首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
A bacterium having strong chitinolytic activity was isolated from a coastal soil in Korea and identified as Paenibacillus illinoisensis KJA-424 on the basis of the nucleotide sequence of a 16S rRNA gene. By activity staining after SDS-PAGE, three major chitinase bands with chitinolytic activity, approximate molecular weight of 63, 54 and 38 kDa were detected. On co-culture Rhizoctonia solani with KJA-424, abnormal swelling and deformation of R. solani hyphae were observed, where the release of N-acetyl-d-glucosamine was detected. The bacterium suppressed the symptom of damping-off cucumber seedlings caused by R. solani, in greenhouse trial.  相似文献   

2.
Rhizoctonia solani causes worldwide losses in numerous crops. Sclerotia of R. solani remain viable for several years in soil and are an important source of primary infection. In this study the effect of soil incorporation of Kraft pine lignin, a side product of the paper industry, on viability of R. solani AG1-1B sclerotia was investigated. The efficacy of lignin was assessed in a sandy loam (Oppuurs) and a silt loam soil (Leest) collected from commercial fields in Belgium. Evaluating sclerotial viability after 4 weeks incubation in the two soils amended with 1% (w/w) Kraft pine lignin demonstrated a soil-dependent effect. In Leest soil the addition of lignin resulted in a significantly reduced sclerotial viability, together with an increased mycoparasitism by Trichoderma spp.; in Oppuurs soil, on the other hand, only a slight and insignificant reduction in sclerotial viability was observed. Based on phospholipid fatty acid analysis, different changes in microbial community structure upon lignin amendment were detected in the two soils. Both amended soils showed a significant increase in Gram negative bacteria. In Leest soil this increase was accompanied with a significantly higher increase in fungi and actinomycetes compared with Oppuurs soil. In addition, Kraft pine lignin resulted in both soils in a small but significant increase in manganese peroxidase activity and this increase tended to be higher in Leest soil. Manganese peroxidase produced by lignin-degrading basidiomycetes has previously been shown to degrade melanin, which protects the sclerotia against biotic and abiotic stress. We hypothesize that lignin-degrading fungi increased the susceptibility of the sclerotia to sclerotial antagonists such as Trichoderma, Gram negative bacteria and actinomycetes. Clearly, the effect observed here did not rely on the stimulation of one microbial group, but is the result of an interaction of different groups.  相似文献   

3.
Calcisol, ferralsol and vertisol soils, representative of different bean production areas of Villa Clara province in Cuba, were selected to determine the impact of soil type on bean hypocotyl rot severity caused by Rhizoctonia solani AG4 HGI (isolate CuVC-Rs7). In inoculated autoclaved soil, hypocotyl rot was most severe in calcisol soil, followed by ferralsol soils and then vertisol soils. In inoculated natural soils, disease severity was lower in vertisol and calcisol soils and higher in ferralsol soil, indicating that biological factors are suppressing or stimulating the pathogenic efficiency of R. solani. Native binucleate Rhizoctonia AGF, Sclerotium rolfsii and R. solani AG 4 HGI were isolated from bean plants grown in natural calcisol, vertisol and ferralsol soils, respectively. Subsequent studies about the interaction between these fungi and R. solani indicated that they were involved in the variability of disease severity caused by R. solani. The addition of R. solani AG4 HGI (isolate CuVC-Rs7) into each autoclaved soil inoculated with binucleate Rhizoctonia or S. rolfsii resulted in a reduction of disease severity caused by this pathogen while in soils inoculated with native R. solani AG4 HGI, disease severity increased. Irrespective of fungal interactions, calcisol was always the most disease conducive soil and vertisol the most disease repressive soil. The mechanisms by which native pathogenic fungi could influence disease severity caused by R. solani are discussed.  相似文献   

4.
Most studies on soil fungi have been carried out with little explicit characterisation of soil structure within which fungi spread and biotic interactions occur. In this paper we use a combination of epidemiological (colonisation efficiency) and soil bio-physical (thin sectioning) techniques to investigate the role of macropores in soil on the spread of a fungal colony. Macropores, in the form of gaps orientated in various directions, were artificially introduced in replicated samples of sand and a sandy loam. The pathogenic fungus Rhizoctonia solani AG4 was introduced on the surface (encountering a gap whilst the colony expands over the surface) or within soil (encountering a gap whilst the colony spreads through the bulk soil). Depending on the orientation, location and width, gaps were demonstrated to act as preferential pathways (increasing the colonisation efficiency of R. solani), or as a partial barrier (reducing the colonisation efficiency). Within bulk soil, R. solani preferentially followed larger pores, enabling the fungus to by-pass more densely areas. Study of soil thin sections revealed that hyphal densities were greater in gaps than in the surrounding bulk soil. We use the results to discuss how macropore structure in soil can either enhance or reduce the parasitic spread and saprotrophic invasion of soil by fungi.  相似文献   

