首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The winter season has been identified as a significant contributor to N2O emissions from boreal soils, but our understanding of the processes regulating these emissions is fragmentary. We investigated potential N-sources and pathways involved in N2O formation in a frozen boreal forest soil by labeling soil samples with 15N-containing substrates, and measured rates of 15N2O/15N2 formation under both oxic and anoxic conditions. Our results showed that all N2O produced in the frozen samples originate from denitrification, but the rate-limiting factor is NO3 availability, which is largely governed by nitrification. This suggests that N2O formation in frozen boreal soils may be sustained for a prolonged period of time, but is governed by a delicate balance of the O2 regime.  相似文献   

2.
Isotopologue analyses of N2O within soil mesocosm experiments were used to evaluate the influence of N2O reduction on isotope fractionation. We investigated fractionation during N2O reduction at 60%, 80% and 100% water-filled pore space (WFPS) and found net isotope effects (NIE) for δ15N of 4.2–7.8‰, δ18O of 12.5–19.1‰, δ15Nα of 6.4–9.7‰ and δ15Nβ of 2.0–5.9‰. Consequently, N2O reduction has a marked affect on isotopologue values and the importance of this process in flux chamber studies should not be ignored. With the exception of SP (the difference between the δ15N of the central, α, and terminal, β, atoms) inverse relationships between the NIE, reaction rate and reaction rate constant and WFPS were observed. Isotopic discrimination in SP during N2O reduction was small and the average NIE for the treatments varied between 2.9‰ and 4.5‰. A strong correlation was evident between δ18O vs. δ15N and δ18O vs. δ15Nα during reduction with slopes of 2.6 and 1.9, respectively, which contrasts from a slope of <1 commonly observed for mixing between soil-derived and atmospheric N2O in flux chambers.  相似文献   

3.
We evaluated the potential of the C2H2-catalyzed NO oxidation reaction to influence N2O production during denitrification. We measured the total amount of free NO and N2O produced by slurries of sandy loam soil and by batch cultures of denitrifying bacteria under both anaerobic and low O2 conditions. The maximum amount of free NO released by anaerobic Nos+ (able to reduce N2O to N2) and Nos (unable to reduce N2O to N2) batch cultures of Cytophaga johnsonae strains catalyzing denitrification of nitrate was 17-79 nmol NO per bottle. In all cases the maximum headspace concentrations of NO-N measured in anaerobic cultures in the absence of C2H2 was less than 0.21% of those of N2O-N measured in the presence of 10 kPa C2H2. Peak NO production was delayed when between 2.0 and 4.5% O2 was present. Less NO accumulated in cultures in the presence of both O2 and C2H2, and the maximum amount of NO-N measured in the absence of C2H2 was less than 0.13% of the total amount of N2O-N measured in the presence of C2H2. For an agricultural sandy loam soil, the maximum concentrations of free NO released from slurries were 598-897 ng NO-N g−1 of dry soil in the absence of C2H2 and 118-260 ng NO-N g−1 of dry soil in the presence of 10 kPa C2H2. The maximum concentration of NO-N released in the absence of C2H2 was between 0.32 and 8.1% of the maximum concentration of N2O-N accumulated in the presence of 10 kPa C2H2. We conclude that scavenging of NO by the C2H2-catalyzed NO oxidation reaction in the presence of trace amounts of O2 does not cause a serious underestimate of long-term measurements of active denitrification in anaerobic soils containing adequate carbon and nitrate sources.  相似文献   

