首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The effects of clear-cutting on the ammonia-oxidising bacterial community were studied in the soil of limed and non-limed spruce forest plots located in the central part of southern Sweden. The communities were studied using denaturing gradient gel electrophoresis (DGGE) profiling after polymerase chain reaction (PCR) amplification from total DNA with primers reported to be specific for -subgroup ammonia-oxidising bacteria. The bands on the DGGE were sequenced and each unique sequence was interpreted as representing one ammonia-oxidising population. The relative abundance of each population was determined by measuring the fluorescence of the respective DGGE bands. In both limed and non-limed soil, the same two Nitrosospira populations were found, one belonging to cluster 2 (NScl2) and one to cluster 4 (NScl4). However, while NScl4 first appeared a year after the clear-cutting in the non-limed plot, it was present both before and after the cutting in the limed plot. Irrespective of previous liming, clear-cutting caused a shift in the ammonia-oxidiser community, from dominance by the NScl2 population to a community with approximately equal relative abundance of NScl2 and NScl4. In both plots the total size of the community increased after clear-cutting (based on increased DGGE band intensity), most likely due to increased NH4+ availability, but the growth response was faster in the limed plot. Hence, the prior liming increased the responsiveness of the ammonia-oxidisers to the changes caused by cutting. This is the first study to report the effects of clear-cutting on the ammonia-oxidising community, and the results show a clear correlation between increased potential nitrification and a shift in the ammonia-oxidiser community.  相似文献   

2.
In acid soil, low pH, reduced availability of nutrients, and toxicity of Al and Mn limit plant growth and the survival and effectiveness of rhizobia. The symbiosis between legumes and rhizobia is particularly sensitive to acid soil stress. A pot experiment evaluated whether Bradyrhizobium japonicum strain growth on acidic agar media would predict ability to colonize the rhizosphere and form effective nodules in acidic soils. Three Indonesian strains of B. japonicum with similar effectiveness at neutral pH in sand culture but with different tolerance of acid soil stress factors in agar media, and an acid-tolerant commercial strain (CB1809) of comparable effectiveness, were tested in three acid soils using the Al tolerant soybean (Glycine max cv PI 416937). At 7 days after inoculation all strains had achieved large rhizosphere populations, but by day 14 the rhizosphere population of the acid-sensitive strain had decreased, while the more acid-tolerant strains increased. The acid-tolerant strains had significantly greater nodulation and symbiotic effectiveness than plants inoculated with the acid-sensitive strain. Laboratory prescreening of B. japonicum for acid, Al and Mn tolerance in acid media successfully identified strains which were symbiotically competent in low pH soils.  相似文献   

3.
Many fast growing tree species have been introduced to promote biodiversity rehabilitation on degraded tropical lands. Although it has been shown that plant productivity and stability are dependent on the composition and functionalities of soil microbial communities, more particularly on the abundance and diversity of soil symbiotic micro-organisms (mycorrhizal fungi and rhizobia), the impact of tree introduction on soil microbiota has been scarcely studied. This research has been carried in a field plantation of Acacia holosericea (Australian Acacia species) inoculated or not with an ectomycorrhizal fungus isolate, Pisolithus albus IR100. After 7 year's plantation, the diversity and the symbiotic properties of Bradyrhizobia isolated from the plantation soil or from the surrounding area (Faidherbia albida (Del.) a. Chev. parkland) and able to nodulate F. albida, a native Sahelian Acacia species, have been studied. Results clearly showed that A. holosericea modified the structure of Bradyrhizobia populations and their effectiveness on F. albida growth. This negative effect was counterbalanced by the introduction of an ectomycorrhizal fungus, P. albus, on A. holosericea root systems.In conclusion, this study shows that exotic plant species can drastically affect genotypic and symbiotic effectiveness of native Bradyrhizobia populations that could limit the natural regeneration of endemic plant species such as F. albida. This effect could be counterbalanced by controlled ectomycorrhization with P. albus. These results have to be considered when exotic tree species are used in afforestation programs that target preservation of native plants and soil ecosystem rehabilitation.  相似文献   

