species richness and temperature treatment. Our findings show a link between aboveground and belowground diversity, namely plant species richness, AOB richness and community structure. AOB richness was not related to soil processes, supporting the idea that increased diversity does not necessarily lead to increased rates of ecosystem processes.  相似文献   

9.
The impact of land-use change on soil nitrogen (N) transformations was investigated in adjacent native forest (NF), 53 y-old first rotation (1R) and 5 y-old second rotation (2R) hoop pine (Araucaia cunninghamii) plantations. The 15N isotope dilution method was used to quantify gross rates of N transformations in aerobic and anaerobic laboratory incubations. Results showed that the land-use change had a significant impact on the soil N transformations. Gross ammonification rates in the aerobic incubation ranged between 0.62 and 1.78 mg N kg−1 d−1, while gross nitrification rates ranged between 2.1 and 6.6 mg N kg−1 d−1. Gross ammonification rates were significantly lower in the NF and the 1R soils than in the 2R soils, however gross nitrification rates were significantly higher in the NF soils than in the plantation soils. The greater rates of gross nitrification found in the NF soil compared to the plantation soils, were related to lower soil C:N ratios (i.e. more labile soil N under NF). Nitrification was found to be the dominant soil N transformation process in the contrasting forest ecosystems. This might be attributed to certain site conditions which may favour the nitrifying community, such as the dry climate and tree species. There was some evidence to suggest that heterotrophic nitrifiers may undertake a significant portion of nitrification.  相似文献   

10.
Long-term nitrogen(N)fertilization imposes strong selection on nitrifying communities in agricultural soil,but how a progressively changing niche affects potentially active nitrifiers in the field remains poorly understood.Using a 44-year grassland fertilization experiment,we investigated community shifts of active nitrifiers by DNA-based stable isotope probing(SIP)of field soils that received no fertilization(CK),high levels of organic cattle manure(HC),and chemical N fertilization(CF).Incubation of DNA-SIP microcosms showed significant nitrification activities in CF and HC soils,whereas no activity occurred in CK soils.The 44 years of inorganic N fertilization selected only 13C-ammonia-oxidizing bacteria(AOB),whereas cattle slurry applications created a niche in which both ammonia-oxidizing archaea(AOA)and AOB could be actively13C-labeled.Phylogenetic analysis indicated that Nitrosospira sp.62-like AOB dominated inorganically fertilized CF soils,while Nitrosospira sp.41-like AOB were abundant in organically fertilized HC soils.The 13C-AOA in HC soils were affiliated with the 29i4 lineage.The 13C-nitrite-oxidizing bacteria(NOB)were dominated by both Nitrospira-and Nitrobacter-like communities in CF soils,and the latter was overwhelmingly abundant in HC soils.The 13C-labeled nitrifying communities in SIP microcosms of CF and HC soils were largely similar to those predominant under field conditions.These results provide direct evidence for a strong selection of distinctly active nitrifiers after 44 years of different fertilization regimes in the field.Our findings imply that niche differentiation of nitrifying communities could be assessed as a net result of microbial adaption over 44 years to inorganic and organic N fertilization in the field,where distinct nitrifiers have been shaped by intensified anthropogenic N input.  相似文献   

11.
甲烷氧化微生物和氨氧化微生物均是既可以氧化甲烷(CH4)又可以氧化氨(NH3),氨氧化是硝化作用的限速步骤,也是好氧土壤氧化亚氮(N2O)排放的主要生物路径。选取内蒙古草原围封禁牧土壤为研究对象,利用稳定同位素核酸探针技术(DNA-SIP)探讨不同氮水平下土壤活性甲烷氧化微生物与硝化微生物及其相互作用机制。结果发现低氮添加促进甲烷氧化活性,而高氮添加抑制甲烷氧化活性;低氮和高氮添加均显著增强硝化活性。基于DNA-SIP的高通量测序结果发现Methylobacter MOB和Nitrosospira AOB/Nitrospira NOB分别是该土壤的主要活性甲烷氧化和硝化微生物。网络结构分析发现Methylobacter MOB和Nitrosospira AOB/Nitrospira NOB存在显著负相关关系,进一步证明活性甲烷氧化和硝化微生物之间存在竞争性相互作用。以上结果表明,氮素水平影响草原土壤甲烷氧化和硝化微生物的相互作用,研究结果为采取措施调控草原土壤CH4的汇和N2O...  相似文献   

