共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of mycelium of two arbuscular mycorrhizal (AM) fungi, Glomus intraradices and Glomus mosseae, on other soil microorganisms, was examined in root-free soil with and without organic substrate amendment in terms of cellulose. The AM fungi were grown in symbiosis with cucumber in a compartmented growth system, which allowed AM fungal external mycelium to grow into root-free compartments. The fungicide Benomyl was applied to the root-free compartments to create an alternative non-mycorrhizal control treatment. Whole cell biomarker fatty acids were employed to quantify different groups of soil microorganisms including the two AM fungi. Abundance of most microbial groups were reduced by external mycelium of both AM fungi, though differential effects on the microbial community composition were observed between the two AM fungi as revealed from principal component analysis. Inhibition of other soil microorganisms was more pronounced in root-free soil with mycelium of G. mosseae than with mycelium of G. intraradices. In general, cellulose increased the amount of biomarker fatty acids of most groups of soil microorganisms, but cellulose did not affect the influence of AM fungi on other soil microorganisms. Benomyl suppressed growth of the external mycelium of the two AM fungi and had limited non-target effects on other microbial groups. In conclusion, our results show differential effects of external mycelium of AM fungi on other soil microbial communities, though both AM fungi included in the study overall inhibited most microbial groups as examined using whole cell biomarker fatty acids. 相似文献
2.
The influence of inoculation of olive trees with arbuscular mycorrhizal (AM) fungi, Glomus (G) intraradices, on microbial communities and sugar concentrations, were examined in rhizosphere of olive trees (Olea europaea L.). Analyses of phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) were then used to detect changes in microbial community structure in response to inoculation of plantlets with G. intraradices.Microscopic observations studies revealed that the extraradical mycelium of the fungus showed formation of branched absorbing structures (BAS) in rhizosphere of olive tree. Root colonization with the AM fungi G. intraradices induced significant changes in the bacterial community structure of olive tree rhizosphere compared to non-mycorrhizal plants. The largest proportional increase was found for the fatty acid 10Me18:0, which indicated an increase in the number of actinomycetes in mycorrhizal rhizosphere soil, whereas the PLFAs i15:0, a15:0, i16:0, 16:1ω7 and cy17:0 which were used as indicators of bacteria decreased in mycorrhizal treatment compared to non-mycorrhizal control treatment. A highest concentration of glucose and trehalose and a lowest concentration of fructose, galactose, sucrose, raffinose and mannitol were detected in mycorrhizal rhizosphere soil. This mycorrhizal effect on rhizosphere communities may be a consequence of changes in characteristics in the environment close to mycorrhizal roots. 相似文献
3.
The effect of the interaction between a vesicular-arbuscular (VA)-mycorrhiza (Glomus intraradices no. LAP8) and Streptomyces coelicolor strain no. 2389 on the growth response, nutrition and metabolic activities of sorghum (Sorghum bicolor) plants grown in non-sterilized soil amended with chitin waste was studied in a greenhouse over 8 weeks. Chitin amendment
resulted in an increase in the microbial population and chitinase activity in soils. Growth of mycorrhizal G. intraradices no. LAP8 and non-mycorrhizal sorghum plants increased as compared with other treatments either in the presence or absence
of S. coelicolor strain 2389. VA-mycorrhizal inoculation significantly increased the growth, photosynthetic pigments, total soluble protein
and nutrient contents of sorghum compared to non-mycorrhizal sorghum. Such increases were related to increased mycorrhizal
colonization. Inoculation with S. coelicolor 2389 significantly increased the intensity of mycorrhizal root colonization and arbuscular formation, but the levels of mycorrhizal
infection and their beneficial effects were significantly reduced with the addition of chitin waste to the soil. Analysis
of the content of total amino acids and ammonia in leaves on the basis of dry matter production showed that, in most instances,
total amino acids of mycorrhizal plants were significantly higher than those of non-inoculated plants. The microflora of the
rhizosphere was highly affected by mycorrhizal inoculation. Quantitative changes in acid and alkaline phosphatase activities
of the roots in response to the mycorrhizal inoculation are discussed.