4.
Here we provide evidence that the form of carbon compound and O2 concentration exert an inter-related regulation on the production and reduction of N2O in soil. 6.7 mM d-glucose, 6.7 mM D-mannitol, 8 mM L-glutamic acid or 10 mM butyrate (all equivalent to 0.48 g C l−1) were applied to slurries of a sandy loam soil. At the start of the experiment headspace O2 concentrations were established at ∼2%, 10% and 21% O2 v/v for each C treatment, and 2 mM K15NO3 (25 atom % excess 15N) was applied, enabling quantification of 15N-N2 production, 15N-(N2O-to-N2) ratios and DNRA. The form of C compound was most important in the initially oxic (21% O2 v/v) soils, where addition of butyrate and glutamic acid resulted in greater N2O production (0.61 and 0.3 μg N2O-N g−1 soil for butyrate and glutamic acid, respectively) than the addition of carbohydrates (glucose and mannitol). Although, there was no significant effect of C compound at low initial O2 concentrations (∼2% O2 v/v), production of 15N-N2 was greatest where headspace O2 concentrations were initially, or fallen to, ∼2% O2 v/v, with greatest reduction of N2O and lowering 15N-(N2O-to-N2) ratios (∼0-0.27). This may reflect that the effect of C is indirect through stimulation of heterotrophic respiration, lowering O2 concentrations, providing sub-oxic conditions for dissimilatory nitrate reduction pathways. Addition of carbohydrates (glucose and mannitol) also resulted in greatest recovery of 15N in NH4+ from applied 15N-NO3, indicative of the occurrence of DNRA, even in the slurries with initial 10% and 21% O2 v/v concentrations. Our 15N approach has provided the first direct evidence for enhancement of N2O reduction in the presence of carbohydrates and the dual regulation of C compound and O2 concentration on N2O production and reduction, which has implications for management of N2O emissions through changing C inputs (exudates, rhizodeposition, residues) with plant species of differing C traits, or through plant breeding.  相似文献   

5.
土壤pH对硝酸根还原过程中N2O产生的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
采用氢氧化钠和盐酸将中性和碱性土壤分别分步调节成具有不同pH的系列土壤 ,加入等量硝态氮后 ,在添加易有效碳源葡萄糖和不添加葡萄糖的厌气条件下进行培养 ,测定不同处理条件下的N2 O和N2 产生速率。结果表明 ,不加碳源培养 2 4h后 ,原中性土壤系列中N2 O的最大产生速率位于pH 5 2 5左右 ,碱性土壤系列的该值位于 5 90左右 ;加入葡萄糖后 ,中性土壤系列中最大N2 O产生速率的pH值不变 ,但产生N2 最大速率的pH已提高至 6 50。而碱性土壤系列中N2 O产生最大速率时的pH值已移至 6 90处 ,即碳源的加入对产生N2 O所需的最佳pH有所提高。试验还显示 ,酸性条件可提高总还原气体中N2 O所占的比例 ,但就N2 O产生速率的绝对值来说 ,近中性条件仍然是最为有利的  相似文献   

6.
氧化亚氮(N_2O)是主要的温室气体之一,对大气环境质量与全球气候变化具有重要的影响。N_2O排放不仅增加温室效应,同时也会导致陆地生态系统氮损失与平流层臭氧消耗。长期以来土壤被认为是陆地生态系统N_2O的主要排放源,但近年来越来越多的证据表明,植物可能是陆地生态系统N_2O排放的另一重要来源。近年来有关植物排放N_2O的报道逐年增多,但对植物排放N_2O的途径及其调控机制方面还缺乏文献综述。本文首先在总结长期以来人们普遍认为的N_2O源与汇的基础上,提出陆地植物可能是另一个尚未被广泛认可的重要的N_2O的排放源。植物排放N_2O可能有两种潜在途径:1)植物作为土壤中通过微生物产生的N_2O的运输通道,2)植物通过自身代谢或内生菌的作用产生N_2O并排放到大气中。然后分析了关键因素(养分、光照、温度和植物器官及生长阶段)对植物排放N_2O的影响机制。最后指出未来需进一步探明植物体内产生N_2O的具体途径及其对全球N_2O排放的贡献,重点是探明植物自身的生理生化过程以及与其伴生、共生的微生物在N_2O产生中的作用。  相似文献   

7.
蔡延江  丁维新  项剑 《土壤通报》2012,(4):1013-1018
免耕在促进农业可持续发展和有效分馏大气碳的同时还可影响土壤N2O排放,但迄今为止关于免耕对农田土壤N2O排放影响的研究结果却不尽一致,正效应间或负效应都存在。本文综述了免耕条件下土壤理化性状和生物性状的变化及其对N2O排放的影响,并指出实施免耕后土壤反硝化强度变化程度的不同是导致免耕对N2O排放影响效应不同的主要原因,最后提出了一些有待研究的问题。  相似文献   

