首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantify the contribution of biological nitrogen fixation (BNF) to legume crops using the 15N natural abundance technique, it is necessary to determine the 15N abundance of the N derived from BNF—the B value. In this study, we used a technique to determine B whereby both legume and non-N2-fixing reference plants were grown under the same conditions in two similar soils, one artificially labelled with 15N, and the other not. The proportion of N derived from BNF (%Ndfa) was determined from the plants grown in the 15N-labelled soil and it was assumed that the %Ndfa values of the legumes grown in the two soils were the same, hence the B value of the legumes could be calculated. The legumes used were velvet bean (Mucuna pruriens), sunnhemp (Crotalaria juncea), groundnut (Arachis hypogaea) and soybean (Glycine max) inoculated, or not, with different strains of rhizobium. The values of %Ndfa were all over 89%, and all the legumes grown in unlabelled soil showed negative δ15N values even though the plant-available N in this soil was found to be approximately +6.0‰. The B values for the shoot tissue (Bs) were calculated and ranged from approximately −1.4‰ for inoculated sunnhemp and groundnut to −2.4 and −4.5‰ for soybean inoculated with Bradyrhizobium japonicum strain CPAC 7 and Bradyrhizobium elkanii strain 29W, respectively. The B (Bwp) values for the whole plants including roots, nodules and the original seed N were still significantly different between the soybean plants inoculated with CPAC 7 (−1.33‰) and 29W (−2.25‰). In a parallel experiment conducted in monoxenic culture using the same soybean variety and Bradyrhizobium strains, the plants accumulated less N from BNF and the values were less negative, but still significantly different for soybean inoculated with the two different Bradyrhizobium strains. The results suggest that the technique utilized in this study to determine B with legume plants grown in soil in the open air, yields B values that are more appropriate for use under field conditions.  相似文献   

2.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

3.
The 15N natural abundance technique is one of those most easily applied ‘on farm’ to evaluate the contribution of biological N2 fixation (BNF) to legume crops. When proportional BNF inputs are high, the accuracy of this technique is highly dependent on an accurate estimate of the 15N abundance of the N derived from N2 fixation (the ‘B’ value). The objective of this study was to determine the influence of soybean variety on ‘B’ value. Plants of five soybean varieties were inoculated separately with two Bradyrhizobium strains (one Bradyrhizobium japonicum and one Bradyrhizobium elkanii) grown in pots of soil virtually free of bradyrhizobia capable of nodulating soybean. The proportion of N derived from BNF (%Ndfa) was estimated in separate pots where a small quantity of enriched 15N ammonium sulphate was added. The %Ndfa was then used with the 15N natural abundance data of the nodulated soybean and non-N2-fixing reference plants, to determine the ‘B’ value for each soybean variety/Bradyrhizobium association. The varieties nodulated by the B. japonicum strain showed significantly greater N content and %Ndfa than those nodulated by the B. elkanii strain, and in all cases the ‘B’ value of the shoot tissue (‘Bs’) was higher. The differences in ‘Bs’ values between varieties nodulated by the same Bradyrhizobium strain were insignificant, indicating that this parameter is influenced much more by the Bradyrhizobium strain than by the variety of the host plant.  相似文献   

4.
Natural 15N abundances (δ15N) in plant and soil can be used as a powerful marker to reveal the history of N fertilization. To investigate whether N fertilizer source and timing of fertilization leave specific δ15N signals in plant tissue and soil inorganic N, Chinese cabbage (Brassica campestris L. cv. Maeryok), one of the most popular vegetables in Asia, was grown in pots for 60 days with a single or split N applications of organic (composted manure; δ15N=+16.4‰) or inorganic N (urea; δ15N=−0.7‰). Seven N treatments were studied: (1) a single basal fertilization with compost or (2) urea; (3) a basal urea application followed by an additional (at 40 days after transplant, same below) compost or (4) urea application; (5) a basal compost application followed by an additional compost or (6) urea application; and (7) no N fertilization. Regardless of the time of N application, δ15N of cabbage treated with compost was higher (>+9.0‰) than that (< +1.0‰) treated with urea, reflecting the effect of isotopically different N sources. In split N fertilization, only the addition of isotopically different N sources in the middle of the growth period significantly affected the δ15N of the whole plant. Specific δ15N signals of basal N inputs were detected in outer cabbage parts formed in the early growth stage, while those of additional N inputs were detected in inner cabbage parts formed in the latter growth stage. We conclude that measurements of temporal variations in δ15N of plant parts formed in different growth stages could reveal the history of N fertilization.  相似文献   