5.
A cultivation-based approach was used to determine the in vitro antagonistic potential of soil bacteria towards Rhizoctonia solani AG3 and Fusarium oxysporum f. sp. lini (Foln3). Four composite soil samples were collected from four agricultural sites with previous documentation of disease suppression, located in France (FR), the Netherlands (NL), Sweden (SE) and the United Kingdom (UK). Similarly, two sites from Germany (Berlin, G-BR; and Braunschweig, G-BS) without documentation of disease suppression were sampled. Total bacterial counts were determined by plating serial dilutions from the composite soil samples onto R2A, AGS and King's B media. A total of 1,788 isolates (approximately 100 isolates per medium and site) was screened for antifungal activity, and in vitro antagonists (327 isolates) were found amongst the dominant culturable bacteria isolated from all six soils. The overall proportion of antagonists and the number of isolates with inhibitory activity against F. oxysporum were highest in three of the suppressive soils (FR, NL and SE). Characterization of antagonistic bacteria revealed a high phenotypic and genotypic diversity. Siderophore and protease activity were the most prominent phenotypic traits amongst the antagonists. The composition and diversity of antagonists in each soil was site-specific. Nevertheless, none of the antimicrobial traits of bacteria potentially contributing to soil suppressiveness analyzed in this study could be regarded as specific to a given site.  相似文献   

6.
Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from a pear orchard not having a cauliflower crop for at least 40 years. These two soils were subjected to five successive cropping cycles with cauliflower or remaining fallow in a greenhouse experiment. Soils were inoculated with R. solani AG 2-1 only once or before every crop. Disease decline occurred in all treatments cropped with cauliflower, either because of a decreased pathogen population or increased suppressiveness of the soil. Disease suppressiveness tests indicated that the conducive soil became suppressive after five subsequent cauliflower crops inoculated each cycle with R. solani AG 2-1. Suppressiveness of all treatments was measured in a seed germination test (pre-emergence damping-off) as well as by measuring the spread of R. solani symptoms in young plants (post-emergence damping-off). Results showed that suppressiveness was significantly stimulated by the successive R. solani inoculations; presence of the cauliflower crop had less effect. Suppressiveness was of biological origin, since it disappeared after sterilization of the soil. Moreover, suppressiveness could be translocated by adding 10% suppressive soil into sterilized soil. The suppressive soil contained higher numbers of culturable filamentous actinomycetes than the conducive soil, but treatments enhancing suppressiveness did not show an increased actinomycetes population. The suppressiveness of the soil samples did also not correlate with the number of pseudomonads. Moreover, no correlation was found with the presence of different mycoparasitic fungi, i.e. Volutella spp., Gliocladium roseum, Verticillium biguttatum and Trichoderma spp. The suppressive soil contained a high percentage of bacteria with a strong in vitro inhibition of R. solani. These bacteria were identified as Lysobacter (56%), Streptomyces (23%) and Pseudomonas (21%) spp. A potential role of Lysobacter in soil suppressiveness was confirmed by quantitative PCR detection (TaqMan), since a larger Lysobacter population was present in suppressive cauliflower soil than in conducive pear orchard soil. Our experiments showed that successive cauliflower plantings can cause a decline of the damage caused by R. solani AG 2-1, and that natural disease suppressiveness was most pronounced after subsequent inoculations with the pathogen. The mode of action of the decline is not yet understood, but antagonistic Lysobacter spp. are potential key organisms.  相似文献   

7.
Environmentally friendly control measures are needed for the soil-borne pathogen, Pythium ultimum. This pathogen can cause severe losses to field- and greenhouse-grown cucumber and other cucurbits. Live cells and ethanol extracts of cultures of the bacterium Serratia marcescens N4-5 provided significant suppression of damping-off of cucumber caused by P. ultimum when applied as a seed treatment. Live cells of this bacterium also suppressed damping-off caused by P. ultimum on cantaloupe, muskmelon, and pumpkin. Culture filtrates from strain N4-5 contained chitinase and protease activities while ethanol extracts contained the antibiotic prodigiosin, the surfactant serrawettin W1, and possibly other unidentified surfactants. Production of prodigiosin and serrawettin W1 was temperature-dependent, both compounds being detected in extracts from N4-5 grown at 28 °C but not in extracts from N4-5 grown at 37 °C. Ethanol extracts from strain N4-5 grown at 28 °C inhibited germination of sporangia and mycelial growth by P. ultimum in in vitro experiments. There was no in vitro inhibition of P. ultimum associated with ethanol extracts of strain N4-5 grown at 37 °C. Prodigiosin, purified from two consecutive thin-layer chromatography runs using different solvent systems, inhibited germination of sporangia and mycelial growth of P. ultimum. Another unidentified compound(s) also inhibited germination of sporangia but did not inhibit mycelial growth. There was no in vitro inhibition associated with serrawettin W1. These results demonstrate that live cells and cell-free extracts of S. marcescens N4-5 are effective for suppression of damping-off of cucumber caused by P. ultimum possibly due in part to the production of the antibiotic prodigiosin.  相似文献   