8.
Our objective was to assess the effect of anaerobic conditioning in the presence of acetylene on subsequent aerobic respiration and N2O emission at the scale of soil aggregates. Nitrous oxide production was measured in intact soil aggregates Δ (compacted aggregates without visible porosity) and Γ (aggregates with visible porosity) incubated under oxic conditions, with or without anaerobic conditioning for 6 d. N2O emissions were much higher in aggregates that had been submitted to anaerobic conditioning than in aggregates that did not experience this conditioning, although very little NO3 remained in soil after the anaerobic period. 15N isotope tracing technique was used to check whether N2O came from nitrification or denitrification. The results showed that denitrification was the major process responsible for N2O emissions. The aerobic CO2 production rate was also measured in intact soil aggregates. It was greater in aggregates submitted to anaerobic conditioning than in those that were not, suggesting that the anaerobic conditioning lead to an accumulation of small compounds including fatty acids that are readily available for microbial decomposition in aerobic conditions. This process increases the aerobic CO2 production and favours the N2O emissions through denitrification.  相似文献   

9.
We evaluated the potential of trace amounts of O2 inadvertently introduced into anaerobic incubations to initiate the C2H2-catalyzed NO oxidation reaction and affect NO and N2O production rates during denitrifying enzyme activity (DEA) assays. We measured the rate of NO production in the presence and absence of 10 kPa C2H2 and N2O production in the presence of 10 kPa C2H2 by short-term incubations of slurries of humisol and sandy loam soil. NO production, in the absence of C2H2, was similar for both soils (0.73-1.32 ng NO-N g dry soil−1 min−1) and replicate measurements of NO production rates were linear and exhibited small standard deviations. It was not possible to consistently measure NO production in the presence of C2H2. Replicate measurements of NO production were always lower and exhibited a wide range of variability when C2H2 was present. The rate of NO production in the absence of C2H2 was only 2.3-3.0% of the rate of N2O production in the presence of C2H2 in humisol soil but was much larger (31.8-35.0%) in the sandy loam soil. Rates of NO production from sandy loam soil were reduced by 58% when trace amounts (30 μl) of O2 were added to slurry incubations containing C2H2. We conclude that trace amounts of O2 inadvertently introduced into the slurries during sampling could initiate scavenging of NO by the C2H2-catalyzed NO oxidation reaction and cause an underestimate of N2O production during DEA assays in some soils.  相似文献   

10.
Soils represent the major source of the atmospheric greenhouse gas nitrous oxide (N2O) and there is a need to better constrain the total global flux and the relative contribution of the microbial source processes. The aim of our study was to evaluate isotopomer analysis of N2O (intramolecular distribution of 15N) as well as conventional nitrogen and oxygen isotope ratios (i) as a tool to identify N2O production processes in soils and (ii) to constrain the isotopic fingerprint of soil-derived N2O. We conducted a microcosm study with arable loess soil fertilized with 20 mg N kg−1 of 15NO3-labeled or non-labeled ammonium nitrate. Soils were incubated for 16 d at varying moisture (55%, 75% and 85% water-filled pore space (WFPS)) in order to establish different levels of nitrification and denitrification. Dual isotope and isotopomer ratios of emitted N2O were determined by mass spectrometric analysis of δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP=difference in δ15N between the central and peripheral N-positions of the asymmetric N2O molecule). Total rates and N2O emission of denitrification and nitrification were determined by 15N analysis of headspace gases and soil extracts of the 15NO3 treatment. N2O emission and denitrification increased with moisture whereas gross nitrification was almost constant. In the 55% WFPS treatment, more than half of the N2O flux was derived from nitrification, whereas denitrification was the dominant N2O source in the 75% WFPS and 85% WFPS treatments. Moisture conditions were reflected by the isotopic signatures since highly significant differences were observed for average δ15Nbulk, SP and δ18O. Experiment means of the 75% WFPS and 85% WFPS treatments gave negative δ15Nbulk (−18.0‰ and −34.8‰, respectively) and positive SP (8.6‰ and 15.3‰, respectively), which we explained by the fractionation during N2O production and partial reduction to N2. In the 55% WFPS treatment, mean SP was relatively low (1.9‰), which suggests that nitrification produced N2O with low or negative SP. The observed influence of process condition on isotopomer signatures suggests that the isotopomer approach might be suitable for identifying N2O source processes. However, more research is needed to determine the impact from process rates and microbial community structure. Isotopomer signatures were within the range reported from previous soil studies which supports the assumption that SP of soil-derived N2O is lower than SP of tropospheric N2O.  相似文献   