Received: 11 August 1999 相似文献
4.
Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and bacteria from the genus Paenibacillus (P. macerans and P. polymyxa) were examined in a greenhouse pot experiment with Cucumis sativus with and without organic matter amendment (wheat bran). P. polymyxa markedly suppressed AM fungus root colonization irrespective of wheat bran amendment, whereas P. macerans only suppressed AM fungus root colonization in combination with wheat bran amendment. Dual inoculation with P. macerans and G. intraradices in combination with wheat bran amendment also caused severe plant growth suppression. Inoculation with G. intraradices was associated with increased levels of dehydrogenase activity and available P in the growth substrate suggesting that mycorrhiza formation accelerated the decomposition of organic matter resulting in mobilization of phosphorus. Inoculation with both Paenibacillus species increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the AM fungus biomarker 16:1ω5, which was reduced, though not significantly. Similarly, inoculation with G. intraradices increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the Gram-positive bacteria biomarker 15:0 anteiso, which was overall decreased by G. intraradices inoculation. In combination with wheat bran amendment G. intraradices inoculation caused a 39% reduction in the amount of 15:0 anteiso in the treatment with P. polymyxa, suggesting that G. intraradices suppressed P. polymyxa in this treatment. In conclusion, plant growth promoting species of Paenibacillus may have suppressive effects of AM fungi and plant growth, especially in combination with organic matter amendment. The use of an inert plant growth media in the present study allowed us to study rhizosphere microbial interactions in a relative simple substrate with limited interference from other soil biota. However, the results obtained in the present work mainly show potential interactions and should not be directly extrapolated to a soil situation. 相似文献
5.
External arbuscular mycorrhiza (AM) mycelium plays an important role in soil while interacting with a range of biotic and abiotic factors. One example is the soil organic amendment sugar beet waste. The fermented Aspergillus niger-sugar beet waste (ASB) increases growth and P uptake by the AM mycelium in soil whereas non-fermented waste (SB) had a strong inhibitory effect. The underlying mechanisms are not understood.We used gas chromatography-mass spectrometry to identify differences in composition of water extracts of ASB and SB. The chromatograms showed that ferulic acid was present in SB and absent in ASB. We compared the effects of the water extracts of SB and ASB and ferulic acid upon the growth of Glomus intraradices in in vitro monoxenic cultures.Hyphal growth of the AM fungus G. intraradices was extremely reduced in ferulic acid and SB treatments. Moreover, AM hyphae appeared disorganized, undulated and tangled. In contrast, ASB increased hyphal length and numbers of branched absorbing structures and of spores. We conclude that ferulic acid is one compound in SB which is responsible for its inhibition of AM extraradical growth. The relevance of these findings is discussed. 相似文献
6.
Xiaojuan Feng 《Soil biology & biochemistry》2007,39(8):2027-2037
Soil organic matter (SOM) biomarker methods were utilized in this study to investigate the responses of fungi and bacteria to freeze-thaw cycles (FTCs) and to examine freeze-thaw-induced changes in SOM composition and substrate availability. Unamended, grass-amended, and lignin-amended soil samples were subject to 10 laboratory FTCs. Three SOM fractions (free lipids, bound lipids, and lignin-derived phenols) with distinct composition, stability and source were examined with chemolysis and biomarker Gas Chromatography/Mass Spectrometry methods and the soil microbial community composition was monitored by phospholipid fatty acid (PLFA) analysis. Soil microbial respiration was also measured before and during freezing and thawing, which was not closely related to microbial biomass in the soil but more strongly controlled by substrate availability and quality. Enhanced microbial mineralization (CO2 flush), considered to be derived from the freeze-thaw-induced release of easily decomposable organic matter from microbial cell lyses, was detected but quickly diminished with successive FTCs. The biomarker distribution demonstrated that free lipids underwent a considerable size of decrease after repeated FTCs, while bound lipids and lignin compounds remained stable. This observation indicates that labile SOM may be most influenced by increased FTCs and that free lipids may contribute indirectly to the freeze-thaw-induced CO2 flush from the soil. PLFA analysis revealed that fungal biomass was greatly reduced while bacteria were unaffected through the lab-simulated FTCs. Microbial community shifts may be caused by freezing stress and competition for freeze-thaw-induced substrate release. This novel finding may have an impact on carbon and nutrient turnover with predicted increases in FTCs in certain areas, because fungi and bacteria have different degradation patterns of SOM and the fungi-dominated soil community is considered to have a higher carbon storage capacity than a bacteria-dominated community. 相似文献
7.
Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions 总被引:33,自引:0,他引:33
Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase
activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic
fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic
matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases
of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils
increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil
organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil,
are enhanced by use of organic amendments along with inorganic fertilizers.
Received: 6 May 1998 相似文献
8.
R. J. Haynes 《Biology and Fertility of Soils》2000,30(4):270-275
The effects of sample pretreatment (field-moist, air-dried or tension rewetted) on aggregate stability measured by wet sieving
or turbidimetry were compared for a group of soil samples ranging in organic C content from 20 to 40 g C kg–1. Concentrations of total N, total and hot-water-extractable carbohydrate and microbial biomass C were linearly related to
those of organic C. Aggregate stability measured by wet sieving using air-dried or field-moist samples and that measured by
turbidimetry, regardless of sample pretreatment, increased curvilinearly with increasing soil organic C content. However,
when tension-rewetted samples were used for wet sieving, aggregate stability was essentially unaffected by soil organic C
content. Measurements of aggregate stability (apart from wet sieving using rewetted soils) were closely correlated with one
another and with organic C, total and extractable carbohydrate and microbial biomass C content of the soils. The short-term
effects of aggregate stability were also studied. Soils from under long-term arable management and those under long-term arable
followed by 1 or 3 years under pasture had similar organic C contents, but aggregate stability measured by turbidimetry and
by wet sieving using air-dried or field-moist samples increased with increasing years under pasture. Light fraction C, microbial
biomass and hot-water-extractable carbohydrate concentrations also increased. It was concluded that both total and labile
soil organic C content are important in relation to water-stable aggregation and that the use of tension-rewetted samples
to measure stability by wet sieving is unsatisfactory since little separation of values is achieved.
Received: 6 January 1999 相似文献
9.
Jørgen Eriksen 《Biology and Fertility of Soils》1996,22(1-2):149-155
In agricultural systems with low S inputs, soil organic matter is a major source of S and the transformations between organic and inorganic S pools are important for the supply of S to plants. This study was conducted to determine the effect of S fertilizer on the size and activity of organic S pools. For 5 years S fertilizer with a known composition of stable S isotopes was applied to a rotation on a loamy soil and a coarse sandy soil at rates higher than the plant demand. Total organic S in soil organic matter was not affected by sulphur application, but a small increase occurred in the sulphate ester fractions (P<0.05). Inorganic sulphate concentrations in the soil reflected the S application in the year of sampling, whereas S applied in earlier years was not recognized. Organic matter below the plough layer in both soils was enriched with S, possibly as a result or organic matter leaching or an increased clay content in the subsoils. At 0–20 cm, the C:S ratio in organic matter was ca. 100 for both soils, decreasing to 73 and 46 at 60–80 cm for the coarse sandy soil and the loamy soils, respectively. In both soils, isotope data showed that ca. 30% of organic-bonded S at 0–20 cm originated from fertilizer S applied during the last 5 years, irrespective of the S application rate. At 20–40 cm the rate of incorporations was lower and at 40–60 cm no incorporation of fertilizer S into organic matter was recognized. The fertilizer application did not induce net changes in the total organic S fraction, but isotope data indicated that a considerable part of the organic S pool was involved in S cycling in the field. 相似文献
10.