8.
9.
The concentration of glucosinolates (GSLs) and isothiocyanates (ITCs) was monitored in soil following the incorporation of pulverised high and low GSL varieties of rape (Brassica napus) and mustard (Brassica juncea) biofumigant crops. The concentration of both GSLs and ITCs in soil was highest immediately (30 min) after incorporation and they could be detected for up to 8 and 12 d, respectively. Irrigating with 18 mm of water over 3 h had no effect on either GSL or ITC concentrations. The amounts detected were generally related to the amount of GSL added in the incorporated plant tissue. Maximum total GSL concentration detected in the soil was 13.8 and 22.8 nmol g−1 for rape and mustard, respectively, representing 7% and 13% of the original GSL present in the incorporated tissues. The non-ITC liberating GSLs (predominately indolyl GSLs) were found at lower concentrations than ITC-liberating GSLs, but tended to persist longer in the soil. Maximum total ITC concentration was 21.6 nmol g−1 and 90.6 nmol g−1 for rape and mustard, respectively. Calculated ITC release efficiency was 26% and 56% for high GSL rape and mustard, respectively at the time of the highest ITC concentration measured. These are the first reported measurements of GSLs in soil following biofumigant incorporation. They indicate that a significant proportion of plant GSL can persist un-hydrolysed in the soil for several days following Brassica incorporation. Further investigations of plant treatment and incorporation methods to maximise ITC release are warranted.  相似文献   

10.
Ascospores of Sclerotinia sclerotiorum produced from apothecia are the primary source of inoculum for causing diseases such as white mold of common bean, pod rot of pea, stem blight of canola and head rot of sunflower and safflower in the Canadian prairies. A field study was conducted for 4 years to determine efficacy of control of production of apothecia from carpogenically germinated sclerotia of S. sclerotiorum by soil amendment with Perlka® (calcium cyanamide) and S-H mixture (a formulated compound). Results of the 4-year experiments showed that amendment of soil with Perlka® at low (30 g/m2) or high (60 g/m2) rate was effective in reducing carpogenic germination of sclerotia and production of apothecia under the canopy of host crops (common bean and canola) and a non-host crop (wheat). In the experiments of 1988, for example, the numbers of apothecia produced in the treatments of Perlka®-low rate (30 g/m2), Perlka®-high rate (60 g/m2) and untreated control were 42, 46, and 182 apothecia/plot (m2), respectively, for bean; 89, 42, and 318 apothecia/plot (m2), respectively, for canola; and 146, 143, and 412 apothecia/plot (m2), respectively, for wheat. However, soil amendment of S-H mixture at low (30 g/m2) or high (60 g/m2) rate was ineffective in reducing carpogenic germination of sclerotia and production of apothecia for all the 4 years of testing in all three crops. The ineffectiveness of S-H mixture and the practicality of Perlka® for control of Sclerotinia diseases of crops grown under Canadian prairie conditions are discussed.  相似文献   