5.
Legumes increase the plant-available N pool in soil, but might also increase NO3 leaching to groundwater. To minimize NO3 leaching, N-release processes and the contribution of legumes to NO3 concentrations in soil must be known. Our objectives were (1) to quantify NO3-N export to >0.3 m soil depth from three legume monocultures (Medicago x varia Martyn, Onobrychis viciifolia Scop., Lathyrus pratensis L.) and from three bare ground plots. Furthermore, we (2) tested if it is possible to apply a mixing model for NO3 in soil solution based on its dual isotope signals, and (3) estimated the contribution of legume mineralization to NO3 concentrations in soil solution under field conditions. We collected rainfall and soil solution at 0.3 m soil depth during 1 year, and determined NO3 concentrations and δ15N and δ18O of NO3 for >11.5 mg NO3-N l−1. We incubated soil samples to assess potential N release by mineralization and determined δ15N and δ18O signals of NO3 derived from mineralization of non-leguminous and leguminous organic matter.Mean annual N export to >0.3 m soil depth was highest in bare ground plots (9.7 g NO3-N m−2; the SD reflects the spatial variation) followed by Medicago x varia monoculture (6.0 g NO3-N m−2). The O. viciifolia and L. pratensis monocultures had a much lower mean annual N export (0.5 and 0.3 g NO3-N m−2). The averaged NO3-N leaching during 70 days was not significantly different between field estimates and incubation for the Medicago x varia Martyn monoculture.The δ15N and δ18O values in NO3 of rainfall (δ15N: 3.3±0.8‰; δ18O: 30.8±4.7‰), mineralization of non-leguminous SOM (9.3±0.9‰; 6.7±0.8‰), and mineralization of leguminous SOM (1.5±0.6‰; 5.1±0.9‰) were markedly different. Applying a linear mixing model based on these three sources to δ15N and δ18O values in NO3 of soil solution during winter 2003, we calculated 18-41% to originate from rainfall, 38-57% from mineralization of non-leguminous SOM, and 18-40% from mineralization of leguminous SOM.Our results demonstrate that (1) even under legumes NO3-N leaching was reduced compared to bare ground, (2) the application of a three-end-member mixing model for NO3 based on its dual isotope signals produced plausible results and suggests that under particular circumstances such models can be used to estimate the contributions of different NO3 sources in soil solution, and (3) in the 2nd year after establishment of legumes, they contributed approximately one-fourth to NO3-N loss.  相似文献   

6.
We report the first simultaneous measurements of δ15N and δ13C of DNA extracted from surface soils. The isotopic composition of DNA differed significantly among nine different soils. The δ13C and δ15N of DNA was correlated with δ13C and δ15N of soil, respectively, suggesting that the isotopic composition of DNA is strongly influenced by the isotopic composition of soil organic matter. However, in all samples DNA was enriched in 13C relative to soil, indicating microorganisms fractionated C during assimilation or preferentially used 13C enriched substrates. Enrichment of DNA in 15N relative to soil was not consistently observed, but there were significant differences between δ15N of DNA and δ15N of soil for three different sites, suggesting microorganisms are fractionating N or preferentially using N substrates at different rates across these contrasting ecosystems. There was a strong linear correlation between δ15N of DNA and δ15N of the microbial biomass, which indicated DNA was depleted in 15N relative to the microbial biomass by approximately 3.4‰. Our results show that accurate and precise isotopic measurements of C and N in DNA extracted from the soil are feasible, and that these analyses may provide powerful tools for elucidating C and N cycling processes through soil microorganisms.  相似文献   

