首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   

2.
本研究首次通过克隆、测序获得了11个西藏牦牛类群共111头个体的mtDNA 16S rRNA基因全序列,并分析了西藏牦牛的遗传多样性、分类关系、起源和分化,为进一步保护和合理利用西藏牦牛遗传资源以及探讨牦牛类群的划分提供分子依据。结果表明:西藏牦牛16S rRNA基因全序列长度为1571 bp或1570 bp(LWQ4);G+C平均含量37.8%,具有明显的碱基偏倚性;平均核苷酸多样性(Pi)为0.00291,平均单倍型多样性(Hd)为0.8501±0.0009,111个样本共发现48种单倍型并聚为2簇,表明西藏牦牛具有较高的遗传多样性并存在2个母系起源;Kimura双参数遗传距离范围为0.00098-0.00694,11个西藏牦牛类群划分为2大类:嘉黎牦牛、巴青牦牛、丁青牦牛、工布江达牦牛、帕里牦牛、斯布牦牛、康布牦牛、桑桑牦牛、江达牦牛、桑日牦牛为一类,类乌齐牦牛单独为一类。本研究发现类乌齐牦牛具有较丰富的遗传多样性,并且发现了一个序列特异个体LWQ4,需要对其进行更深入的研究。牛种间的聚类结果显示,西藏牦牛与美洲野牛的亲缘关系最近,与普通牛、水牛的亲缘关系相对较远,本研究支持将牦牛从牛属(Bos taurus)中分离出来,作为一个独立的牦牛属(Poephagus)的观点。  相似文献   

3.
16S rRNA基因高通量测序分析牛粪发酵细菌多样性   总被引:1,自引:0,他引:1  
将养殖粪便进行资源化处理,尤其是将粪便堆肥发酵后变为生物肥料还田,具有重要的经济、社会和生态效益。之前关于细菌在堆肥过程中的研究,大部分采用实验室培养、分离、鉴定的方法,由于受培养方式的限制,仅能分析粪肥中有限的细菌类别。16S r RNA基因作为生物物种的特征核酸序列,被认为是最适于细菌系统发育和分类鉴定研究的指标。本研究使用16S r RNA基因高通量测序技术,分析了牛粪自然发酵与添加益生菌剂发酵过程中细菌种群的多样性变化。结果表明,1)新鲜牛粪、自然发酵1个月、自然发酵6个月的牛粪中细菌种群并没有明显的变化规律,说明自然发酵过程主要依赖于新鲜牛粪中携带的细菌种群;2)添加益生菌发酵后,细菌种群明显不同于不自然发酵过程中的细菌种群,其中变形菌门(Proteobacteria)细菌显著增加,而厚壁菌门(Firmicutes)细菌显著减少,说明益生菌剂能够显著改变堆肥过程中的细菌种群。本研究对于理解牛粪堆肥过程、提高堆肥效果,以及新型堆肥益生菌剂的开发都具有重要意义。  相似文献   

4.
微生物菌剂对菠菜生长特性及土壤微生物多样性的影响   总被引:9,自引:0,他引:9  
通过化肥减量20%和40%并配施微生物菌剂试验,研究菌剂对菠菜营养生长的影响,并通过提取土壤微生物总DNA,进行16S rDNA的PCR-DGGE研究微生物多样性。结果表明:在菠菜生长后期,配施菌剂处理的叶绿素含量(SPAD值)和叶绿素荧光参数(Fv/Fm)较高,其中,T5(化肥减量40%+菌剂减量40%)处理SPAD为52.856,T3(化肥减量20%+菌剂减量40%)处理Fv/Fm为0.797,而在生长前期则表现为T1(全量化肥)处理较高;菠菜可食部分硝酸盐含量以对照(CK,不施肥)处理最高,为1 009.21 mg.kg-1,添加微生物菌剂处理(T2~T5)都明显少于CK和T1处理;对氮、磷、钾养分的吸收利用率以T2(化肥减量20%+全量菌剂)处理最好;菠菜产量化肥减量处理(T2~T5)较T1处理均增产,T4(化肥减量40%+全量菌剂)处理的增产量最大,平均产量达到277.73 g.盆-1,增加170%;常规化肥(T1)处理的土壤微生物丰富度指数最低,香农-威尔指数(Shannon-Wierner index)为0.398,较CK 0.498有所下降,而施用微生物菌剂的各处理(T2~T5)为0.547~0.983,土壤微生物多样性指数明显提高。微生物菌剂对菠菜起到显著促生作用,以T4处理最好,对提高菠菜土壤微生物多样性方面以T3处理最好。  相似文献   