4.
For optimum production, the use of commercial rhizobial inoculant on pea (Pisum sativum L.) at seeding is necessary in the absence of compatible rhizobial strains or when rhizobial soil populations are low or symbiotically ineffective. Multiple site experiments were conducted to characterize the abundance and effectiveness of resident populations of Rhizobium leguminosarum bv. viciae (Rlv) in eastern Canadian prairie soils. A survey of 20 sites across a broad geographical range of southern Manitoba was carried out in 1998 and was followed by more intensive study of five of the sites in 1999 and 2000. Appreciable nodulation of uninoculated pea was observed at all sites which had previously grown inoculated pea. However, uninoculated pea grown at two sites, which had not previously grown pea, had negligible nodulation. Likewise, wild Lathyrus sp. and Vicia sp. plants collected from uncultivated areas adjacent to agricultural sites were poorly nodulated. In the more intensively studied sites, there was a tendency towards higher nodulation in pea plants receiving commercial inoculant containing Rlv strain PBC108 across all site-years (e.g., 4.7% in nodulation and 22% in nodule mass), but the effect was significant at only 2 of 10 site-years. Despite a relatively high range of soil pH (6-8), regression analysis indicated that decreasing soil pH resulted in lower nodulation rates. Likewise, electrical conductivity (EC) was correlated to nodulation levels, however the effect of EC was likely more indicative of the influence of soil texture and organic matter than salinity. As with nodulation, commercial inoculation tended to increase above-ground dry matter (DM) and fixed-N (estimated by the difference method) at the early pod-filling stage, but again the effects were significant at only 2 of 10 site-years. Specifically, above-ground DM and fixed-N levels were up to 29 and 51% greater, respectively, in inoculated compared to non-inoculated treatments at these sites. Addition of N-fertilizer at a rate of 100 kg N ha−1 decreased nodulation at almost all site-years (by as much as 70% at one site), but rarely resulted in increases in above-ground DM compared to inoculated plots. The study indicates for the first time that populations of infective, and generally effective strains of Rlv occur broadly in agricultural soils across the eastern Canadian prairie, but that there is a tendency for increased symbiotic efficiency with the use of commercial inoculant.  相似文献   

5.
An acid forest soil from beech forest gaps, which were either limed or unlimed, and the undisturbed forest was investigated for the type of nitrifying populations and the process of N2O evolution. To see whether nitrifiers were of heterotrophic or autotrophic origin, the nitrification inhibitors nitrapyrin and sodium chlorate were applied to disturbed soil samples which underwent laboratory incubations. Nitrapyrin inhibits autotrophic nitrification. In different studies, sodium chlorate has been identified as an inhibitor either of autotrophic or of heterotrophic nitrification. In the samples investigated only nitrapyrin inhibited the autotrophic nitrification occurring in the limed soil. Sodium chlorate effectively inhibited heterotrophic nitrification. In the limed forest floor samples, where most autotrophic nitrification occured, sodium chlorate showed no inhibitory effect. In another laboratory incubation experiment, N2O evolution from undisturbed soil columns, to which the above inhibitors were applied, was investigated. In those samples, in which nitrification had been reduced, neither inhibitor significantly reduced N2O evolution. Thus it was concluded that the contribution of nitrification to N2O losses is negligible, and that N2O evolution arises from the activity of denitrifying organisms. Microbial biomass and respiration measurements showed that the inhibitors did not affect microflora negatively.  相似文献   