7.
The natural 15N abundance (δ15N) of different ecosystem compartments is considered to be an integrator of nitrogen (N) cycle processes. Here we investigate the extent to which patterns of δ15N in grassland plants and soils reflect the effect of different management practices on N cycling processes and N balance. Investigations were conducted in long-term experimental plots of permanent montane meadows with treatments differing in the amount and type of applied fertilizer (0-200 kg N ha−1 yr−1; mineral fertilizer, cattle slurry, stable manure) and/or the cutting frequency (1-6 cuts per season). The higher δ15N values of organic fertilizers compared to mineral fertilizer were reflected by higher δ15N values in soils and harvested plant material. Furthermore, δ15N of top soils and plant material increased with the amount of applied fertilizer N. N balances were calculated from N input (fertilization, atmospheric N deposition and symbiotic N2 fixation) and N output in harvest. ‘Excess N’—the fraction of N input not harvested—was assumed to be lost to the environment or accumulated in soil. Taking fertilizer type into account, strong positive correlations between δ15N of top soils and the N input-output balance were found. In plots receiving mineral N fertilizer this indicates that soil processes which discriminate against 15N (e.g. nitrification, denitrification, ammonia volatilization) were stimulated by the increased supply of readily available N, leading to loss of the 15N depleted compounds and subsequent 15N enrichment of the soils. By contrast, in plots with organic fertilization this correlation was partly due to accumulation of 15N-enriched fertilizer N in top soils and partly due to the occurrence of significant N losses. Cutting frequency appeared to have no direct effect on δ15N patterns. This study for the first time shows that the natural abundance of 15N of agricultural systems does not only reflect the type (organic or mineral fertilizer) or amount of annual fertilizer amendment (0-200 kg ha−1 yr−1) but that plant and soil δ15N is better described by N input-output balances.  相似文献   

8.
Diagnostic tests for organic production of crops would be useful. In this study, the difference in natural 15N abundances (δ15N) of soils and plants between fertilizer-applied upland (FU) and compost-applied upland (CU) fields was investigated to study using δ15N as a marker of organic produce. Twenty samples each of soils and plants were collected from each field in early summer after applying fertilizer or compost. The δ15N of fertilizers and composts was −1.6±1.5‰ (n=8) and 17.4±1.2‰ (n=10), respectively. The δ15N of total soil-N was significantly (P<0.05) higher in CU fields (8.8±2.0‰) than in FU fields (5.9±0.7‰) due to long-term continuous application of 15N-enriched compost, as indicated by a positive correlation (r=0.62) between N content and δ15N of total soil-N. The NO3 pool of CU soils (11.6±4.5‰) was also significantly (P<0.05) enriched in 15N compared to FU soils (4.7±1.1‰), while the 15N contents of NH4+ pool were not different between both soils. Compost application resulted in 15N enrichment of plants; the δ15N values were 14.6±3.3‰ for CU and 4.1±1.7‰ for FU fields. These results showed that long-term application of compost resulted in a significant 15N-enrichment of soils and plants relative to fertilizer. Therefore, this study suggested that δ15N could serve as promising indicators of organic fertilizers application when used with other independent evidence. However, further studies under many conditions should be conducted to prepare reliable δ15N guidelines for organic produce, since the δ15N of inorganic soil-N and plant-N are influenced by various factors such as soil type, plant species, the rate of N application, and processes such as mineralization, nitrification, and denitrifcation.  相似文献   

9.
Abstract

The popular and widely used 15nitrogen (N)–isotope dilution method for estimating biological N fixation (BNF) of pasture and tree legumes relies largely on the ability to overcome the principal source of error due to the problem of selecting appropriate reference plants. A field experiment was conducted to evaluate the suitability of 12 non‐N2‐fixing plants (i.e., nonlegumes) as reference plants for estimating the BNF of three pasture legumes (white clover, Trifolium repens L.; lucerne, Medicago sativa; and red clover, Trifolium pratense L.) in standard ryegrass–white clover (RWC) and multispecies pastures (MSP) under dry‐land and irrigation systems, over four seasons in Canterbury, New Zealand. The 15N‐isotope dilution method involving field 15N‐microplots was used to estimate BNF. Non‐N2‐fixing plants were used either singly or in combination as reference plants to estimate the BNF of the three legumes. Results obtained showed that, on the whole, 15N‐enrichment values of legumes and nonlegumes varied significantly according to plant species, season, and irrigation. Grasses and herb species showed higher 15N‐enrichment than those of legumes. Highest 15N‐enrichment values of all plants occurred during late summer under dry‐land and irrigation conditions. Based on single or combined non‐N2‐fixing plants as reference plants, the proportion of N derived from the atmosphere (% Ndfa) values were high (50 to 90%) and differed between most reference plants in the MSP pastures, especially chicory (Cichorium intybus), probably because it is different in phenology, rooting depth, and N‐uptake patterns compared to those of legumes. The percent Ndfa values of all plants studied also varied according to plant species, season, and irrigation in the MSP pastures. Estimated daily amounts of BNF varied according to pasture type, time of plant harvest, and irrigation, similar to those shown by percent Ndfa results as expected. Irrigation increased daily BNF more than 10‐fold, probably due to increased dry‐matter yield of pasture under irrigation compared to dry‐land conditions. Seasonal and irrigation effects were more important in affecting estimates of legume BNF than those due to the appropriate matching of N2‐fixing and non‐N2‐fixing reference plants.  相似文献   