5.
微生物溯源是通过比较污染样品与可能的污染源中粪便污染指示微生物的差异或其生物标记的有无来判断污染样品和可能污染源之间存在的联系,从而确定污染来源。鉴于传统的溯源方法操作复杂、耗时长,建立了一种基于拟杆菌群体特异性16S rRNA基因进行溯源的方法,利用该方法证明了水源周围的池塘对饮用水的污染贡献较大。与已报道的另一种新的快速溯源方法——利用大肠杆菌特异性基因phoE(膜外周磷通道蛋白编码基因)的PCR—DGGE技术进行比较研究的结果表明,利用拟杆菌特异性16S rRNA基因的PCR—DGGE溯源方法结果可靠、操作简便,较之大肠杆菌phoE基因的PCR—DGGE溯源方法,拟杆菌的溯源方法更适合塘坝型饮用水的溯源研究。  相似文献   

6.
Previous research has shown that soil structure can influence the distribution of bacteria in aggregates and, thereby, influence microbiological processes and diversity at small spatial scales. Here, we studied the microbial community structure of inner and outer fractions of microaggregates of a desert agricultural soil from the Imperial Valley of Southern California. To study the distribution of soil bacteria, 1,536 clones were identified using phylogenetic taxon probes to classify arrays of 16S rRNA genes. Among the predominant taxonomic groups were the α-Proteobacteria, Planctomycetes, and Acidobacteria. When compared across all phyla, the taxonomic compositions and distributions of bacterial taxa associated with the inner and outer fractions were nearly identical. Our results suggest that the ephemeral nature of soil aggregates in desert agricultural soils may reduce differences in the spatial distribution of bacterial populations as compared to that which occur in soils with more stable aggregates.  相似文献   

7.
随着分子生物技术的发展,不可培养微生物多样性研究的难题得到了解决。肠道微生物处于特殊的生态环境条件下,分子生物学技术的应用使得肠道微生物多样性的研究进入了一个崭新的阶段。本文主要介绍了基于16S rRNA基因片段的一些肠道微生物研究工作中常用的分子生物学分析方法,主要包括变性梯度凝胶电泳(DGGE),温度梯度凝胶电泳(TGGE),单链构象多态性(SSCP),限制性片段长度多态性(RFLP),放大片断长度多态性(AFLP)和随机扩增多态性DNA(RAPD)等指纹图谱技术。  相似文献   

8.
9.
WANG Meng  CHEN Jia-Ku  LI Bo 《土壤圈》2007,17(5):545-556
The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.  相似文献   

10.
We designed an oligonucleotide microarray using probe sequences based upon a phylogenetic analysis of 16S rRNA genes recovered from members of the bacterial division Acidobacteria. A total of 42,194 oligonucleotide probes targeting members of the Acidobacteria division at multiple phylogenetic levels were included on a high-density microarray. Positive control hybridizations revealed a linear relationship between hybridization signal and template concentration, and a substantial decrease in non-specific hybridization was achieved through the addition of 2.5 M betaine to the hybridization buffer. A mean hybridization signal value was calculated for each Acidobacteria lineage, with the resultant lineage-specific hybridization data revealing strong predictive value for the positive control hybridizations. The Acidobacteria phylochip was then used to evaluate Acidobacteria rRNA genes from a Wisconsin soil and within a soil clay fraction. The Acidobacteria hybridization profile revealed the predominance of Acidobacteria subdivisions four and six, and also suggested a decrease in the abundance of subdivision six relative to subdivision four in the soil clay fraction. The change in relative abundance of these subdivisions in a soil clay fraction was supported by data from quantitative PCR. These results support the utility of a phylogenetic microarray in revealing changes in microbial population-level distributions in a complex soil microbial assemblage.  相似文献   