11.
The relationships between the fluxes of nitrous oxide (N2O) and carbon dioxide (CO2), and their concentrations in the soil air, three different measures of potential denitrification, soil moisture, soil temperature and precipitation were investigated in soils from beneath ryegrass (Lolium multiflorum Lam.), red clover (Trifolium pratense L.) and mixture of ryegrass-red clover stands on a gleic cambisol. Investigations were carried out in order to test the hypothesis that the measure(s) of potential denitrification are good predictor(s) of N2O fluxes and thus may be used in empirical models of N2O emission. Potential denitrification characteristics used in this study involved (i) short-term denitrifying enzyme activity (DEA), (ii) long-term denitrification potential (DP), both determined in soils amended with nitrate and glucose, and (iii) denitrification rate (DR) measured using intact soil cores. Flux measurements were made using cylindrical chambers (internal diameter 31 cm, volume 0.015 m3). The fluxes of N2O and CO2 and many other characteristics showed large spatial and temporal variability. Emissions of N2O from the grass plots were closely related to N2O concentrations in the soil atmosphere at 22.5 cm depth. Most soil properties did not correlate with N2O fluxes. It was concluded that DP was not a good predictor for N2O flux. DEA did not show significant relationship with N2O flux, but it is suggested that if determined in representative, large soil samples, DEA could be a predictor of N2O fluxes; this assumption needs, however, verification. The only potential denitrification characteristic which was significantly related to N2O emission both in grass and clover treatments was DR, which was determined in soil cores.  相似文献   

12.
Animal manures from intensive livestock operations can be pelleted to improve handlings and recyclings of embodied nutrients. The aim of this study was to evaluate the influence of pelleted poultry manure on N2O and NO fluxes from an Andisol field. In autumn 2006 and summer 2007, poultry manure (PM), pelleted poultry manure (PP), and chemical fertilizer (CF) were applied at a rate of 120 kg N ha−1 in each cultivation period to Komatsuna (Brassica rapa var. peruviridis). Nitrous oxide and NO fluxes were measured using an automated monitoring system. A soil incubation experiment was also conducted to determine the influence of intact and ground pelleted manure on N2O, NO, and CO2 production with a water-filled pore space (WFPS) of 30 or 50%. In the field measurements, N2O emission rates from the organic fertilizer treatments were larger than that from the CF treatment, possibly because organic C stimulated denitrification. The highest N2O flux was observed from the PP treatment after a rainfall following fertilization, and the cumulative emission rate (2.72 ± 0.22 kg N ha−1 y−1) was 3.9 and 7.1 times that from the PM and CF treatments, respectively. In contrast, NO emission rates were highest from the CF treatment. The NO/N2O flux ratio indicated that nitrification was the dominant process for NO and N2O production from the CF treatment. Cumulative N2O emission rates from all treatments were generally higher during the wetter cultivation period (autumn 2006) than during the drier cultivation period (summer 2007). In contrast, NO emission rates were higher in the drier than in the wetter cultivation period. The incubation experiment results showed a synergistic effect of soil moisture and the pelleted manure form on N2O emission rates. The intact pelleted manure with the 50% WFPS treatment produced the highest N2O and CO2 fluxes and resulted in the lowest soil NO3 content after the incubation. These results indicate that anaerobic conditions inside the pellets, caused by rainfall and heterotrophic microbial activities, led to denitrification, resulting in high N2O fluxes. Controlling the timing of N application by avoiding wet conditions might be one mitigation option to reduce N2O emission rates from the PP treatment in this study field.  相似文献   