10.
Biological nitrogen(N) fixation(BNF) plays a significant role in maintaining soil fertility in paddy field ecosystems. Rice variety influences BNF, but how different rice varieties regulate BNF and associated diazotroph communities has not been quantified. Airtight,field-based ~(15)N_2-labelling growth chamber experiments were used to assess the BNF capacity of different rice varieties. In addition,both the 16 S rRNA and nifH genes were sequenced to assess the influence of different rice varieties on bacterial and diazotrophic communities in paddy soils. After subjecting a rice-soil system to 74 d of continuous airtight, field-based ~(15)N_2 labelling in pots in a growth chamber, the amounts of fixed N were 22.3 and 38.9 kg ha~(-1) in inbred japonica(W23) and hybrid indica(IIY) rice cultivars planted in the rice-soil systems, respectively, and only 1%–2.5% of the fixed N was allocated to the rice plants and weeds. A greater abundance of diazotrophs was found in the surface soil(0–1 cm) under IIY than under W23. Sequencing of the 16 S rRNA gene showed significantly greater abundances of the cyanobacterial genera Nostoc, Anabaena, and Cylindrospermum under IIY than under W23.Sequencing of the nifH gene also showed a significantly greater abundance of Nostoc under IIY than under W23. These results indicate that the hybrid rice cultivar(IIY) promoted BNF to a greater extent than the inbred rice cultivar(W23) and that the increase in BNF might have been due to the enhanced heterocystous cyanobacteria Nostoc.  相似文献   

11.
Analyses of the spatial and temporal variations in the natural abundance of 13C are frequently employed to study transformations of plant residues and soil organic matter turnover on sites where long continued vegetation with the C3-type photosynthesis pathway has been replaced with a C4-type vegetation (or vice versa). One controversial issue associated with such analyses is the significance of isotopic fractionation during the microbial turnovers of C in complex substrates. To evaluate this issue, C3-soil and quartz sand were amended with maize residues and with faeces from sheep feed exclusively on maize silage. The samples were incubated at 15 °C for 117 days (maize residues) or 224 days (sheep faeces). CO2 evolved during incubation was trapped in NaOH and analysed for C isotopic contents. At the end of incubation, 63 and 50% of the maize C was evolved as CO2 in the soil and sand, respectively, while 32% of the faeces C incubated with soil and with sand was recovered as CO2. Maize and faeces showed a similar decomposition pattern but maize decomposed twice as fast as faeces. The δ13C of faeces was 0.3‰ lower than that of the maize residue (δ13C −13.4‰), while the δ13C of the C3-soil used for incubation was −31.6‰. The δ13C value of the CO2 recovered from unamended C3-soil was similar or slightly lower (up to −1.5‰) than that of the C3-soil itself except for an initial flush of 13C enriched CO2. The δ13C values of the CO2 from sand-based incubations typically ranged −15‰ to −17‰, i.e. around −3‰ lower than the δ13C measured for maize and faeces. Our study clearly demonstrates that the decomposition of complex substrates is associated with isotopic fractionation, causing evolved CO2 to be depleted in 13C relative to substrates. Consequently the microbial products retained in the soil must be enriched in 13C.  相似文献   

12.
Legumes may respond to non-rhizobial inoculants such as arbuscular mycorrhizal (AM) fungi either through an effect on plant growth or, in addition, through an effect on the function of the legume-Rhizobium symbiosis. We have examined the literature where the application of 15N isotope dilution methodology permits the effect of indigenous AM and AM inoculants to be quantitatively separated into plant-growth-mediated and biological N2 fixation (BNF)-mediated components. These studies clearly demonstrate the beneficial effects that both indigenous and inoculated AM have on legume growth, N uptake and the proportional dependence of the legume on atmospheric N2. While the published data allow an assessment of various biological, edaphic and environmental factors that affect the response of various legumes to AM inoculation, they also highlight the paucity of quantitative field data and the lack of understanding of the interaction of legume genotype with AM species with respect to legume symbiotic performance.  相似文献   