11.
A sensitivity-resistance index was developed, and proved to be a very sensitive biomonitor of soil pollution with heavy metals. The index was developed by a step-by-step approach. Ultimately, the bacterial soil microflora was divided into three groups, senstivive, tolerant, and resistant microflora. Zn and Cd sensitivity was defined as no growth occurring in the presence of 5 and 0.5 mg l-1 of these metals, respectively, while resistance was defined as distinct growth in the presence of 50 and 16 mg l-1, respectively. The sensitivity: resistance ratio of a referent clay soil (0.57 mg Cd kg-1 and 140 mg Zn kg-1) was 0.53, but for polluted (6 mg Cd kg-1 + 670 mg Zn kg-1) clay soil, the ratio was 0.24. For a referent (0.06 mg Cd kg-1 + 12 mg Zn kg-1) sandy soil the sensitivity: resistance ratio was 1.50 whereas polluted (2.3 mg Cd kg-1 + 252 mg Zn kg-1) sandy soil had a ratio 0.19. The ecological value of the sensitivity-resistance lies in its capacity to reflect potential deradation of aromatic compounds. It has been shown repeatedly that sensitive bacteria grow significantly better on a range of selected aromatic compounds. It has been speculated that resistance fo heavy metals may reduce the bioremediation capacity of soil towards chlorinated aromatics and polyaromatic hydrocarbons.  相似文献   

12.
Tools to manage the emission of the greenhouse gas nitrous oxide (N2O), an intermediate of both nitrification and denitrification, from soils are limited. To date, the nitrification inhibitor dicyandiamide (DCD) is one of the most effective tools available to livestock farmers for reducing N2O emissions and minimizing leaching of nitrogen in response to increased urine deposition in grazed pasture systems. Despite its effectiveness in decreasing N losses from animal urine by inhibiting N processes in soils, the effect of DCD on the population structure of denitrifiers and overall bacterial community composition is still uncertain. Here we use three New Zealand dairy-grazed pasture soils to determine the effects of DCD application on microbial community richness and composition at both functional (genes involved in the denitrification process) and phylogenetic (overall bacterial community composition based on 16S rRNA profiling) levels. Results further confirm that the effects on microbial populations are minimal and transient in nature. The impact of DCD on microbial community structure was soil dependent, and a greater effect was attributed to intrinsic soil properties like soil texture, with community response to DCD in combination with urine being comparable to that under urine alone. Addition of DCD to cattle urine also reduced N2O emission between 23 and 67%.  相似文献   

13.
应用PCR-RFLP和rRNA分析法研究了户用沼气池厌氧活性污泥细菌的多样性。采用直接提取法提取了户用沼气池微生物宏基因组DNA,构建了细菌的16S rDNA克隆文库。随机挑取了144个准确含有16S rDNA的阳性克隆进行PCR-RFLP分析,聚类得到46个OTUs(operational taxonomic units),其中3个OTUs是优势类群,分别占14%,10%和9%,21个OTUs只含有单个克隆。随机挑取了26个克隆进行测序,并构建了系统发育进化树。结果表明:农村户用沼气池中细菌种类较为丰富,占优势的类群分别为Firmicutes(28%)、Delta-proteobacteria(18%)和Bacteroidetes(17%),大多数16S rDNA序列与GenBank数据库中未培养细菌相似性最高(91%~99%),为进一步研究、利用沼气池能源提供了基础资料。  相似文献   

14.
Volcanogenous soils are widely distributed in Japan. Andosols, a group of volcanogenous soil, are known to show several physicochemical characteristics such as high porosity, presence of allophane, and high content of organic carbon (FitzPatrick 1980). The formation of Andosols is a very rapid process resulting from the large surface area of the volcanic ash-derived parent materials.  相似文献   