Daniel Geisseler William R. Horwath Timothy A. Doane 《Soil biology & biochemistry》2009,41(6):1281-12
Soil microorganisms can use a wide range of nitrogen (N) compounds. When organic N sources are degraded, microorganisms can either take up simple organic molecules directly (direct route), or organic N may be mineralized first and taken up in the form of mineral N (mineralization-immobilization-turnover [MIT] route). To determine the importance of the direct route, a microcosm experiment was carried out. Two types of wheat residue were added to soil samples, including younger residue with a carbon (C) to N ratio of 12 and older residue with a C to N ratio of 29. Between days 1 and 4, the gross N mineralization rate reached 8.4 and 4.0 mg N kg−1 dry soil day−1 in the treatment with younger and older residue, respectively. During the same period, there was no difference in protease activity between the two residue amended treatments. The fact that protease activity was not related to gross N mineralization, even though the products of protease activity are the substrates for N mineralization, suggests that not all organic molecules released from residue or soil N passed through the soil mineral N pool. In fact, when leucine and glycine were added, only 10 and 53% of the amino acid-N, respectively, was mineralized. The fraction of N taken up via the direct route was estimated to be 55 and 62% for the young and older residue, respectively. After 28 days of incubation, the proportion of amino acid-N mineralized had increased especially in the soil amended with older residue, suggesting that the MIT route became increasingly important. This result is supported by an increase in the activities of enzymes responsible for the intracellular assimilation of ammonium (NH4+). Our results suggest that in contrast to what is proposed by many models of soil N cycling, both the direct and MIT routes were operative, with the direct route being the preferred route of residue N uptake. The direct route became less important over time and was more important in soil amended with older residue, suggesting that the direct route is favored by lower mineral N availabilities. An important implication of these findings is that when the direct route is dominant, gross N mineralization underestimates the amount of N made available from the residue. 相似文献
11.
Effects of iron and organic matter on the porosity and structural stability of soil aggregates 总被引:8,自引:0,他引:8
Knowledge of the soil components controlling aggregate formation and stability is fundamental to the conservation of soil structure. In this work, the effects of Fe and organic matter (OM) on the porosity and structural stability of aggregates <4 mm of two cropped soils from Galicia (NW Spain) were determined. Porosity was estimated directly, by mercury intrusion porosimetry, and indirectly, from moisture characteristic and shrinkage curves. The three porosities obtained were similar and indicated that Soil 1, with the highest Fe and OM contents, had lower total porosity and a wider pore-size distribution than Soil 2. As regards structural stability, Hénin and Monnier's test, simulated rainfall and dispersion experiments, and determination of textural tensile strength all indicated Soil 1 to be the more stable soil. Oxidation of OM and selective extraction of Fe, which were most concentrated in the clay and silt fractions, indicated both these components to be important soil aggregants. It is suggested that the higher content of Soil 1 in Fe and OM is responsible for its greater stability. 相似文献
12.
The relationship between organic matter decomposition and changes in microbial community structure were investigated in Antarctic soils using 13C-labelled plant materials. Soils with and without labelled Deschampsia antarctica (a native Antarctic grass) were incubated for 42 days and sampled at 0, 7, 14, 21, 28 and 42 days. Changes in microbial community structure were assessed using phospholipid fatty acid analysis (PLFA) and an analysis of the fatty acids associated with the neutral lipid fraction (NLFA). These studies showed that there were no significant changes in PLFA or NLFA profiles over time suggesting no change in microbial community structure during residue decomposition. There was a marked increase however, in ergosterol levels in these soils indicative of growth of the fungal biomass. Analysis of this ergosterol using gas chromatography-mass spectrometry confirmed the transformation of the plant residue by showing the incorporation of 13C-plant C into the ergosterol. This incorporation of 13C into the ergosterol increased over the incubation period. Importantly, these changes associated with fungal growth were not evident in the analysis of either the PLFA or NLFA fractions thus questioning the reliability of such approaches for studying changes in microbial communities associated with the decomposition of plant residues. 相似文献
13.