13.
Here we present δ13C and δ2H data of long-chained, even-numbered (C27-C31) n-alkanes from C3 (trees) and C4 (grasses) plants and from the corresponding soils from a grassland-woodland vegetation sequence in central Queensland, Australia. Our data show that δ13C values of the C4 grassland species were heavier relative to those of C3 tree species from the woodland (Acacia leaves) and woody grassland (Atalaya leaves). However, n-alkanes from the C4 grasses had lighter δ2H values relative to the Acacia leaves, but showed no significant difference in δ2H values when compared with C3 Atalaya leaves. These results differ from those of previous studies, showing that C4 grasses had heavier δ2H values relative to C3 grasses and trees. Those observations have been explained by C4 plants accessing the more evaporation-influenced and isotopically heavier surface water and tree roots sourcing deeper, isotopically lighter soil water (“Two-layered soil-water system”). By comparison, our data suggest that ecosystem changes (vegetation “thickening”) can significantly alter the soil hydrological characteristics. This is shown by the heavier δ2H values in the woodland soil compared with lighter δ2H values in the grassland soil, implying that the recent vegetation change (increased tree biomass) in the woodland had altered soil hydrological conditions. Estimated δ2H values of the source-water for vegetation in the grassland and woodland showed that both trees and grasses in open settings accessed water with lighter δ2H values (avg. −46‰) compared with water accessed by trees in the woodland vegetation (avg. −7‰). These data suggest that in semi-arid environments the “two-layer” soil water concept might not apply. Furthermore, our data indicate that compound-specific δ2H and δ13C analyses of n-alkanes from soil organic matter can be used to successfully differentiate between water sources of different vegetation types (grasses versus trees) in natural ecosystems.  相似文献   

14.
Below-ground transfer of nitrogen (N) fixed by legume trees to associated non-N2-fixing crops has received little attention in agroforestry, although the importance of below-ground interactions is shown in other ecosystems. We used 15N natural abundance to estimate N transfer from the legume tree Gliricidia sepium (Jacq.) Kunth ex Walp. to C4 grass Dichanthium aristatum (Poir.) C.E. Hubb. in a silvopastoral system, where N was recycled exclusively by below-ground processes and N2 fixation by G. sepium was the sole N input to the system. Finding a suitable reference plant, a grass without contact with tree roots or litter, was problematic because tree roots invaded adjacent grass monocrop plots and soil isotopic signature in soil below distant grass monocrops differed significantly from the agroforestry plots. Thus, we used grass cultivated under greenhouse conditions in pots filled with agroforestry soil as the reference. A model of soil 15N fractionation during N mineralization was developed for testing the reliability of that estimate. Experimental and theoretical results indicated that 9 months after greenhouse transplanting, the percentage of fixed N in the grass decreased from 35% to <1%, due to N export in cut grass and dilution of fixed N with N taken up from the soil. The effect of soil 15N fractionation on the estimate of the reference value was negligible. This indicates that potted grass is a suitable reference N transfer studies using 15N natural abundance. About one third of N in field-grown grass was of atmospheric origin in agroforestry plots and in adjacent D. aristatum grassland invaded by G. sepium roots. The concentration of fixed N was correlated with fine root density of G. sepium but not with soil isotopic signature. This suggests a direct N transfer from trees to grass, e.g. via root exudates or common mycorrhizal networks.  相似文献   