12.
Real-time quantitative PCR assays, targeting part of the ammonia monooxygenase (amoA), nitrous oxide reductase (nosZ), and 16S rRNA genes were coupled with 15N pool dilution techniques to investigate the effects of long-term agricultural management practices on potential gross N mineralization and nitrification rates, as well as ammonia-oxidizing bacteria (AOB), denitrifier, and total bacterial community sizes within different soil microenvironments. Three soil microenvironments [coarse particulate organic matter (cPOM; >250 μm), microaggregate (53-250 μm), and silt-and-clay fraction (<53 μm)] were physically isolated from soil samples collected across the cropping season from conventional, low-input, and organic maize-tomato systems (Zea mays L.-Lycopersicum esculentum L.). We hypothesized that (i) the higher N inputs and soil N content of the organic system foster larger AOB and denitrifier communities than in the conventional and low-input systems, (ii) differences in potential gross N mineralization and nitrification rates across the systems correspond with AOB and denitrifier abundances, and (iii) amoA, nosZ, and 16S rRNA gene abundances are higher in the microaggregates than in the cPOM and silt-and-clay microenvironments. Despite 13 years of different soil management and greater soil C and N content in the organic compared to the conventional and low-input systems, total bacterial communities within the whole soil were similar in size across the three systems (∼5.15 × 108 copies g−1 soil). However, amoA gene densities were ∼2 times higher in the organic (1.75 × 108 copies g−1 soil) than the other systems at the start of the season and nosZ gene abundances were ∼2 times greater in the conventional (7.65 × 107 copies g−1 soil) than in the other systems by the end of the season. Because organic management did not consistently lead to larger AOB and denitrifier communities than the other two systems, our first hypothesis was not corroborated. Our second hypothesis was also not corroborated because canonical correspondence analyses revealed that AOB and denitrifier abundances were decoupled from potential gross N mineralization and nitrification rates and from inorganic N concentrations. Our third hypothesis was supported by the overall larger nitrifier, denitrifier, and total bacterial communities measured in the soil microaggregates compared to the cPOM and silt-and-clay. These results suggest that the microaggregates are microenvironments that preferentially stabilize C, and concomitantly promote the growth of nitrifier and denitrifier communities, thereby serving as potential hotspots for N2O losses.  相似文献   

13.
The autotrophic ammonia-oxidising bacterial (AOB) community composition was studied in acid coniferous forest soil profiles at a site in southwestern Sweden 6 years after liming. Liming caused a significant increase in pH in the organic horizons, while the mineral soil was unaffected. The AOB communities were studied by single-strand conformation polymorphism (SSCP) in parallel with denaturing gradient gel electrophoresis (DGGE) analysis of partial 16S rRNA genes amplified by PCR using primers reported to be specific for β-Proteobacteria AOB, followed by nucleotide sequencing. High genetic diversity of Nitrosospira-like sequences was found in the limed soil profiles, whereas no AOB-like sequences were detected in the control soil at any depth, according to both the SSCP and DGGE analyses. This clearly showed that liming induced growth of a diverse flora of AOB at this forest site. Both Nitrosospira cluster 2 and cluster 4 sequences were present in the limed soil profiles, regardless of soil pH, but we found a higher number of sequences affiliated with cluster 4. The high lime dose seemed to affect the AOB community more than the low dose, and its effects reached deeper into the soil profile. Seven different Nitrosospira-like sequences were found 10 cm under the litter layer in the soil limed with the high dose, but only two in the soil amended with the low lime dose.  相似文献   

14.
The purpose of this research was to compare soil chemistry, microbially mediated carbon (C) and nitrogen (N) transformations and microbial biomass in forest floors under European beech (Fagus sylvatica L.), sessile oak (Quercus petraea (Mattuschka) Lieblein), Norway spruce (Picea abies (L.) Karst) and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) at four study sites. We measured soil chemical characteristics, net N mineralization, potential and relative nitrification, basal respiration, microbial and metabolic quotient and microbial biomass C and N under monoculture stands at all sites (one mixed stand). Tree species affected soil chemistry, microbial activities and biomass, but these effects varied between sites. Our results indicated that the effect of tree species on net N mineralization was likely to be mediated through their effect on soil microbial biomass, reflecting their influence on organic matter content and carbon availability. Differences in potential nitrification and relative nitrification might be related to the presence of ground vegetation through its influence on soil NH4 and labile C availability. Our findings highlight the need to study the effects of tree species on microbial activities at several sites to elucidate complex N cycle interactions between tree species, ground vegetation, soil characteristics and microbial processes.  相似文献   

15.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

16.
Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA- and AOB-supported nitrification determined both in soil-water slurries and in unsaturated whole soil at field moisture. Soils were collected from stands of red alder (Alnus rubra Bong.) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) at three sites (Cascade Head, the H.J. Andrews, and McDonald Forest) on acidic soils (pH 3.9–5.7) in Oregon, USA. The abundances of AOA and AOB were measured using quantitative PCR by targeting the amoA gene, which encodes subunit A of ammonia monooxygenase. Total and AOA-specific (octyne-resistant) nitrification activities in soil slurries were significantly higher at Cascade Head (the most acidic soils, pH < 5) than at either the H.J. Andrews or McDonald Forest, and greater in red alder compared with Douglas-fir soils. The fraction of octyne-resistant nitrification varied among sites (21–74%) and was highest at Cascade Head than at the other two locations. Net nitrification rates of whole soil without NH4+ amendment ranged from 0.4 to 3.3 mg N kg−1 soil d−1. Overall, net nitrification rates of whole soil were stimulated 2- to 8-fold by addition of 140 mg NH4+-N kg−1 soil; this was significant for red alder at Cascade Head and the H.J. Andrews. Red alder at Cascade Head was unique in that the majority of NH4+-stimulated nitrifying activity was octyne-resistant (73%). At all other sites, NH4+-stimulated nitrification was octyne-sensitive (68–90%). The octyne-sensitive activity—presumably AOB—was affected more by soil pH whereas the octyne-resistant (AOA) activity was more strongly related to N availability.  相似文献   