13.
To understand nitrous oxide (N2O) emissions from terrestrial ecosystems it is necessary to understand the processes leading to N2O production. Here, for the first time, results are presented which identify in situ the processes of N2O production in a temperate grassland soil. A small portion of the nitrogen (N) applied in the summer to the grassland soil was rapidly transported below the main rooting zone (>20 cm) and resulted in large N2O productions at depths of 20-50 cm. Preferential pathways must have been responsible for this movement because the soil conditions were not conducive to leaching by piston flow. The N2O was entirely produced by nitrate (NO3) reduction which was surprising because the bulk soil was aerobic. Therefore, reduction processes can operate during times of the year when it is least expected and cause large N2O concentrations deep in the soil profile.  相似文献   

14.
Emission of N2O and CH4 oxidation rates were measured from soils of contrasting (30-75%) water-filled pore space (WFPS). Oxidation rates of 13C-CH4 were determined after application of 10 μl 13C-CH4 l−1 (10 at. % excess 13C) to soil headspace and comparisons made with estimates from changes in net CH4 emission in these treatments and under ambient CH4 where no 13C-CH4 had been applied. We found a significant effect of soil WFPS on 13C-CH4 oxidation rates and evidence for oxidation of 2.2 μg 13C-CH4 d−1 occurring in the 75% WFPS soil, which may have been either aerobic oxidation occurring in aerobic microsites in this soil or anaerobic CH4 oxidation. The lowest 13C-CH4 oxidation rate was measured in the 30% WFPS soil and was attributed to inhibition of methanotroph activity in this dry soil. However, oxidation was lowest in the wetter soils when estimated from changes in concentration of 12+13C-CH4. Thus, both methanogenesis and CH4 oxidation may have been occurring simultaneously in these wet soils, indicating the advantage of using a stable isotope approach to determine oxidation rates. Application of 13C-CH4 at 10 μl 13C-CH4 l−1 resulted in more rapid oxidation than under ambient CH4 conditions, suggesting CH4 oxidation in this soil was substrate limited, particularly in the wetter soils. Application of and (80 mg N kg soil−1; 9.9 at.% excess 15N) to different replicates enabled determination of the respective contributions of nitrification and denitrification to N2O emissions. The highest N2O emission (119 μg 14+15N-N2O kg soil−1 over 72 h) was measured from the 75% WFPS soil and was mostly produced during denitrification (18.1 μg 15N-N2O kg soil−1; 90% of 15N-N2O from this treatment). Strong negative correlations between 14+15N-N2O emissions, denitrified 15N-N2O emissions and 13C-CH4 concentrations (r=−0.93 to −0.95, N2O; r=−0.87 to −0.95, denitrified 15N-N2O; P<0.05) suggest a close relationship between CH4 oxidation and denitrification in our soil, the nature of which requires further investigation.  相似文献   

15.
Both NO and N2O are produced in soil microbial processes and have importance in atmospheric physics and chemistry. In recent years several studies have shown that N2O emissions from organic soils can be high at low temperatures. However, the effects of low temperature on NO emissions from soil are unknown. We studied in laboratory conditions, using undisturbed soil cores, the emissions of NO and N2O from organic soils at various temperatures, with an emphasis on processes and emissions during soil freezing and thawing periods. We found no soil freezing- or thawing-related emission maxima for NO, while the N2O emissions were higher both during soil freezing and thawing periods. The results suggest that different factors are involved in the regulation of NO and N2O emissions at low temperatures.  相似文献   