11.
Compared to other crops, Brassicas are generally considered to grow well in soils with low P availability, however, little is known about genotypic differences within Brassicas in this respect. To assess the role of rhizosphere properties in growth and P uptake by Brassicas, three Brassica genotypes (mustard, Brassica juncea cv Chinese greens and canola, Brassica napus cvs Drum and Outback) were grown in an acidic soil with low P availability at two treatments of added P: 25 and 100 mg P kg−1 as FePO4 (P25 and P100). The plants were harvested at the 6-leaf stage, at flowering and at maturity. Shoot and root dry weight (dry weight) and root length increased with time and were lower in P25 than in P100. In P25, shoot dry weight was lowest in Outback and highest in Chinese greens. In the P100 treatment, Chinese greens had a higher shoot dry weight than the two canola cultivars. Chinese greens had a lower root dry weight and root length at flowering and maturity than the canola genotypes in both P treatments. Irrespective of P treatment, shoot P concentration was lower in Chinese greens than in the two canola genotypes. Specific P uptake (μg P m−1 root length) decreased with time. In P25, Chinese greens had the lowest specific P uptake at the 6-leaf stage but it was higher than in the two canola genotypes at flowering and maturity. In P100, Outback had the lowest specific P uptake. Available P in the rhizosphere (resin P) decreased over time with the greatest decrease from the 6-leaf stage to flowering. In P25, resin P in the rhizosphere was greatest in Chinese greens at the 6-leaf stage and flowering and smallest in Outback at flowering. Microbial P and acid phosphatase activity changed little over time, were not affected by P treatment and there were only small differences between the genotypes. The rhizosphere microbial community composition [assessed by fatty acid methyl ester (FAME) analysis] of Outback and Chinese greens differed from that of the other two genotypes at the 6-leaf stage and flowering, respectively. At maturity, all three genotypes had distinct microbial communities. Plant traits such as production of high biomass at low shoot P concentrations as well as the capacity to maintain high P availability in the rhizosphere by P mobilisation can explain the observed differences in plant growth and P uptake among the Brassica genotypes.  相似文献   

12.
Nanoparticles (NPs) of TiO2 and ZnO are receiving increasing attention due to their widespread applications. To evaluate their toxicities to the earthworm Eisenia fetida (Savigny, 1826) in soil, artificial soil systems containing distilled water, 0.1, 0.5, 1.0 or 5.0 g kg−1 of NPs were prepared and earthworms were exposed for 7 days. Contents of Zn and Ti in earthworm, activities of antioxidant enzymes, DNA damage to earthworm, activity of cellulase and damage to mitochondria of gut cells were investigated after acute toxicity test. The results from response of the antioxidant system combined with DNA damage endpoint (comet assay) indicated that TiO2 and ZnO NPs could induce significant damage to earthworms when doses were greater than 1.0 g kg−1. We found that Ti and Zn, especially Zn, were bioaccumulated, and that mitochondria were damaged at the highest dose in soil (5.0 g kg−1). The activity of cellulase was significantly inhibited when organisms were exposed to 5.0 g kg−1 of ZnO NPs. Our study demonstrates that both TiO2 and ZnO NPs exert harmful effects to E. fetida when their levels are higher than 1.0 g kg−1 in soil and that toxicity of ZnO NPs was higher than TiO2.  相似文献   

13.
14.
The fungus Trichoderma atroviride SC1 is an experimental biocontrol agent (BCA) that is active against the fungus Armillaria mellea. Following the application of Trichoderma to the surface soil of a vineyard, we used a highly specific real-time PCR, previously validated for the analysis of soil microcosms, to monitor the populations of this fungus at different soil depths over several months. The quantification obtained using this molecular method was highly correlated with laboratory assays of colony-forming units. The native communities of bacteria and fungi in the soil were analyzed using automated ribosomal intergenic spacer analysis (ARISA), and transient changes were observed following the application of T. atroviride SC1 conidia. A principal component of variance analysis demonstrated that the introduction of T. atroviride SC1 had an effect on the soil microflora during the first two weeks following inoculation. However, at later dates, environmental conditions had a higher influence on the surveyed communities than the BCA application, as confirmed through the use of the Shannon index of biodiversity. Soil depth had a strong influence on the composition and biodiversity of fungal communities.  相似文献   

15.
Interactions between the biocontrol fungus Clonostachys rosea IK 726 and a tomato/Glomus intraradices BEG87 symbiosis were examined with and without wheat bran, which served as a food base for C. rosea. In soil without wheat bran amendment, inoculation with C. rosea increased plant growth and altered shoot nutrient content resulting in an increase and decrease in P and N content, respectively. Inoculation with G. intraradices had no effect on plant growth, but increased the shoot P content. Dual inoculation with G. intraradices and C. rosea followed the pattern of C. rosea in terms of plant growth and nutrient content. Wheat bran amendment resulted in marked plant growth depressions, which were counteracted by both inoculants and dual inoculation increased plant growth synergistically. Amendment with wheat bran increased the population density of C. rosea and reduced mycorrhizal fungus colonisation of roots. The inoculants were mutually inhibitory, which was shown by a reduction in root colonisation with G. intraradices in treatments with C. rosea and a reduction in colony-forming units (cfu) of C. rosea in treatments with G. intraradices, irrespective of wheat bran amendment. Moreover, both inoculants markedly influenced soil microbial communities examined with biomarker fatty acids. Inoculation with G. intraradices increased most groups of microorganisms irrespective of wheat bran amendment, whereas the influence of C. rosea on other soil microorganisms was affected by wheat bran amendment. Overall, inoculation with C. rosea increased and decreased most groups of microorganisms without and with wheat bran amendment, respectively. In conclusion, despite mutual inhibition between the two inoculants this interaction did not impair their observed plant growth promotion. Both inoculants also markedly influenced other soil microorganisms, which should be further studied in relation to their plant growth-promoting features.  相似文献   