6.
Land-use and management practices can affect soil nitrification. However, nitrifying microorganisms responsible for specific nitrification process under different land-use soils remains unknown. Thus, we investigated the relative contribution of bacteria and fungi to specific soil nitrification in different land-use soils (coniferous forest, upland fields planted with corn and rice paddy) in humid subtropical region in China. 15N dilution technique in combination with selective biomass inhibitors and C2H2 inhibition method were used to estimate the relative contribution of bacteria and fungi to heterotrophic nitrification and autotrophic nitrification in the different land-use soils in humid subtropical region. The results showed that autotrophic nitrification was the predominant nitrification process in the two agricultural soils (upland and paddy), while the nitrate production was mainly from heterotrophic nitrification in the acid forest soil. In the upland soils, streptomycin reduced autotrophic nitrification by 94%, whereas cycloheximide had no effect on autotrophic nitrification, indicating that autotrophic nitrification was mainly driven by bacteria. However, the opposite was true in another agricultural soil (paddy), indicating that fungi contributed to the oxidation of NH4+ to NO3?. In the acid forest soil, cycloheximide, but not streptomycin, inhibited heterotrophic nitrification, demonstrating that fungi controlled the heterotrophic nitrification. The conversion of forest to agricultural soils resulted in a shift from fungi-dominated heterotrophic nitrification to bacteria- or fungi-dominated autotrophic nitrification. Our results suggest that land-use and management practices, such as the application of N fertilizer and lime, the long-term waterflooding during rice growth, straw return after harvest, and cultivation could markedly influence the relative contribution of bacteria and fungi to specific soil nitrification processes.  相似文献   

7.
Red wood ants (Formica rufa group) are important elements in boreal forest ecosystems, where they occur in high abundance and build large and long-lasting, above-ground mounds of organic material. However, little is known on their role in the carbon (C) cycling in boreal forests. We measured temperature and carbon dioxide (CO2) efflux from three different-sized wood ant mounds and the surrounding forest floor from May 2004 to April 2005 in Norway spruce [Picea abies (L.) Karst.] dominated forests in eastern Finland. Additionally, mound and forest floor temperatures were measured continuously and CO2 effluxes at 2-4-week-intervals. During the ants’ active season (May-September), measurements were conducted in the morning, afternoon, evening and at night, while fluxes were measured once a day during the ants’ inactive season. CO2 emissions from the mounds were up to nearly eight times higher than those from the surrounding forest floor during the active season of the ants, but no statistically significant differences were observed during the period from October to February. Both mound and forest floor CO2 fluxes were highly correlated to mound or forest floor temperature. Based on our measurements, we are able to estimate the annual CO2 efflux from ant mounds and the surrounding forest floor, based on nonlinear regression analyses using CO2 flux as dependant and mound or forest floor temperatures as independent variables. Although red wood ant mounds were found to be “hot spots” for CO2 efflux, that increase the spatial heterogeneity of C emissions within a forest ecosystem, their annual emissions were only 0.30% of that from the forest floor. Thus, our results indicate that red wood ant mounds do not directly contribute significantly to the overall C budget of the boreal forest ecosystem studied.  相似文献   

8.
Excentrodendron hsienmu (W. Y. Chun and K. C. How) H. T. Chang and R. H. Miau (Tiliaceae) is a protected species in China but little is known about its present status in the field. The natural regeneration is satisfactory but the age structure of hsienmu forests is highly biased as a result of selective felling of young trees and large trees. Large hsienmu trees are used to make chopping blocks and young trees are cut as fuelwood; both these uses are contributing to the decline in population. Despite being a protected species, it appears that no official concrete protection measures have been adopted. Illegal felling of big trees has continued and cutting of young trees as fuelwood is common, especially in forests far from villages. In areas close to villages or that are difficult to access, hsienmu forests are mostly protected. A ban on tree felling and on the sale of chopping blocks made from hsienmu wood, and closure of hsienmu forests to human intervention, would help to protect this important tree species, but the local population need to be provided with alternative options for income generation and fuel in order for protection measures to be accepted and have a chance of success.  相似文献   