16.
We evaluated a new method to measure in situ denitrification under field conditions in a number of water-saturated subsoils that had a broad range of biogeochemical properties. A test solution containing 15NO3 and/or C2H2 was introduced to the subsoil and the subsequent production of dissolved denitrification products was measured to quantify denitrification activity. The method showed a clear production of denitrification products over time. Results were compared to laboratory-based measurements from the same soil incubated as anaerobic slurries with added 15NO3. Rates of denitrification with the in situ and the laboratory methods ranged from 1-2800 and 1-1700 μg N kg−1 d−1, respectively. Generally the methods gave good agreement and we consider both to be valid. However, there were some significant deviations, which we attribute to spatial heterogeneity and laboratory effects. Because the laboratory method is so much easier to perform, we suggest it should be the preferred method for large-scale studies of denitrification from the soil types we investigated. However, the two methods showed poor agreement in determining the proportion of N2O in the total denitrification output. This was because this proportion is subject to delicate and complex control. We conclude that neither method was suitable for quantifying N2O emission from the denitrification measurements.  相似文献   

17.
Soils represent the major source of the atmospheric greenhouse gas nitrous oxide (N2O) and there is a need to better constrain the total global flux and the relative contribution of the microbial source processes. The aim of our study was to determine variability and control of the isotopic fingerprint of N2O fluxes following NH4+-fertilization and dominated by nitrification. We conducted a microcosm study with three arable soils fertilized with 0–140 mg NH4+–N kg−1. Fractions of N2O derived from nitrification and denitrification were determined in parallel experiments using the 15N tracer and acetylene inhibition techniques or by comparison with unfertilized treatments. Soils were incubated for 3–10 days at low moisture (30–55% water-filled pore space) in order to establish conditions favoring nitrification. Dual isotope and isotopomer ratios of emitted N2O were determined by mass spectrometric analysis of δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule). N2O originated mainly from nitrification (>80%) in all treatments and the proportion of NH4+ nitrified that was lost as N2O ranged between 0.07 and 0.45%. δ18O and SP of N2O fluxes ranged from 15 to 28.4‰ and from 13.9 to 29.8‰, respectively. These ranges overlapped with isotopic signatures of N2O from denitrification reported previously. There was a negative correlation between SP and δ18O which is opposite to reported trends in N2O from denitrification. Variation of average 15N signatures of N2O (δ15Nbulk) did not supply process information, apparently because a strong shift in precursor signatures masked process-specific effects on δ15Nbulk. Maximum SP of total N2O fluxes and of nitrification fluxes was close to reported SP of N2O from NH4+ or NH2OH conversion by autotrophic nitrifiers, suggesting that SP close to 30‰ is typical for autotrophic nitrification in soils following NH4+-fertilization. The results suggest that the δ18O/SP fingerprint of N2O might be used as a new indicator of the dominant source process of N2O fluxes in soils.  相似文献   

18.
Quantifying the nitrous oxide (N2O) and nitric oxide (NO) fluxes emitted from croplands remains a major challenge. Field measurements in different climates, soil and agricultural conditions are still scarce and emissions are generally assessed from a small number of measurements. In this study, we report continuously measured N2O and NO fluxes with a high temporal resolution over a 2-year crop sequence of barley and maize in northern France. Measurements were carried out using 6 automatic chambers at a rate of 16 mean flux measurements per day. Additional laboratory measurements on soil cores were conducted to study the response of NO and N2O emissions to environmental conditions.The detection limit of the chamber setup was found to be 3 ng N m−2 s−1 for N2O and 0.1 ng N m−2 s−1 for NO. Nitrous oxide fluxes were higher than the threshold 37% of the time, while they were 72% of the time for NO fluxes.The cumulated annual NO and N2O emissions were 1.7 kg N2O-N ha−1 and 0.5 kg NO-N ha−1 in 2007, but 2.9 kg N2O-N ha−1 and 0.7 kg NO-N ha−1 in 2008. These inter-annual differences were largely related to crop types and to their respective management practices. The forms, amounts and timing of nitrogen applications and the mineralization of organic matter by incorporation of crop residues were found to be the main factor controlling the emissions peaks. The inter-annual variability was also due to different weather conditions encountered in 2007 and 2008. In 2007, the fractioned N inputs applied on barley (54 kg ha−1 in March and in April) did not generate N2O emissions peaks because of the low rainfall during the spring. However, the significant rainfall observed in the summer and fall of 2007, promoted rapid decomposition of barley residues which caused high levels of N2O emissions. In 2008, the application of dairy cattle slurry and mineral fertilizer before the emergence of maize (107 kg Nmin ha−1 or 130 kg Ntot ha−1 in all) coincided with large rainfalls promoting both NO and N2O emissions, which remained high until early summer.Laboratory measurements corroborated the field observations: NO fluxes were maximum at a water-filled pore space (WFPS) of around 27% while N2O fluxes were optimal at 68% WFPS, with a maximum potentially 14 times larger than for NO.  相似文献   