用Wien效应研究土壤有机质对阳离子与黄棕壤型水稻土黏粒相互作用的影响 总被引:1,自引:0,他引:1
选择富含有机质的黄棕壤型水稻土,提取小于2μm的黏粒,将其中1/2黏粒去除有机质,分别制成为不同阳离子(Na+、K+、NH4+、Ca2+、Cd2+和La3+)饱和的土样,用Wien效应法研究土壤有机质对阳离子与土壤黏粒相互作用的影响。研究结果表明:原土悬液的起始电导率大于去有机质土者;除含Na+悬液外,去有机质土悬液的电导率随场强而增加的速率在50~100 kV cm-1以上,明显大于原土。有机质会使Na+以外的阳离子的平均结合自由能增大,Ca2+的结合能增加最大(增量为0.57 kJ mol-1),而Cd2+的结合能增加最小(增量为0.03 kJ mol-1)。对于供试土壤悬液,不同阳离子的结合能顺序均为Na+相似文献
14.
铵、钾同时存在时, 土壤对铵的优先吸附 总被引:7,自引:0,他引:7
The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.5mm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils. 相似文献
15.
Changes to the metabolic profiles of soil microbial communities could have potential for use as early indicators of the impact
of management or other perturbations on soil functioning and soil quality. We compared the relative susceptibility to management
of microbial community metabolism with a number of soil organic matter (OM) and microbial parameters currently used as indicators
of changes in soil biological quality. Following long-term cereal cropping, plots were subjected to a 16-month treatment period
consisting of either a mixed cropping sequence of vetch, spring barley and clover or a continuous grass-clover ley which was
periodically mown and mulched. The treatments had no effect on soil biomass N or respiration of microbial populations inoculated
into Biolog Gram negative (GN) plates. After 16 months there were no management-induced changes to total OM, light-fraction
OM C and N, labile organic N or water-soluble carbohydrates. However, patterns of substrate utilization by the soil microbial
population following inoculation into Biolog GN plates were found to be highly sensitive to management practice. In the mixed
cropping sequence, substrate utilization changed markedly following plough-in of the vetch crop, with a smaller change occurring
after harvesting of the barley. In the ley treatment, substrate utilization was not affected until the onset of mowing, when
the pattern changed to become similar to that in the mixed cropping sequence. Metabolic diversity of the Biolog-culturable
microbial population was increased by the ley treatment, but was not affected by the cropping sequence. We conclude that patterns
of microbial substrate utilization and metabolic diversity are more sensitive to the effects of management than are OM and
biomass pools, and therefore have value as early indicators of the impacts of management on soil biological properties, and
hence soil quality.
Received: 7 April 1999 相似文献
16.
Organic matter content and chemistry is vital to the structure and function of soil systems, but while organic matter is recognized as biogeochemically important, its chemical interaction with soil processes is not well understood. In this study we used fluorescence spectroscopy, which has been used extensively for understanding the role of organic matter in aquatic systems, to identify chemical changes in organic matter with depth in a soil system. Soil was collected from nine different pits in a first-order montane catchment in the Colorado Front Range. The water-soluble soil organic matter was extracted from each sample and fluorescence and UV–vis spectroscopy was used to analyze its chemical character. While organic matter chemistry had little correlation with landscape location and local vegetation, there were noticeable consistent trends between soil horizon and organic matter chemistry in each pit. Total organic matter decreased with depth and became less aromatic with increasing depth. This less aromatic material in the saprolite also had a greater microbial signature. The redox character of the organic matter accompanied this change in source and molecular structure, with more oxidized character corresponding with organic matter with more microbial input and more reduced character corresponding to organic matter with more plant input. A concurrent investigation of the microbial population of the same soil samples also showed microbial population composition varying more with soil depth than landscape position, and depth changes in microbial diversity occurred concomitantly with depth changes in organic matter chemistry. 相似文献
17.
Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy 总被引:1,自引:0,他引:1
The heat generated during wildfires often leads to increases in soil water repellency. Above a critical heating threshold, however, its destruction occurs. Although the temperature thresholds for repellency destruction are relatively well established, little is known about the specific changes in the soil organic matter that are responsible for repellency destruction. Here we report on the analysis of initially water repellent surface soil samples (Dystric Cambisol, 0–5 cm depth) by transmission Fourier Transform Infrared (FTIR) spectroscopy analysis before and after destruction of its water repellency by heating to 225 °C in order to investigate heating-induced changes in soil organic matter (SOM) composition. Although assignment of absorption bands is made difficult by overlapping of some bands, it was possible to distinguish bands relevant for hydrophobicity of SOM in the soil before heat treatment. The most significant decrease in absorbance following water repellency destruction took place in the frequency area corresponding to stretching vibrations of aliphatic structures within SOM. The results suggest that besides a general decrease of SOM content during heating, the loss of soil water repellence is primarily caused by the selective degradation of aliphatic structures. 相似文献
18.