9.
To better understand the factors that control forest soil CO2 efflux and the effects of rewetting on efflux, we measured soil CO2 efflux in adjacent deciduous, coniferous, and mixed forests in the central part of the Korean Peninsula over the course of one year. We also conducted laboratory rewetting experiments with soil collected from the three sites using three different incubation temperatures (4 °C, 10 °C, and 20 °C). Soil moisture (SM), soil organic matter (SOM), and total root mass values of the three sites were significantly different from one another; however, soil temperature (ST), observed soil CO2 efflux and sensitivity of soil CO2 efflux to ST (i.e., Q10 = 3.7 ± 0.1) were not significantly different among the three sites. Soil temperature was a dominant control factor regulating soil CO2 efflux during most of the year. We infer that soil CO2 efflux was not significantly different among the sites due to similar ST and Q10. Though a significant increase in soil CO2 efflux following rewetting of dry soil was observed both in the field observations (60-170%) and laboratory incubation experiments (100-1000%), both the increased rates of soil CO2 efflux and the magnitude of change in SM were not significantly different among the sites. The increased rates of soil CO2 efflux following rewetting depended on the initial SM before rewetting. During drying phase after rewetting, a significant correlation between SM and soil CO2 efflux was found, but the effect of ST on increased soil CO2 efflux was not clear. Cumulative peak soil CO2 efflux (11.3 ± 0.7 g CO2 m−2) following rewetting in the field was not significantly different among the sites. Those evidences indicate that the observed similar rewetting effects on soil CO2 efflux can be explained by the similar magnitude of change in SM after rewetting at the sites. We conclude that regardless of vegetation type, soil CO2 efflux and the effect of rewetting on soil CO2 efflux do not differ among the sites, and ST is a primary control factor for soil CO2 efflux while SM modulates the effect of rewetting on soil CO2 efflux. Further studies are needed to quantify and incorporate relationship of initial dryness of the soil and the frequency of the dry-wet cycle on soil CO2 efflux into models describing carbon (C) processes in forested ecosystems.  相似文献   

10.
Although it remains unclear why NH3-oxidizing bacteria (AOB) of the genus Nitrosospira dominate soil environments, and why Nitrosomonas spp. are less common, virtually no studies have compared their behavior in soil. In this study, the NH3 oxidation rates of Nitrosomonas europaea (ATCC 19718) and Nitrosospira sp. AV were compared in three differently textured soils containing a range of extractable contents (2-11 μg soil). Soils were adjusted to pH 7.0-7.4 with CaCO3 and sterilized with γ-radiation. Cell suspensions of each bacterium were inoculated into the soils to bring them to two-third of water-holding capacity and cell densities ∼2.5×106 g−1 soil. In virtually all cases, rates of production for both N. europaea and Nitrosospira sp. AV were linear over 48 h, and represented between 13 and 75%, respectively, of the maximum rates achieved in soil-free bacterial suspensions. Soil solution concentrations that supported these rates ranged between 0.2 and 1.5 mM. Addition of 21-36 μg soil raised soil solution levels to 1.8-2.5 mM and stimulated production to a greater extent in N. europaea (3.3-6.6-fold) than in Nitrosospira sp. AV (1-2.1-fold). Maximum rates of production were obtained by raising soil solution levels to 3-4 mM with a supplement of ∼80-90 μg soil. Ks values in soil for Nitrosospira sp. AV and N. europaea were estimated as 0.14 and 1.9 mM , respectively, and estimates of Vmax were about 3.5-times higher for N. europaea (0.007 pmol h−1 cell−1) than for Nitrosospira sp. AV (0.002 pmol h−1 cell−1). The cell density of N. europaea increased in sterile Steiwer soil independent of supplemental . In the case of treatments receiving supplemental , growth yields of N. europaea calculated from either produced or consumed were similar to those reported in literature (3.5×106-6×106 cells μmol−1). A higher growth yield was measured in the case of zero added (2.7×107 cells μmol−1), indicating that use of organic carbon compounds might have occurred and resulted in some energy sparing. Our results suggest that Nitrosospira spp. with a Ks similar to Nitrosospira sp. AV may have an advantage for survival in soil environments where soil solution levels are less than 1 mM. However, it is apparent that AOB like N. europaea are poised to take advantages of modest increases in extractable that raise soil solution levels to about 2.0-2.5 mM.  相似文献   