19.
The present study determined the influence of initial moisture conditions on the production and consumption of nitrous oxide (N2O) during denitrification and on the isotopic fingerprint of soil-emitted N2O. Sieved arable soil was pre-incubated at two different moisture contents: pre-wet at 75% and pre-dry at 20% water-filled pore space. After wetting to 90% water-filled pore space the soils were amended with glucose (400 kg C ha−1) and KNO3 (80 kg N ha−1) and incubated for 10 days under a He/O2-atmosphere. Antecedent moisture conditions affected denitrification. N2 + N2O fluxes and the N2O-to-N2 ratio were higher in soils which were pre-incubated under dry conditions, probably because mobilization of organic C during the pre-treatment enhanced denitrification. Gaseous N fluxes showed similar time patterns of production and reduction of N2O in both treatments, where N2O fluxes were initially increasing and maximised 3-4 days after fertilizer application, and N2 fluxes were delayed by 1-2 days. Time courses of δ15Nbulk-N2O and δ18O-N2O exhibited in both treatments increasing trends until maximum N2 fluxes occurred, reflecting isotope fractionation during intense NO3 reduction. Later this trend slowed down in the pre-dry treatment, while δ18O-N2O was constant and δ15Nbulk-N2O decreased in the pre-wet treatment. We explain these time patterns by non-homogenous distribution of NO3 and denitrification activity, resulting from application of NO3 and glucose to the surface of the soil. We assume that several process zones were thus created, which affected differently the isotopic signature of N2O and the N2O and N2 fluxes during the different stages of the process. We modelled the δ15Nbulk-N2O using process rates and associated fractionation factors for the pre-treated soils, which confirmed our hypothesis. The site preference (SP) initially decreased while N2O reduction was absent, which we could not explain by the N-flux pattern. During the subsequent increase in N2 flux, SP and δ18O-N2O increased concurrently, confirming that this isotope pattern is indicative for N2O reduction to N2. The possible effect of the antecedent moisture conditions of the soil on N2O emissions was shown to be important.  相似文献   

20.
A laboratory investigation was performed to compare the fluxes of dinitrogen (N2), N2O and carbon dioxide (CO2) from no-till (NT) and conventional till (CT) soils under the same water, mineral nitrogen and temperature status. Intact soil cores (0-10 cm) were incubated for 2 weeks at 25 °C at either 75% or 60% water-filled pore space (WFPS) with 15N-labeled fertilizers (100 mg N kg−1 soil). Gas and soil samples were collected at 1-4 day intervals during the incubation period. The N2O and CO2 fluxes were measured by a gas chromatography (GC) system while total N2 and N2O losses and their 15N mole fractions in the soil mineral N pool were determined by a mass spectrometer. The daily accumulative fluxes of N2 and N2O were significantly affected by tillage, N source and soil moisture. We observed higher (P<0.05) fluxes of N2+N2O, N2O and CO2 from the NT soils than from the CT soils. Compared with the addition of nitrate (NO3), the addition of ammonium (NH4+) enhanced the emissions of these N and C gases in the CT and NT soils, but the effect of NH4+ on the N2 and/or N2O fluxes was evident only at 60% WFPS, indicating that nitrification and subsequent denitrification contributed largely to the gaseous N losses and N2O emission under the lower moisture condition. Total and fertilizer-induced emissions of N2 and/or N2O were higher (P<0.05) at 75% WFPS than with 60% WFPS, while CO2 fluxes were not influenced by the two moisture levels. These laboratory results indicate that there is greater potential for N2O loss from NT soils than CT soils. Avoiding wet soil conditions (>60% WFPS) and applying a NO3 form of N fertilizer would reduce potential N2O emissions from arable soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号