Influence of management practices on soil organic matter changes in the Northern China plain and Northeastern China 总被引:4,自引:0,他引:4
Yan Xu Fengrong Zhang Xiying Hao Jingkuan Wang Ru Wang Xiangbin Kong 《Soil & Tillage Research》2006,86(2):230-236
Soil organic matter (SOM) is strongly related to soil type and management practices. Changes in government policy have brought drastic changes in farm management practices in the last two decades in rural China. This study investigates changes in SOM in two different soils: Ustepts and Udolls. Ustepts, in the North China Plain where the climate is warm and sub-humid, developed from an alluvial flood plain with organic matter <10 g kg−1. Udolls, in Northeastern China where the climate is cool and sub-humid, developed from loess-like materials with organic matter >20 g kg−1. Two locations for Ustepts and three locations for Udolls were used to collect 567 soil samples in 1980–1982 and again in 2000 for SOM analysis. Soil organic matter increased for Ustepts and decreased for Udolls soils over the sampling period, resulting from differences in fertilizer rates and crop residue input to soil. Higher fertilizer input and crop intensity and initially very low SOM content in Ustepts all contributed to greater OM input than oxidation release. In contrast, lower fertilizer input and crop intensity, and initially high SOM content in the Udolls, led to lower OM input than oxidation release. Increasing SOM content through higher mineral fertilizer input is a valuable option for sustainable agriculture production in areas where SOM is low and there is a shortage or potential shortage of food supply. 相似文献
19.
The effectiveness of the rehabilitation of mined sand dunes on the northern coast of KwaZulu–Natal, South Africa, was assessed based on measurements of the total and labile organic matter content and the size, activity and metabolic diversity of the soil microflora. Soil was sampled (0–10 cm) after 0, 5, 10, 20 and 25 years of rehabilitation and compared with soil under undisturbed native forest and under long-term commercial pine forest. Following topsoil removal, stockpiling and respreading on reformed dunes, there was a massive loss of organic C such that, at time zero, organic C content was only 24% of that present under native forest. Soil organic C content increased progressively during rehabilitation until, after 25 years, it represented 93% of that present under native forest. The pattern of change in light-fraction C, KMnO4-extractable C, water-soluble C, microbial biomass C, basal respiration and arginine ammonification rate was broadly similar to that for organic C, but the extent of the initial loss and the magnitude of the subsequent increase differed. Microbial biomass C, water-soluble C and KMnO4-extractable C, expressed as a percentage of organic C, declined during rehabilitation as humic substances progressively accumulated. Principal component (PC) analysis of catabolic response profiles to 36 substrates revealed that the catabolic diversity of microbial communities differed greatly between native forest, commercial pine forest, 0 years and 10 years of rehabilitation. On the PC1 axis, values for soils under native forest and after 25 years rehabilitation were similar, but there was still separation on the PC2 axis. The main factor explaining variation in response profiles on the PC1 axis was organic C content; and the greatest catabolic diversity occurred in soils under native forest and after 25 years of rehabilitation. 相似文献
20.
Analysis of phospholipid fatty acids (PLFAs) was performed to investigate effects of 2,4,6-trinitrotoluene (TNT) contamination and soil remediation on microbial biomass and community structure. A TNT-contaminated and an uncontaminated soil from a former ammunition plant were analysed before and after a humification/remediation process. TNT contamination reduced microbial biomass but indicated only minor differences in PLFA composition between the contaminated and uncontaminated soils. The humification process increased microbial biomass and altered soil PLFA patterns to a larger degree than did TNT contamination. 相似文献