11.
The effects of timber harvesting and the resultant soil disturbances (compaction and forest floor removal) on relative soil water content, microbial biomass C and N contents (Cmic and Nmic), microbial biomass C:N ratio (Cmic-to-Nmic), microbial respiration, metabolic quotient (qCO2), and available N content in the forest floor and the uppermost mineral soil (0-3 cm) were assessed in a long-term soil productivity (LTSP) site and adjacent mature forest stands in northeastern British Columbia (Canada). A combination of principal component analysis and redundancy analysis was used to test the effects of stem-only harvest, whole tree harvest plus forest floor removal, and soil compaction on the studied variables. Those properties in the forest floor were not affected by timber harvesting or soil compaction. In the mineral soil, compaction increased soil total C and N contents, relative water content, and Nmic by 45%, 40%, 34% and 72%, respectively, and decreased Cmic-to-Nmic ratio by 29%. However, these parameters were not affected by stem only harvesting or whole tree harvesting plus forest floor removal, contrasting the reduction of white spruce and aspen growth following forest floor removal and soil compaction reported in an earlier study. Those results suggest that at the study site the short-term effects of timber harvesting, forest floor removal, and soil compaction are rather complex and that microbial populations might not be affected by the perturbations in the same way as trees, at least not in the short term.  相似文献   

12.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

13.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

14.
The ATP content, soil respiration, bacterial community composition, and gross N mineralization and immobilization rates were monitored under laboratory condition at 25 °C for 28 d in a model system where low molecular weight root exudates (glucose and oxalic acid) were released by a filter placed on the surface of a forest soil also treated with 15N, so as to simulate rhizosphere conditions. Periodically, the soil was sampled from two layers, 0-2 and 6-14 mm below the filter's surface, which were indicated as rhizosphere and bulk soils, respectively. The isotope dilution technique was used to determine the effect of these low molecular weight organic compounds (LMWOCs) on gross N mineralization and immobilization rates. From 0 to 3 d both glucose and oxalic acid amended soils showed a rapid evolution of CO2, more pronunced in the latter treatment together with a decrease in the amount of mineral N of the rhizosphere soil, probably due to N immobilization. Nevertheless, these changes were accompanied by a very small increase in the net ATP content probably because the low C application rate stimulated microbial activity but microbial growth only slightly. A positive ‘priming effect’ probably developed in the oxalic acid amended soil but not in the glucose amended soil. Gross N mineralization and immobilization rates were only observed in the rhizosphere soil, probably due to the greater C and N concentrations and microbial activity, and were a little higher in both amended soils than in the control soil, only between 1 and 7 d. Both glucose and oxalic acid influenced the bacterial communities of the rhizosphere soil, as new bands in the DGGE profiles appeared at 3 and 7 d. Glucose induced lower changes in the bacterial community than oxalic acid, presumably because the former stimulated a larger proportion of soil microorganisms whereas the latter was decomposed by specialized microorganisms. Peaks of net daily soil respiration and net ATP content and the appearence of new dominant bacterial populations were shifted in time, probably because there was less ATP synthesis and DGGE patterns changed after complete substrate mineralization.  相似文献   

15.
The impact of rising atmospheric carbon dioxide (CO2) may be mitigated, in part, by enhanced rates of net primary production and greater C storage in plant biomass and soil organic matter (SOM). However, C sequestration in forest soils may be offset by other environmental changes such as increasing tropospheric ozone (O3) or vary based on species-specific growth responses to elevated CO2. To understand how projected increases in atmospheric CO2 and O3 alter SOM formation, we used physical fractionation to characterize soil C and N at the Rhinelander Free Air CO2-O3 Enrichment (FACE) experiment. Tracer amounts of 15NH4+ were applied to the forest floor of Populus tremuloides, P. tremuloides-Betula papyrifera and P. tremuloides-Acer saccharum communities exposed to factorial CO2 and O3 treatments. The 15N tracer and strongly depleted 13C-CO2 were traced into SOM fractions over four years. Over time, C and N increased in coarse particulate organic matter (cPOM) and decreased in mineral-associated organic matter (MAOM) under elevated CO2 relative to ambient CO2. As main effects, neither CO2 nor O3 significantly altered 15N recovery in SOM. Elevated CO2 significantly increased new C in all SOM fractions, and significantly decreased old C in fine POM (fPOM) and MAOM over the duration of our study. Overall, our observations indicate that elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Elevated O3 had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号