17.
Abstract

Ammonia oxidizing bacteria (AOB) are important microorganisms in rice paddy field ecosystems because they play a key role in the nitrogen (N) cycle by converting ammonia (NH3) to nitrite (NO? 2). In this study, we investigated AOB associated with three types of weeds in a Japanese paddy field (semi-aquatic Echinochloa oryzicola Vasing, floating Lemna paucicostata Hegelm and submerged Najas graminea Delile) using molecular techniques polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and DNA sequencing targeting ammonia monooxygenase (amoA) gene. This work confirmed that rice paddy weeds harbor AOB and that the community composition is different for each type of weed. However, all AOB sequences associated with the tested weeds were closely related to known species of Nitrosospira-like AOB isolated from soil, suggesting that AOB associated with weeds were not specific to weeds and can also be found in the soil. Nitosomanas-like AOB were not detected on any of the weeds tested. In addition, the most dominant AOB strains present in the tested weeds were closely related to Nitrosospira sp. Ka3 and Nitrosospira sp. CT2F. The phylogenetic tree revealed that most of the AOB detected in the present study belonged to amoA cluster 1.  相似文献   

18.
Pure cultures of ammonium-oxidizing, autotrophic, nitrifying bacteria were isolated from acid soils (pH range, 4.0–4.5) from tea estates in Sri Lanka (8 soils) and Bangladesh (4 soils). All the Bangladesh nitrifiers were Nitrosospira spp but the Sri Lanka isolates were identified as Nitrosolobus spp Nitrosospira spp and one species of Nitrosovibrio. Nitrite-oxidizing nitrifiers were detected in several of the soils but pure cultures were not isolated.Evidence was obtained that Nitrosospira caused nitrification in situ in an acid soil (pH 4.1). Indigenous nitrate was first eliminated from the soil by denitrification. The soil was then incubated aerobically and the nitrate formed was estimated as N2O by gas chromatography after denitrification.  相似文献   

19.
桂西北不同植被恢复阶段土壤氨氧化细菌遗传多样性研究   总被引:5,自引:0,他引:5  
以桂西北喀斯特不同植被恢复阶段(草丛、灌木林、次生林、原生林)生态系统为研究对象,运用分子生物学技术分析了土壤氨氧化细菌amoA功能基因多样性,探讨了其与脲酶活性和土壤理化性质的关系.结果显示,随着植被的恢复,土壤氨氧化细菌多样性指数与均匀度指数呈增大趋势(灌木林例外),且土壤中氨氧化细菌群落结构发生了改变:主要表现在因Nitrosospira3簇种群对铵态氮浓度敏感度差异导致其在3a、3b簇中分布不一致;相关分析表明;土壤脲酶活性与铵态氮浓度呈正相关关系,土壤脲酶可能通过影响铵态氮浓度改变氨氧化细菌多样性,但植被恢复后期土壤铵态氮浓度减少并未降低土壤氨氧化细菌多样性.LIBSHUFF和RDA分析揭示,植被类型和土壤脲酶活性及pH与氨氧化细菌群落结构紧密相关,说明植被和土壤氮素有效性以及pH可能是决定土壤氨氧化细菌多样性的主要因子,为深入理解喀斯特地区土壤氮素循环提供了一定的科学依据.  相似文献   

20.
Nitrogen mineralisation in soils of various forest sites (pine plantation, natural and thinned oak) at Uluda? University campus in Bursa, Turkey was investigated continuously over a year by the field incubation method. Net nitrogen mineralisation and nitrification rates varied depending on sampling dates. Although nitrogen mineralisation and nitrification rates increased in the spring and summer months, there was no seasonal variation in the soils of the examined forests. Annual net nitrate (NO3?–N) accumulation in the upper soil layer (0–5 cm) was higher in Oak I and Oak II (14 kg ha y?1 and 12 kg ha y?1) than in the pine plantation (8 kg ha y?1). While annual net NO3?–N accumulation (0–5 cm) varied between the oak forests (possibly due to forest management practices), annual net Nmin values were similar in these forests. No significant correlation was found between the examined soil parameters and net nitrification and mineralisation rates in the soils (P > 0.05). These results indicate that tree species and forest management practices play important roles in N cycling in forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号