15.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

16.
Abstract

The contribution of biological nitrogen fixation (BNF) to the N nutrition of six annual forage legumes, subterranean clover (Trifolium subterraneum), burr medic (Medicago polymorpha), balansa clover (Trifolium michelianum), Persian clover (Trifolium resupinatum), yellow serradela (Ornithopus compressus), and pink serradela (Ornithopus sativus) was evaluated by the 15N natural abundance technique, using four grass species (Briza máxima, Bromus mollis, Hordeum berteroanum, Avena barbata) and two composite species (Leontodon leysseri and Hedipnois cretica) as reference plants. An additional objective was to determine whether alternative legume species to those in common use (T. subterraneum and M. polymorpha) in the area, could improve BNF. The field studies were conducted in two edaphic conditions, granitic (Entisol) and clay (Vertisol) soil, located in Cauquenes, VII Region, in the sub-humid Mediterranean zone of Chile. In the granitic soil the percentages of N derived from fixation were high in all species (74 to 94%); yellow serradela cv. Tauro presented the greatest N content in dry matter and N fixation, equivalent to 91 kg N ha?1. In contrast, pink serradela cv. Cádiz and subterranean clover cv. Gosse presented the lowest N fixation. In the clay soil, under periodically waterlogged conditions, balansa clover cv. Paradana and persian clover cv. Prolific had high percentage values of BNF (>95%) and fixed more N (100.2 and 82.5 kg N ha?1, respectively) than burr medic and subterranean clover cv. Gosse. The present study allowed the identification of new germplasm of high capacity of N fixation which is an additional criterion for selecting species for infertile and waterlogged soil conditions in the Mediterranean area of Chile.  相似文献   

17.
In the symbiosis between nodulated legume roots and arbuscular mycorrhizal (AM) fungi, the C and N economy can be influenced by the source of N-supply from either AM-derived NH4+ uptake or nodule-derived biological nitrogen fixation (BNF). This relationship was investigated in terms of NH4+ supply and BNF by the two symbionts. Nodulated Phaseolus vulgaris seedlings with and without AM, were hydroponically grown with either 0 N or 1 mM NH4+ supply. Plants were harvested at 30 days after emergence and measurements were taken for biomass, N2 fixation, photosynthesis, CO2 and O2 root respiration, calculated C and N economy. AM roots had higher NH4+ uptake and this was associated with the suppression of BNF and nodule growth. The higher NH4+ uptake in AM roots occurred with lower root maintenance respiration, compared to when N was derived from BNF. There was also an increase in the below-ground sink strength of NH4+ fed AM roots compared to NH4+ fed non-AM roots, as evidenced by the increases in root CO2 and O2 respiration and photosynthetic stimulation. These results indicate that although the AM root had higher total below-ground respiratory costs during NH4+ nutrition, there were lower respiratory C costs associated with N derived from AM symbionts in comparison to N from BNF.  相似文献   

18.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

19.
In soil a high number of species co-exist without extensive niche differentiation, which was assigned as ‘the enigma of soil animal species diversity’. In particular, the detritivores are regarded as food generalists. We have investigated nitrogen stable isotope ratios (15N/14N) of a major decomposer group, the Collembola, to evaluate trophic relationship and determine feeding guilds. Additionally, the δ15N values of potential food sources such as mosses, lichens and other plant derived material (bark, nuts, leaves) were analysed. The natural variation in nitrogen isotopes was assessed in 20 Collembola taxa from three deciduous forest stands. The δ15N signature formed a continuum from phycophages/herbivores to primary and secondary decomposers, reflecting a gradual shift from more detrital to more microbial diets. The δ15N gradient spanned over 9 δ units, which implies a wide range in food sources used. Assuming a shift in 15N of about 3 ‰ per trophic level, the results indicate a range of three trophic levels. These variations in 15N/14N ratios suggest that trophic niches of Collembola species differ and this likely contributes to Collembola species diversity.  相似文献   

20.
Abstract

The natural 13C abundance (δ 13C) of plant leaves collected from fields in Thailand and the Philippines (Asian Monsoon tropics) was analyzed, and changes in the δ 13C values of C3 and C4 plants in wet and dry seasons were characterized. In Thailand, the δ 13C values of C3 plants were ?29.2?±?1.04 (mean?±?standard deviation) ‰ in July and August (wet season) and ?28.6?±?1.05‰ in February and March (dry season): these values are not significantly different, whereas the values of C4 plants were ?12.7?±?0.56‰ in the wet season and ?14.5?±?0.68‰ in the dry season (P?<?0.01, t-test). In the Philippines, where plants were collected only in October (late wet season), the δ 13C values of C3 plants were ?29.5?±?1.28‰, whereas those of C4 plants were ?12.6?±?1.11‰. These results suggest that under an Asian Monsoon climate, C4 plants exhibit more negative δ 13C values in the dry season than in the wet season, whereas C3 plants as a whole show no clear seasonal changes in δ 13C values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号