15.
The soybean-nodulating Sinorhizobium fredii strain has been reported to possess three copies of rRNA gene operons. In the present study, we investigated the diversity of the 16S–23S rDNA internal transcribed spacer (ITS) regions of S. fredii strains. Based on the sequences of the ITS regions, we divided the sequences of the S.   fredii strains into two groups, type A and type B. A dot-matrix analysis indicated that the region flanked by tRNA-Ile and tRNA-Ala is longer in type A than in type B, whereas type B sequences possess longer regions upstream of tRNA-Ile and downstream of tRNA-Ala than those of the type A sequence. Restriction fragment length polymorphism of polymerase chain reaction product (PCR-RFLP) of the ITS region in the cloned plasmids as templates could reconstruct the PCR-RFLP pattern from the total DNA as a template. The results of Southern hybridization using the insert sequence between tRNA-Ile and tRNA-Ala in type A as a probe indicated differences in the copy numbers of the type A ITS regions among the strains tested. These results indicated that S. fredii strains possess the type A and type B sequences of the ITS regions at ratios of 3:0, 2:1, 1:2 or 0:3. These S. fredii strains may be useful biological materials for the study of intraspecific variations.  相似文献   

16.
Monomethyl-mercury is one of the most toxic compounds. Methylation of Hg usually appears under anoxic conditions. In Swiss forest soils, methyl-Hg concentrations of up to 3 μg kg−1 soil dw have been observed, but the impact of methyl-Hg on soil microorganisms have rarely been examined so far. In this study, we investigated the effect of increasing concentrations of methyl-Hg (0, 5, 20, 90 μg kg−1 soil dw) on the microbial communities in various forest soils differing in their physico-chemical properties. Experiments were conducted in microcosms under controlled conditions and the basal respiration (BR), the microbial biomass carbon (MBC) and the bacterial and fungal community structures using T-RFLP-profiling were investigated. BR was significantly affected by methyl-Hg. In general, the BR increased with increasing methyl-Hg concentrations, whereas the MBC was significantly reduced. Bacterial communities were more sensitive to methyl-Hg than fungal communities. In five out of seven soils, the bacterial community structures differed significantly between the treatments whereas the fungal communities did not. The impact of methyl-Hg on the soil bacterial communities was site specific. In one soil, a methyl-Hg concentration of already 5 μg kg−1 soil dw significantly affected the relative abundance of 13% bacterial operational taxonomic units (OTU), whereas in other soils concentrations of even 90 μg kg−1 soil dw rarely affected the abundance of OTUs. In this study, for the first time, the impact of methyl-Hg on soil bacterial and fungal communities in forest soils was assessed. We showed that its impact strongly depends on the physico-chemical conditions of the soil and that bacterial communities were more sensitive to methyl-Hg than fungi.  相似文献   

17.
The slash-and-burn system is a subsistence agronomical practice widespread in tropical areas worldwide. This system has been extensively studied,especially for its impacts on agronomical aspects and soil physicochemical properties; however, knowledge of soil microbial diversity under slash and bum is scarce. In this study, for the first time, soil bacterial diversity of three locations from Central Mozambique, where slash and burn has been practiced for different durations of the forest fallow p...  相似文献   

18.
Abstract

The rapid expansion of mandarin (Citrus reticulata L.) production areas with high agrochemical input in the highland areas of northern Thailand has resulted in negative effects in terms of production, environment, soil quality, and public health. The use of microorganisms as plant growth promoters is an alternative method to reduce agrochemical input. Thus, we studied the diversity of endophytic actinomycetes in mandarin and their potential as plant growth promoters. A total of 252 endophytic actinomycete isolates were recovered from mandarin. Based on spore chain morphology, cell wall type, and 16S rRNA gene sequence, the isolates were classified into six genera: Streptomyces, Nocardia, Nocardiopsis, Spirillospora, Microbispora and Micromonospora. The most frequent isolates recovered were members of Streptomyces (85.3%). Selected isolates (64 isolates) from these genera were evaluated for their indole-3-acetic acid (IAA) production potential in a medium with 2 mg mL?1 tryptophan, and all the selected isolates showed the potential to produce IAA, with average values of IAA production of 13.34, 3.36, 140.38, 12.55, 1.40, and 6.19 µg IAA mL?1, respectively. Isolates of genus Nocardiopsis showed a very high ability to produce IAA that was the highest among all the genera, with values ranging from 62.23 to 222.75 µg mL?1. Twelve isolates selected from these genera were inoculated onto mandarin seedlings, and the results indicated that the shoot height, fresh shoot weight and fresh root weight of the seedlings were promoted by the inoculation of endophytic actinomycetes, with values ranging from 20.2 to 49.1%, 14.9 to 53.6%, and 1.6 to 102% over the control, respectively.  相似文献   