16.
The effect of elevated pCO2 (60 Pa) on the frequency of nitrate-dissimilating Pseudomonas (NDP) was investigated in the rhizosphere of fertilised Lolium perenne swards in the Swiss Free Air Carbon dioxide Enrichment (FACE) experiment. Numbers of cultivable root-associated Pseudomonas were greater under elevated (60 Pa) than under ambient (36 Pa) pCO2 in both high and low N-fertilised swards. For both pCO2 conditions, the NDP frequency decreased with closer root proximity to L. perenne roots in low fertilised swards. Anyway, in high N swards the NDP frequency was similar in root and soil fractions. Thus, N availability may be a major factor influencing NDP populations under elevated pCO2, most likely due to increased competition for N between plant and nitrate-dissimilating bacteria.  相似文献   

17.
Genetically modified crops, that produce Cry insecticidal crystal proteins (Cry) from Bacillus thuringiensis (Bt), release these toxins into soils through root exudates and upon decomposition of residues. The fate of these toxins in soil has not yet been clearly elucidated. Persistence can be influenced by biotic (degradation by microorganisms) and abiotic factors (physicochemical interactions with soil components, especially adsorption). The aim of this study was to follow the fate of Cry1Aa Bt toxin in contrasting soils subjected to different treatments to enhance or inhibit microbial activity, in order to establish the importance of biotic and abiotic processes for the fate of Bt toxin. The toxin was efficiently extracted from each soil using an alkaline buffer containing a protein, bovine serum albumin, and a nonionic surfactant, Tween 20. The marked decline of extractable toxin after incubation of weeks to months was soil-dependent. The decrease of extractable toxin with incubation time was not related to microbial degradation but mainly to physicochemical interactions with the surfaces that may decrease immunochemical detectability or enhance protein fixation. Hydrophobic interactions may play an important role in determining the interaction of the toxin with surfaces.  相似文献   

18.
Heavy nitrogen fertilisation is often implemented in maize cropping systems, but it can have negative environmental effects. Nitrogen-fixing, phytohormone-producing Azospirillum plant growth-promoting rhizobacteria (PGPR) have been proposed as crop inoculants to maintain high yield when decreasing nitrogen fertilisation. In this context, agronomic and ecological effects of the inoculation of maize seeds with the PGPR Azospirillum lipoferum CRT1 were studied in two consecutive years. The inoculant was recovered from maize at 105 CFU g−1 root or higher. Inoculation enhanced root growth and development based on results of root biomass, rooting depth and/or parameters describing root system architecture, and a transient positive effect on shoot height was observed in the first year. Inoculation did not increase yield, but reducing mineral nitrogen fertilisation had only a minor effect on yield. This suggests that the lack of positive effect of the PGPR on yield was due to the fact that the whole field was heavily fertilised in years prior to the start of the experiment. Soil nitrogen levels decreased during the 2 years of the study, and the inoculant had no effect on residual soil nitrogen levels at harvest. Inoculation had no impact on Fusarium symptoms and concentration of the mycotoxin deoxynivalenol in maize kernels, but both were influenced by the interaction between inoculation and nitrogen fertilisation level. Inoculation did not influence meso/macrofaunal soil populations, but had a small but significant effect (smaller than the effect of added nitrogen) on decomposition, nitrogen mineralisation and mesofaunal colonisation of maize leaves (in litter bags). Overall, the ecological impact of seed inoculation with the PGPR A. lipoferum CRT1 was small, and its magnitude was smaller than that of chemical nitrogen fertilisation.  相似文献   

19.
Age determination of tropical trees, and monocotyledons in general, is not an easy task. Representatives of the Dracaena genus have survived in woodlands on dry margins of the Tethys tropical forest since the Tertiary Period. Here we present analyses of Dracaena cinnabari (DC) stand dynamics via direct and indirect methods of age determination. The direct method has taken advantage of historical photographs of DC mountain woodlands from Soqotra during an Austrian scientific expedition in 1899 by comparing these with the woodland stage in 2004. A decline in the number of tree individuals is obvious, but considering the little that is known about dynamics of DC woodland, one cannot simply state that such decline means forest destruction. The results from this direct method are compared to an indirect mathematical method of age determination using data from 2003. Indirect age determination values differed only about 6.5% from those obtained with the direct method, indicating that the indirect methodology is quite precise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号