19.
Background, Aims, and Scope  Knowledge about shifts of microbial community structure and diversity following different agricultural management practices could improve our understanding of soil processes and thus help us to develop sound management strategies. A long-term fertilization experiment was established in 1989 at Fengqiu (35°00′N, 114°24′E) in northern China. The soil (sandy loam) is classified as aquic inceptisols and has received continuous fertilization treatments since then. The fertilization treatments included control (CK, no fertilizer), chemical fertilizers nitrogen (N) and potassium (K) (NK), phosphorous (P) and K (PK), NP, NPK, organic manure (OM), and half chemical fertilizers NPK plus half organic manure (1/2NPKOM). The objective of this study was to examine if the microbial community structure and diversity were affected by the long-term fertilization regimes. Materials and Methods  Soil samples were collected from the long-term experimental plots with seven treatments and four replications in April 2006. Microbial DNAs were extracted from the soil samples and the 16S rRNA genes were PCR amplified. The PCR products were analyzed by DGGE, cloning and sequencing. The bacterial community structures and diversity were assessed using the DGGE profiles and the clone libraries constructed from the excised DGGE bands. Results  The bacterial community structure of the OM and PK treatments were significantly different from those of all other treatments. The bacterial community structures of the four Ncontaining treatments (NK, NP, NPK and 1/2NPKOM), as well as CK, were more similar to each other. The changes in bacterial community structures of the OM and PK treatments showed higher richness and diversity. Phylogenetic analyses indicated that Proteobacteria (30.5%) was the dominant taxonomic group of the soil, followed by Acidobacteria (15.3%), Gemmatimonadetes (12.7%), etc. Discussion  Irrespective of the two fertilization treatments of OM and PK, the cluster analysis showed that bacterial communities of the remaining five treatments of CK, NK, NP, NPK and 1/2NPKOM seemed to be more similar to each other, which indicated the relatively weak effects of the four N-containing treatments on soil bacterial communities. N fertilizer may be considered as a key factor to counteract the effects of other fertilizers on microbial communities. Conclusions  Our results show that long-term fertilization regimes can affect bacterial community structure and diversity of the agricultural soil. The OM and PK treatments showed a trend towards distinct community structures, higher richness and diversity when compared to the other treatments. Contrasting to the positive effects of OM and PK treatments on the bacterial communities, N fertilizer could be considered as a key factor in the soil to counteract the effects of other fertilizers on soil microbial communities. Recommendations and Perspectives  Because of the extremely high abundance and diversity of microorganisms in soil and the high heterogeneity of the soil, it is necessary to further examine the effects of fertilization regimes on microbial community and diversity in different type soils for comprehensively understanding their effects through the appropriate combination of molecular approaches. ESS-Submission Editor: Chengrong Chen, PhD (c.chen@griffith.edu.au)  相似文献   

20.
Volcanism is a primary process of land formation.It provides a model for understanding soil-forming processes and the role of pioneer bacteria and/or archaea as early colonizers in those new environments.The objective of this study was to identify the microbial communities involved in soil formation.DNA was extracted from soil samples from the Llaima volcano in Chile at sites destroyed by lava in different centuries(1640,1751,and 1957).Bacterial and archaeal 16 S r RNA genes were analyzed using quantitative polymerase chain reaction(q PCR)and Illumina Mi Seq sequencing.Results showed that microbial diversity increased with soil age,particularly between the 1751 and 1640 soils.For archaeal communities,Thaumarchaeota was detected in similar abundances in all soils,but Euryarchaeota was rare in the older soils.The analysis of bacterial 16 S r RNA genes showed high abundances of Chloroflexi(37%),Planctomycetes(18%),and Verrucomicrobia(10%)in the youngest soil.Proteobacteria and Acidobacteria were highly abundant in the older soils(16%in 1640 and 15%in 1751 for Acidobacteria;38%in 1640 and 27%in 1751 for Proteobacteria).The microbial profiles in the youngest soils were unusual,with a high abundance of bacteria belonging to the order Ktedonobacterales(Chloroflexi)in the 1957 soil(37%)compared with the 1751(18%)and 1640(7%)soils.In this study,we show that there is a gradual establishment of the microbial community in volcanic soils following an eruption and that specific microbial groups can colonize during the early stages of recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号